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This supplementary material contains three main sections: S1 provides de-

tailed proofs corresponding to consistency and asymptotic normality of MSCM

parameter estimators along with consistency of the cumulative baseline hazard

estimator proposed in Section 5.1 of the main text; S2 describes (i) how a MSCM

can easily be fit via inverse probability weighting for either the full cohort or case-

cohort setting using standard survival analysis software, such as R or SAS, and

(ii) additional simulation study results including performance of the proposed

baseline cumulative hazard estimator; S3 provides a summary of notation intro-

duced in the main text and the supplement. For clarity, we display theorems

shown in the main text again in this document. Note that some equation num-

bers presented in this document are the same as the equation numbers in the

main text. Therefore equation numbers from the main text are denoted by ∗.

S1. Proofs for Theorems 3.1 - 3.6 and the consistency of the proposed

cumulative baseline hazard estimator.

This section consists of two main subsections: S1-1 provides proofs corre-

sponding to consistency of MSCM parameter estimators β̂, β̃, and β∗ along with

a proof for the consistency of the proposed baseline cumulative hazard estimator

Λ̃Ŵ (·); S1-2 presents proofs for asymptotic normality results.

S1-1. Consistency Proofs

Recall that we define β̂, β̃, and β∗ to be solutions to ∂l(β, 1; Ŵ )/∂β = 0,

∂l̃(β, 1; Ŵ )/∂β = 0, and ∂l∗(β, 1; Ŵ )/∂β = 0, respectively in the main text.
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Consider the following processes

X(β, t;W ) = n−1{l(β, t;W )− l(β0, t;W )} (1.1)

= n−1
n∑
i=1

∫ t

0
Wi(u)

[
(β − β0)′Ai(u)

− log

∑n
l=1Wl(u)Yl(u)r{β′Al(u)}∑n
l=1Wl(u)Yl(u)r{β′0Al(u)}

]
dNi(u),

X̃(β, t;W ) = n−1{l̃(β, t;W )− l̃(β0, t;W )} (1.2)

= n−1
∑
i∈C

∫ t

0
Wi(u)

[
(β − β0)′Ai(u)

− log

∑
l∈C̃Wl(u)Yl(u)r{β′Al(u)}∑
l∈C̃Wl(u)Yl(u)r{β′0Al(u)}

]
dNi(u)

corresponding to (2.7*) and (2.8*), respectively, in the main text. We will

first show that X(β, t; Ŵ ) and (1.1) are asymptotically equivalent, and so are

X̃(β, t; Ŵ ) and (1.2). Thus, further technical developments will be made based

on (1.1) and (1.2). We then show that (1.1) and (1.2) at t = 1 converge in prob-

ability to functions of β which are concave with a unique maximum β0 under

certain conditions. Using the same argument as in Andersen and Gill (1982), it

follows that β̂ →p β0 and β̃ →p β0. That β∗ →p β0 can be shown analogously by

using X∗(β, t;W ) = n−1{l∗(β, t;W ) − l∗(β0, t;W )}. Asymptotic normality of β̂

and β̃ will be shown via asymptotic normality of score statistics corresponding

to (2.7*) and (2.8*).

Theorem 3.1. (Consistency of full cohort MSCM estimator β̂) Under conditions A-F,

β̂ →p β0.

Proof. Consider (1.1) and its compensator counterpart K(β, t;W ) which is

K(β, t;W ) = n−1
n∑
i=1

∫ t

0
Wi(u)

[
(β − β0)′Ai(u)− log

{ S(0)
W(1)

(β, u)

S
(0)
W(1)

(β0, u)

}]
λi(u)du

where λi(t) is given as in (2.11*). We start by showing that

|{X(β, t; Ŵ )−K(β, t; Ŵ )} − {X(β, t;W )−K(β, t;W )}| →p 0 (1.3)

so that we can consider the asymptotic behavior of X(β, t;W ) −K(β, t;W ) in-

stead of X(β, t; Ŵ )−K(β, t; Ŵ ) to prove consistency of β̂. To prove (1.3), first
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note the term |{X(β, t; Ŵ ) −K(β, t; Ŵ )} − {X(β, t;W ) −K(β, t;W )}| in (1.3)

equals

∣∣∣n−1 n∑
i=1

∫ 1

0

[
Ŵi(u)(β − β0)′Ai(u)− Ŵi(u) log

{ S(0)

Ŵ(1)
(β, u)

S
(0)

Ŵ(1)
(β0, u)

}]
dMi(u)

− n−1
n∑
i=1

∫ 1

0

[
Wi(u)(β − β0)′Ai(u)−Wi(u) log

{ S(0)
W(1)

(β, u)

S
(0)
W(1)

(β0, u)

}]
dMi(u)

∣∣∣.
Replacing Wi(u) in front of log{S(0)

W(1)
(β, u)/S

(0)
W(1)

(β0, u)} with Wi(u)− Ŵi(u) +

Ŵi(u) and rearranging terms yields∣∣∣n−1 n∑
i=1

∫ 1

0
{Ŵi(u)−Wi(u)}(β − β0)′Ai(u)dMi(u) (1.4)

− n−1
n∑
i=1

∫ 1

0
{Ŵi(u)−Wi(u)} log

{ S(0)
W(1)

(β, u)

S
(0)
W(1)

(β0, u)

}
dMi(u)

− n−1
n∑
i=1

∫ 1

0
Ŵi(u) log

{ S(0)

Ŵ(1)
(β, u)

S
(0)

Ŵ(1)
(β0, u)

/ S
(0)
W(1)

(β, u)

S
(0)
W(1)

(β0, u)

}
dMi(u)

∣∣∣.
Each term in (1.4) is a local square integrable martingale since g(Wi(·), Ai(·)) is

predictable for any continuous function g(·) due to predictableness of Wi(·) and

Ai(·). Because Ŵi(·) is also bounded and predictable, the same argument can be

made for g1(Ŵi(·), Ai(·)) and g2(Wi(·), Ŵi(·)) for any continuous functions g1(·)
and g2(·). We will show that the variation process of each martingale in (1.4)

converges in probability to zero, thus proving (1.3).

Let B1(β, t) be the variation process of the first martingale in (1.4). Then

B1(β, t) = n−2
n∑
i=1

∫ t

0
{Ŵi(u)−Wi(u)}2(β − β0)′Ai(u)⊗2(β − β0)λi(u)du

= n−2
n∑
i=1

∫ t

0
{Ŵi(u)−Wi(u)}2(β − β0)′Yi(u)r(2){β′0Ai(u)}(β − β0)λ0(u)du

≤ n−1
∫ t

0
M2
Ŵ

(β − β0)′
[
n−1

n∑
i=1

Yi(u)r(2){β′0Ai(u)}
]
(β − β0)λ0(u)du

= n−1M2
Ŵ

∫ t

0
(β − β0)′S(2)(β0, u)(β − β0)λ0(u)du
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which converges in probability to zero due to conditions A, B, D, and F. The

second equality is owing to (2.11*), and the inequality comes from replacing

{Ŵi(u)−Wi(u)}2 by its supremum value M2
Ŵ

shown in condition A of the main

text. Let B2(β, t) be the variation process of the second martingale term in (1.4).

Then

B2(β, t) =n−2
n∑
i=1

∫ t

0

{
Ŵi(u)−Wi(u)

}2 {
logS

(0)
W(1)

(β, u)− logS
(0)
W(1)

(β0, u)
}2
λi(u)du

≤n−1
∫ t

0
M2
Ŵ

{
logS

(0)
W(1)

(β, u)− logS
(0)
W(1)

(β0, u)
}2
S(0)(β0, u)λ0(u)du

which converges to zero due to conditions A, B, D, and F. Lastly, let the variation

process of the third martingale term in (1.4) be B3(β, t). Then

B3(β, t) = n−2
n∑
i=1

∫ t

0
Ŵi(u)2

[
{logS

(0)

Ŵ(1)
(β, u)− logS

(0)
W(1)

(β, u)}

− {logS
(0)

Ŵ(1)
(β0, u)− logS

(0)
W(1)

(β0, u)}
]2
λi(u)du

= n−1
∫ 1

0

[
{logS

(0)

Ŵ(1)
(β, u)− logS

(0)
W(1)

(β, u)}

− {logS
(0)

Ŵ(1)
(β0, u)− logS

(0)
W(1)

(β0, u)}
]2
S
(0)

Ŵ(2)
(β0, u)λ0(u)du

≤ n−1
∫ 1

0

[
sup
β,u
| logS

(0)

Ŵ(1)
(β, u)− logS

(0)
W(1)

(β, u)|2

+ 2 sup
β,u
| logS

(0)

Ŵ(1)
(β, u)− logS

(0)
W(1)

(β, u)| sup
u
| logS

(0)

Ŵ(1)
(β0, u)− logS

(0)
W(1)

(β0, u)|

+ sup
u
| logS

(0)

Ŵ(1)
(β0, u)− logS

(0)
W(1)

(β0, u)|2
]
S
(0)

Ŵ(2)
(β0, u)λ0(u)du

which converges in probability to zero due to conditions A, B, D, F, and by

the continuous mapping theorem. It follows that X(β, t; Ŵ ) − K(β, t; Ŵ ) and

X(β, t;W )−K(β, t;W ) in (1.3) are asymptotically equivalent processes. Thereby

we proceed to describe asymptotic behavior of the processX(β, t;W )−K(β, t;W ).

Hereafter for notational convenience we suppress W when writing X(β, t;W ) and

K(β, t;W ).

Now consider X(β, t)−K(β, t), which equals to

n−1
n∑
i=1

∫ t

0
Wi(u)

[
(β − β0)′Ai(u)− log

{ S(0)
W(1)

(β, u)

S
(0)
W(1)

(β0, u)

}]
dMi(u),
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which is a martingale. After some calculation, it can be shown that its variation

process B(β, t) can be simplified as

n−1
∫ 1

0

[
(β − β0)′S(2)

W(2)
(β0, u)(β − β0) (1.5)

− 2(β − β0)′S(1)
W(2)

(β0, u) log
{ S(0)

W(1)
(β, u)

S
(0)
W(1)

(β0, u)

}

+

log
( S(0)

W(1)
(β, u)

S
(0)
W(1)

(β0, u)

)
2

S
(0)
W(2)

(β0, u)
]
λ0(u)du

where each term inside the integral converges in probability to a function of

finite quantities s
(j)
W(k)

on β ∈ B in view of conditions D and F. Therefore,

(1.5) converges in probability to zero. It follows that X(β, t) and K(β, t) con-

verge in probability to the same limit by the Lenglart inequality, i.e., that

pr[supt,β ||X(β, t) − K(β, t) > η||] ≤ δ/η2 + pr[B(β, 1) > δ] for all δ, η > 0.

Therefore, to investigate asymptotic properties of X(β, 1), consider asymptotic

properties of K(β, 1) instead:

K(β, 1)→p

∫ 1

0

[
(β − β0)′s(1)W(1)

(β0, u)− log
{ s(0)W(1)

(β, u)

s
(0)
W(1)

(β0, u)

}
s
(0)
W(1)

(β0, u)
]
λ0(u)du

by (2.11*). Let Kl(β, 1) be the limiting quantity shown in the above. Then

∂Kl(β, 1)

∂β
=

∫ 1

0

[
s
(1)
W(1)

(β0, u)−
s
(1)
W(1)

(β, u)

s
(0)
W(1)

(β, u)
s
(0)
W(1)

(β0, u)
]
λ0(u)du

which is zero at β = β0. In addition, ∂2Kl(β, 1)/∂β2 is

−
∫ 1

0

[s(2)W(1)
(β, u)s

(0)
W(1)

(β, u)− s(1)W(1)
(β, u)⊗2

s
(0)
W(1)

(β, u)2

]
s
(0)
W(1)

(β0, u)λ0(u)du

= −
∫ 1

0
vW(1)

(β, u)s
(0)
W(1)

(β0, u)λ0(u)du

which equals to −ΣW(1)
and is negative definite when β = β0 based on condition

F. Therefore K(β, 1) converges to a concave function having unique maximum

at β0. This enables us to make use of Theorem II.1 in Andersen and Gill (1982)
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that proves in probability convergence of X(β, 1) to the same concave function

of β as does K(β, 1), with a unique maximum at β = β0. Then β̂ →p β0.

As described in Section 3 of the main text, consistency of β̃ can be shown

using similar arguments as in Theorem 3.1. We start from showing that X̃(β, t)

converges in probability to K(β, t). Then the same argument as in the proof of

Theorem 3.1 can be made. |X̃(β, t)−K(β, t)| will be decomposed into two terms,

|X(β, t)−K(β, t)| plus a term that is asymptotically negligible.

Theorem 3.2. (Consistency of case-cohort MSCM estimator β̃) Under condi-

tions A-G, β̃ →p β0.

Proof. First, |X̃(β, t)−K(β, t)| can be rewritten as∣∣∣n−1 ∫ t

0

n∑
i=1

Wi(u)(β − β0)′Ai(u)dMi(u)

− n−1
∫ t

0

n∑
i=1

Wi(u) log
{ S̃(0)

W(1)
(β, u)

S̃
(0)
W(1)

(β0, u)

}
dNi(u)

+ n−1
∫ t

0

n∑
i=1

Wi(u) log
{ S(0)

W(1)
(β, u)

S
(0)
W(1)

(β0, u)

}
λi(u)du

∣∣∣
≤|X(β, t)−K(β, t)|

+
∣∣∣n−1 ∫ t

0

n∑
i=1

Wi(u)
{

log
( S̃(0)

W(1)
(β, u)

S̃
(0)
W(1)

(β0, u)

)
− log

( S(0)
W(1)

(β, u)

S
(0)
W(1)

(β0, u)

)}
dNi(u)

∣∣∣.
We have shown that |X(β, t) − K(β, t)| →p 0. The remaining term can be

decomposed as

∣∣∣n−1 ∫ t

0

[ n∑
i=1

Wi(u)
{

log
( S̃(0)

W(1)
(β, u)

S̃
(0)
W(1)

(β0, u)

)
− log

( S(0)
W(1)

(β, u)

S
(0)
W(1)

(β0, u)

)}
dMi(u)

]
(1.6)

+ n−1
∫ t

0

n∑
i=1

[
Wi(u)

{
log
( S̃(0)

W(1)
(β, u)

S̃
(0)
W(1)

(β0, u)

)
− log

( S(0)
W(1)

(β, u)

S
(0)
W(1)

(β0, u)

)}
λi(u)du

]∣∣∣.
Then the second term in (1.6) can easily be shown to converge in probability

to zero in view of conditions C, D, F, and G-3. Also the martingale in (1.6)
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converges in probability to zero because its variation process is∣∣∣n−2 ∫ t

0

n∑
i=1

Wi(u)2
[{

log S̃
(0)
W(1)

(β, u)− logS
(0)
W(1)

(β, u)
}

−
{

log S̃
(0)
W(1)

(β0, u)− logS
(0)
W(1)

(β0, u)
}]2

λi(u)du
∣∣∣

≤
∣∣∣n−1 ∫ t

0

[
sup
β,u
| log S̃

(0)
W(1)

(β, u)− logS
(0)
W(1)

(β, u)|

+ sup
u
| log S̃

(0)
W(1)

(β0, u)− logS
(0)
W(1)

(β0, u)|
]2
S
(0)
W(2)

(β0, u)λ0(u)du
∣∣∣

which converges in probability to zero, again by (2.11*) with conditions C, D,

F, and G-3. Note that sum of supremums in the integrand (which can be taken

outside the integral) converges in probability to zero by conditions D and G-3.

Theorem 3.3. (Asymptotic equivalence between two case-cohort MSCM esti-

mators) Under conditions A-G, β̃ − β∗ →p 0.

Proof. We sketch a proof of Theorem 3.3. Consider the following process

X∗(β, t) = n−1{l∗(β, t)− l∗(β0, t)}.

Then X∗(β, t) = n−1{l̃(β, t)− l̃(β0, t)}+ op(1) because n−1l∗(β, t) = n−1 l̃(β, t) +

op(1). Therefore, X∗(β, t) and X̃(β, t) are asymptotically equivalent processes

and we can repeat the proof of Theorem 3.2 using X∗(β, t) instead of X̃(β, t).

Lastly, we show consistency of the MSCM cumulative baseline hazard estima-

tor presented in Section 5.1 of the main text: Under conditions A-G, supt∈[0,1] |Λ̃Ŵ (β̃, t)−
Λ0(t)| →p 0, where Λ0(t) = Λ0(β0, t).

Proof. Recall:

Λ̃Ŵ (β̃, t) = ñn−1
∫ t

0

[∑
i∈C̃

Ŵi(u)Yi(u)r{β̃′Ai(u)}
]−1 n∑

i=1

Ŵi(u)dNi(u).

Note that Λ̃Ŵ (β̃, t)− Λ0(t) equals

n∑
i=1

∫ t

0
n−1

Ŵi(u)

S̃
(0)

Ŵ(1)
(β̃, u)

dMi(u) +

∫ t

0

S
(0)

Ŵ(1)
(β0, u)− S̃(0)

Ŵ(1)
(β̃, u)

S̃
(0)

Ŵ(1)
(β̃, u)

λ0(u)du (1.7)
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in view of (2.11*). The first term of (1.7) is a local square integrable martingale

because the term n−1Ŵi(u)/S̃
(0)

Ŵ(1)
(β̃, u) is a bounded predictable process based on

conditions A, B, F, and G. The variation process is n−1
∫ t
0 S

(0)

Ŵ(1)
(β̃, u)/{S̃(0)

Ŵ(1)
(β̃, u)}2

λ0(u)du which converges in probability to zero due to conditions A, B, D, F, and

G, and thus the first term of (1.7) converges in probability to zero. The second

term in (1.7) can be written as

∫ t

0

S
(0)

Ŵ(1)
(β0, u)− S̃(0)

Ŵ(1)
(β0, u) + S̃

(0)

Ŵ(1)
(β0, u)− S̃(0)

Ŵ(1)
(β̃, u)

S̃
(0)

Ŵ(1)
(β̃, u)

λ0(u)du. (1.8)

Then uniform consistency of Ŵ , consistency of β̃ along with conditions C, D, F,

and G imply in probability convergence of (1.8) to zero.

S1-2. Asymptotic Normality of Marginal Structural Cox Model Esti-

mators

In this section we show that the full cohort and the case-cohort MSCM

estimators are asymptotically normally distributed. We start from showing that

the full and the case-cohort score statistics are asymptotically normal. Recall

that we referred to the score process under the full cohort setting as the full

cohort MSCM score process, and the score process under the case-cohort setting

as the case-cohort cohort MSCM score process.

Theorem 3.4. (Asymptotic normality of the full cohort MSCM score statistic)

Under conditions A-F,

n−1/2U(β0, 1)→d N(0,ΣU )

where ΣU = ΣW(2)
+ ∆W(1),W(2)

with

∆W(1),W(2)
=

∫ 1

0
{eW(2)

(β0, u)− eW(1)
(β0, u)}⊗2s(0)W(2)

(β0, u)λ0(u)du. (1.9)

Proof. Let U(β0, t) be the full cohort MSCM score process at time t. Then

n−1/2U(β0, t) = n−1/2∂l(β, t)/∂β
∣∣∣
β=β0

(1.10)
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= n−1/2
n∑
i=1

∫ t

0
Wi(u)

[
Ai(u)−

S
(1)
W(1)

(β0, u)

S
(0)
W(1)

(β0, u)

]
dNi(u)

= n−1/2
n∑
i=1

∫ t

0
Wi(u)

[
Ai(u)− EW(1)

(β0, u)
]
dMi(u).

The third equality follows from (2.10*) and the fact that

n−1/2
n∑
i=1

∫ t

0
Wi(u)[Ai(u)− EW(1)

(β0, u)]λi(u)du = 0, (1.11)

based on (2.11*). Similar to the proof of Theorem 3.1, we start by showing that

|n−1/2U(β, t; Ŵ )− n−1/2U(β, t;W )| →p 0 so that the rest of the arguments can

be made based on n−1/2U(β, t;W ). It can be seen that

|n−1/2U(β, t; Ŵ )− n−1/2U(β, t;W )|

=n−1/2
n∑
i=1

∫ t

0

[
{Ŵi(u)−Wi(u)}Ai(u)dMi(u) (1.12)

− n−1/2
n∑
i=1

∫ t

0

{
Ŵi(u)EŴ(1)

(β, u)−Wi(u)EW(1)
(β, u)

}]
,

which is a sum of two local square integrable martingales. The variation process

of the first term in (1.12) is given by

n−1
n∑
i=1

∫ t

0
{Ŵi(u)−Wi(u)}2A⊗2i (u)λi(u)du

=n−1
n∑
i=1

∫ t

0
{Ŵi(u)−Wi(u)}2Yi(u)r(2){β′0Ai(t)}λ0(u)du

≤
∫ t

0
M2
Ŵ

[
n−1

n∑
i=1

Yi(u)r(2){β′0Ai(u)}
]
λ0(u)du

= M2
Ŵ

∫ t

0
S(2)(β0, u)λ0(u)du,

which converges in probability to zero by conditions A, C, D, E, and F. The

second term in (1.12) can be rewritten as

n−1/2
n∑
i=1

∫ t

0
{Ŵi(u)−Wi(u)}EŴ(1)

(β, u) (1.13)

+Wi(u){EŴ(1)
(β, u)− EW(1)

(β, u)
}
dMi(u)

]
,
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which is, again a sum of two local square integrable martingales. The variation

process of the first term in (1.13) is

n−1
n∑
i=1

∫ t

0
{Ŵi(u)−Wi(u)}2EŴ(1)

(β, u)⊗2λi(u)du

≤M2
Ŵ

∫ t

0
EŴ(1)

(β, u)⊗2S(0)(β0, u)λ0(u)du,

which converges in probability to zero in view of conditions A, C, D, E, and F.

The variation process of the second term in (1.13) can be written as

n−1
n∑
i=1

∫ t

0
W 2
i (u){EŴ(1)

(β, u)− EW(1)
(β, u)}⊗2λi(u)du

≤
∫ t

0
M2

1{EŴ(1)
(β, u)− EW(1)

(β, u)}⊗2S(0)(β0, u)λ0(u)du. (1.14)

Later we will show that |EŴ(1)
(β, u) − EW(1)

(β, u)| →p 0 uniformly in β and t.

For now, assume that

sup
(β,t)∈B×[0,1]

|EŴ(1)
(β, t)− EW(1)

(β, t)| →p 0 (1.15)

holds. Then it can be shown that (1.14) is less than equal to

M2
1

∫ t

0
sup
β,u
|EŴ(1)

(β, u)− EW(1)
(β, u)|⊗2{S(0)(β0, u)− s(0)(β0, u) + s(0)(β0, u)}λ0(u)du

=M2
1 sup
β,u
|EŴ(1)

(β, u)− EW(1)
(β, u)|⊗2

∫ t

0
{S(0)(β0, u)− s(0)(β0, u)}λ0(u)du

+ M2
1 sup
β,u
|EŴ(1)

(β, u)− EW(1)
(β, u)|⊗2

∫ t

0
s(0)(β0, u)λ0(u)du

≤M2
1 sup
β,u
|EŴ(1)

(β, u)− EW(1)
(β, u)|⊗2 sup

u
|S(0)(β0, u)− s(0)(β0, u)|

∫ t

0
λ0(u)du

+ M2
1 sup
β,u
|EŴ(1)

(β, u)− EW(1)
(β, u)|⊗2

∫ t

0
s(0)(β0, u)λ0(u)du,

which converges uniformly in β and t based on (1.15) and conditions B, C, D,



Supplementary Document for Marginal Structural Cox Models with Case-Cohort Sampling 11

and F. To show that (1.15) is satisfied, let’s rewrite |EŴ(1)
(β, t)−EW(1)

(β, t)| as

|EŴ(1)
(β, t)− eW(1)

(β, t)− EW(1)
(β, t) + eW(1)

(β, t)|

≤|EŴ(1)
(β, t)− eW(1)

(β, t)|+ |EW(1)
(β, t)− eW(1)

(β, t)|

=
∣∣∣S(1)

Ŵ(1)
(β, t)s

(0)
W(1)

(β, t)− s(1)W(1)
(β, t)S

(0)

Ŵ(1)
(β, t)

S
(0)

Ŵ(1)
(β, t)s

(0)
W(1)

(β, t)

∣∣∣ (1.16)

+
∣∣∣S(1)

W(1)
(β, t)s

(0)
W(1)

(β, t)− s(1)W(1)
(β, t)S

(0)
W(1)

(β, t)

S
(0)
W(1)

(β, t)s
(0)
W(1)

(β, t)

∣∣∣. (1.17)

First, we can show that (1.16) converges in probability to zero uniformly in (β, t);

because by conditions A, D(ii), and condition F (i.e., s
(0)
W(1)

(β, t) is bounded away

from zero), there exists an integer N0 such that when n > N0, S
(0)

Ŵ(1)
(β, t) is

bounded away from 0. Therefore when n > N0, minβ,t |S
(0)

Ŵ(1)
(β, t)s

(0)
W(1)

(β, t)|
exists and we will denote it by M . Then when n > N0,

∣∣∣S(1)

Ŵ(1)
(β, t)s

(0)
W(1)

(β, t)− s(1)W(1)
(β, t)S

(0)

Ŵ(1)
(β, t)

S
(0)

Ŵ(1)
(β, t)s

(0)
W(1)

(β, t)

∣∣∣
≤ 1

M

∣∣∣S(1)

Ŵ(1)
(β, t)s

(0)
W(1)

(β, t)− s(1)W(1)
(β, t)S

(0)

Ŵ(1)
(β, t)

∣∣∣
≤ 1

M

∣∣∣S(1)

Ŵ(1)
(β, t)s

(0)
W(1)

(β, t)− s(1)W(1)
(β, t)s

(0)
W(1)

(β, t)
∣∣∣+

1

M

∣∣∣s(1)W(1)
(β, t)S

(0)

Ŵ(1)
(β, t)− s(1)W(1)

(β, t)s
(0)
W(1)

(β, t)
∣∣∣

≤ 1

M

∣∣∣s(0)W(1)
(β, t)

∣∣∣∣∣∣S(1)

Ŵ(1)
(β, t)− s(1)W(1)

(β, t)
∣∣∣+

1

M

∣∣∣s(1)W(1)
(β, t)

∣∣∣∣∣∣S(0)

Ŵ(1)
(β, t)− s(0)W(1)

(β, t)
∣∣∣

→p 0 uniformly in (β, t) ∈ B × [0, 1],

because it is clear that supβ,t |S
(j)

Ŵ(1)
(β, t)−s(j)W(1)

(β, t)| →p 0 from condition A and

D(ii). A similar argument can be made to show that (1.17) uniformly converges

in probability to zero. This enables us to establish asymptotic results using true

IPWs, instead of using estimated weights, and therefore we will proceed with the

MSCM score function evaluated at the true weights.

Set Hi(t) = n−1/2Wi(t)[Ai(t) − EW(1)
(β0, t)] for i = 1, ..., n. This is a lo-

cally bounded predictable process. Therefore, (1.10) is a local square integrable

martingale. To apply the martingale central limit theorem to the local square
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integrable martingale, we show that n−1/2U(β0, 1) =
∑n

i=1

∫ 1
0 Hi(t)dMi(t) satis-

fies (i)
∫ 1
0

∑n
i=1Hij(t)

2I{|Hij(t)| > ε}λi(t)dt →p 0 for any ε > 0 (the Lindeberg

condition), and that (ii) the variation process of (1.10) evaluated at t = 1 con-

verges in probability to a finite quantity. Condition (i) is satisfied because of

condition E. To see if condition (ii) is satisfied, consider the variation process of

n−1/2U(β0, 1),

n∑
i=1

∫ 1

0
Hi(u)⊗2λi(u)du

=

∫ 1

0
n−1

n∑
i=1

Wi(u)2
[
Ai(u)− EW(1)

(β0, u)
]⊗2

λi(u)du

=

∫ 1

0
n−1

n∑
i=1

[
Wi(u)2Yi(u)r(2){β′0Ai(u)} − 2Wi(u)2Yi(u)r(1){β′0Ai(u)}{EW(1)

(β0, u)}′

+Wi(u)2Yi(u)r{β′0Ai(u)}EW(1)
(β0, u)⊗2

]
λ0(u)du

=

∫ 1

0

[
S
(2)
W(2)

(β0, u)− 2S
(1)
W(2)

(β0, u){EW(1)
(β0, u)}′ + S

(0)
W(2)

(β0, u)EW(1)
(β0, u)⊗2

]
λ0(u)du

=

∫ 1

0

[S(2)
W(2)

(β0, u)

S
(0)
W(2)

(β0, u)
− 2

S
(1)
W(2)

(β0, u)

S
(0)
W(2)

(β0, u)

{S(1)
W(1)

(β0, u)

S
(0)
W(1)

(β0, u)

}′
+
{S(1)

W(1)
(β0, u)

S
(0)
W(1)

(β0, u)

}⊗2]
S
(0)
W(2)

(β0, u)λ0(u)du

=

∫ 1

0

[{S(2)
W(2)

(β0, u)

S
(0)
W(2)

(β0, u)
−
(S(1)

W(2)
(β0, u)

S
(0)
W(2)

(β0, u)

)⊗2}
+
{(S(1)

W(2)
(β0, u)

S
(0)
W(2)

(β0, u)

)⊗2

− 2
S
(1)
W(2)

(β0, u)

S
(0)
W(2)

(β0, u)

(S(1)
W(1)

(β0, u)

S
(0)
W(1)

(β0, u)

)′
+
(S(1)

W(1)
(β0, u)

S
(0)
W(1)

(β0, u)

)⊗2}]
S
(0)
W(2)

(β0, u)λ0(u)du

=

∫ 1

0

[
VW(2)

(β0, u) + {EW(2)
(β0, u)− EW(1)

(β0, u)}⊗2
]
S
(0)
W(2)

(β0, u)λ0(u)du.

Finally we can see that the variation process of n−1/2U(β0, 1) converges in prob-

ability to

ΣW(2)
+ ∆W(1),W(2)

≡ ΣU (1.18)

where ∆W(1),W(2)
is given in (1.9). Based on conditions C and F, (1.18) is a

finite quantity. Therefore, the full cohort MSCM score statistic converges in

distribution to a Gaussian process with mean zero and the limiting variance-

covariance process ΣU by the martingale central limit theorem. When Wi(t) ≡ 1
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for all i = 1, ..., n and t ∈ [0, 1], ∆W(1),W(2)
becomes zero and (1.18) equals to Σ

which is the asymptotic variance of the score process under the full cohort.

Before we prove Theorem 3.5, we present the following Proposition which is

taken from Self and Prentice (1998):

Proposition 1. (Self and Prentice, 1988) Let Xn = (X1n, ..., Xnn) and δn =

(δ1n, ..., δnn) be independent random variables such that:

(I) δn is a vector of ñ ones and n− ñ zeros, each possible configuration of zeros

and ones is equally likely and ñ/n→p α ∈ (0, 1).

(II) For some scalar functions of Xn, fin(Xn), and for any ε > 0,

n−1
n∑
i=1

[fin(Xn)− f·n(Xn)]2I{|fin(Xn)− f·n(Xn)| > n1/2ε} →p 0,

and S2
fn
→p σ

2
f > 0, where f·n(Xn) = n−1

∑n
i=1 fin(Xn) and

S2
fn = n−1

n∑
i=1

[fin(Xn)− f·n(Xn)]2.

(III) The scalar functions of Xn, gn(Xn), converge in distribution to a Gaussian

random variable with mean zero and variance σ2g .

Let hn(Xn, δn) = n1/2[ñ−1
∑n

i=1 δinfin(Xn)−f·n(Xn)], then {gn(Xn), hn(Xn, δn)}
converge in distribution to a bivariate Gaussian random variable with mean zero

and covariance matrix given by[
σ2g 0

0 (1− α)α−1σ2f

]
.

Theorem 3.5. (Asymptotic normality of the case-cohort MSCM score statistic)

Under conditions A-G,

n−1/2Ũ(β0, 1)→d N(0,ΣŨ )

where ΣŨ = ΣU + ∆α,

∆α =

∫ 1

0

∫ 1

0
G(β0, x, v)λ0(x)λ0(v)dxdv, (1.19)
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and G(β0, x, v) is given by

G(β0, x, v) = (1− α)α−1
[
h(1)(β0, x, v)− eW(1)

(β0, x)h(2)(β0, x, v)′ (1.20)

− h(2)(β0, v, x)eW(1)
(β0, v)′ + eW(1)

(β0, x)eW(1)
(β0, v)′h(0)(β0, x, v)

]
,

where

h(0)(β, x, v) = q(0)(β, x, v)− s(0)W(1)
(β, x)s

(0)
W(1)

(β, v)

h(1)(β, x, v) = q(1)(β, x, v)− s(1)W(1)
(β, x)s

(1)
W(1)

(β, v)′

h(2)(β, x, v) = q(2)(β, x, v)− s(0)W(1)
(β, x)s

(1)
W(1)

(β, v).

Proof. The score process corresponding to (2.8*), which will be referred to as

case-cohort MSCM score process, is defined by

n−1/2Ũ(β0, t) =n−1/2∂l̃(β, t)/∂β
∣∣∣
β=β0

(1.21)

=n−1/2
n∑
i=1

∫ t

0
Wi(u)

[
Ai(u)− ẼW(1)

(β0, u)
]
dNi(u).

Replacing ẼW(1)
(β0, u) in (1.21) with EW(1)

(β0, u) + ẼW(1)
(β0, u)− EW(1)

(β0, u),

we obtain

n−1/2
n∑
i=1

∫ t

0
Wi(u)

[
Ai(u)− EW(1)

(β0, u)
]
dMi(u) (1.22)

−
∫ t

0
Dn(u)λ0(u)du

−
∫ t

0
Dn(u){S(0)

W(1)
(β0, u)/S̃

(0)
W(1)

(β0, u)− 1}λ0(u)du

+

∫ t

0
n1/2{EW(1)

(β0, u)− eW(1)
(β0, u)}{S̃(0)

W(1)
(β0, u)− S(0)

W(1)
(β0, u)}

× S(0)
W(1)

(β0, u)/S̃
(0)
W(1)

(β0, u)λ0(u)du

− n−1/2
n∑
i=1

∫ t

0
Wi(u)

[
ẼW(1)

(β0, u)− EW(1)
(β0, u)

]
dMi(u),

where

Dn(t) = n1/2
[{
S̃
(1)
W(1)

(β0, t)− S(1)
W(1)

(β0, t)
}
− eW(1)

(β0, t)
{
S̃
(0)
W(1)

(β0, t)

− S(0)
W(1)

(β0, t)
}]
S
(0)
W(1)

(β0, t).
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To begin with, we first show how (1.21) can be rewritten as (1.22). Replacing

ẼW(1)
(β0, u) in (1.21) with EW(1)

(β0, u) + ẼW(1)
(β0, u)− EW(1)

(β0, u), we obtain

n−1/2Ũ(β0, t) = n−1/2
n∑
i=1

∫ t

0
Wi(u)

[
Ai(u)− EW(1)

(β0, u)
]
dMi(u) (1.23)

− n1/2
∫ t

0

[
ẼW(1)

(β0, u)− EW(1)
(β0, u)

]
S
(0)
W(1)

(β0, u)λ0(u)du

− n−1/2
n∑
i=1

∫ t

0
Wi(u)

[
ẼW(1)

(β0, u)− EW(1)
(β0, u)

]
dMi(u).

We can rewrite n1/2[EW(1)
(β0, u)−EW(1)

(β0, u)}]S(0)
W(1)

(β0, u) in the second term

of (1.23) as follows:

n1/2[ẼW(1)
(β0, t)− EW(1)

(β0, t)]S
(0)
W(1)

(β0, t)

=n1/2
[ S̃(1)

W(1)
(β0, t)

S̃
(0)
W(1)

(β0, t)
−
S
(1)
W(1)

(β0, t)

S
(0)
W(1)

(β0, t)

]
S
(0)
W(1)

(β0, t)

=n1/2
[{ S̃(1)

W(1)
(β0, t)

S̃
(0)
W(1)

(β0, t)
−
S
(1)
W(1)

(β0, t)

S̃
(0)
W(1)

(β0, t)

}

+
{S(1)

W(1)
(β0, t)

S̃
(0)
W(1)

(β0, t)
−
S
(1)
W(1)

(β0, t)

S
(0)
W(1)

(β0, t)

}]
S
(0)
W(1)

(β0, t)

=n1/2
[ 1

S̃
(0)
W(1)

(β0, t)

{
S̃
(1)
W(1)

(β0, t)− S(1)
W(1)

(β0, t)
}

+
S
(1)
W(1)

(β0, t)

S̃
(0)
W(1)

(β0, t)S
(0)
W(1)

(β0, t)

{
S
(0)
W(1)

(β0, t)− S̃(0)
W(1)

(β0, t)
}]
S
(0)
W(1)

(β0, t)

=n1/2
[{
S̃
(1)
W(1)

(β0, t)− S(1)
W(1)

(β0, t)
}
− EW(1)

(β0, t)
{
S̃
(0)
W(1)

(β0, t)− S(0)
W(1)

(β0, t)
}]

× S(0)
W(1)

(β0, t)/S̃
(0)
W(1)

(β0, t)

=Dn(t) +Dn(t){S(0)
W(1)

(β0, t)/S̃
(0)
W(1)

(β0, t)− 1}

− n1/2{EW(1)
(β0, u)− eW(1)

(β0, u)}{S̃(0)
W(1)

(β0, u)− S(0)
W(1)

(β0, u)}S(0)
W(1)

(β0, u)/S̃
(0)
W(1)

(β0, u),

which leads to the form given by (1.22). Then the fourth term in (1.22) can

be shown to converge in probability to zero uniformly in t because its integrand
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converges to zero uniformly in t in view of the stability conditions D, F, and G-3,

combined with the Slutsky’s theorem. The fifth term in (1.22) is a local square

integrable martingale with the variation process∫ 1

0

[
ẼW(1)

(β0, u)− EW(1)
(β0, u)

]⊗2
S
(0)
W(2)

(β0, u)λ0(u)du

which converges in probability to zero by conditions C, D, F, and G-3. Therefore,

if we can show that the first term in (1.22) and Dn(u) converge jointly in dis-

tribution to independent Gaussian random variables then it implies that Dn(u)

converges in distribution to a Gaussian (the joint in distribution convergence will

be shown through Proposition 1 in the main text). This further implies that the

third term in (1.22) converges in probability to zero and that the first two terms

in (1.22) converge jointly in distribution to independent Gaussian random vari-

ables. Then we can claim that the limiting covariance function of the case-cohort

MSCM score process is given by the sum of each of the limiting covariances. The

proof for Theorem 3.5 is lengthy thus we break it into three parts: Part 1) shows

how Proposition 1 can be used to prove Theorem 3.5. Part 2) justifies the appli-

cation of Proposition 1 by showing that conditions (I) to (III) in the Proposition

are met. Part 3) shows detailed calculations to obtain the limiting covariance

function of the MSCM case-cohort score process.

Part 1) Application of Proposition 1 Consider application of Proposition

1 to Dn(t). In particular, Xin represents {Wi(u), Yi(u), Ni(u), Ai(u);u ∈ [0, 1]},
fin(Xn) represents a linear combination of elements of Wi(t)Yi(t)r{β′0Ai(t)} and

Wi(t)Yi(t)r
(1){β′0Ai(t)}. The explicit form of fin(Xn) will be presented below.

Our goal is to show that the difference of the first two terms in (1.22), which

is given by

n−1/2
n∑
i=1

∫ t

0
Wi(u)[Ai(u)− EW(1)

(β0, u)]dMi(u)−
∫ t

0
Dn(u)λ0(u)du

=Bn(t)−
∫ t

0
Dn(u)λ0(u)du

=Bn(t)− Cn(t),

converges in distribution to a finite dimensional Gaussian random variable where

Bn(·), Cn(·), and Dn(·) are defined by
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Bn(t) = n−1/2
n∑
i=1

∫ t

0
Wi(u)[Ai(u)− EW(1)

(β0, u)]dMi(u), (1.24)

Cn(t) =

∫ t

0
Dn(u)λ0(u)du, and (1.25)

Dn(u) = n1/2
[
{S̃(1)

W(1)
(β0, u)− S(1)

W(1)
(β0, u)} − eW(1)

(β0, u) (1.26)

× {S̃(0)
W(1)

(β0, u)− S(0)
W(1)

(β0, u)}
]
S
(0)
W(1)

(β0, u).

Let gn(Xn) be a linear combination of elements of the MSCM full cohort score

process (Bn), i.e., for any constants cj (j = 1, .., p),

gn(Xn) = n−1/2
n∑
i=1

p∑
j=1

cj

∫ t

0
Wi(u)[Ai,j(u)− EW(1),j(β0, u)]dMi(u)

where the subscript j denotes the jth component of a vector. Also, let hn(Xn, δn)

be a linear combination of elements of Dn, i.e., for any constants dj(j = 1, .., p),

fin(Xn) is given by

fin(Xn) =

p∑
j=1

dj

[
Wi(uj)Yi(uj)r

(1)
j {β

′
0Ai(uj)} (1.27)

− eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}
]
.

Then (1.27) leads to the desired form of hn(Xn, δn):

hn(Xn, δn) =n1/2[ñ−1
n∑
i=1

δinfin(Xn)− f·n(Xn)]

=n1/2
[ p∑
j=1

dj{S̃(1)
W(1),j

(β0, uj)− eW(1),j(β0, uj)S̃
(0)
W(1)

(β0, uj)}

−
p∑
j=1

dj{S(1)
W(1),j

(β0, uj)− eW(1),j(β0, uj)S
(0)
W(1)

(β0, uj)}
]

=n1/2
p∑
j=1

dj

[
{S̃(1)

W(1),j
(β0, uj)− S(1)

W(1),j
(β0, uj)}

− eW(1),j(β0, uj){S̃
(0)
W(1)

(β0, uj)− S(0)
W(1)

(β0, uj)}
]
,

which is a linear combination of elements of Dn where each jth component can be

evaluated at possibly different time points uj , i.e., hn(Xn, δn) =
∑p

j=1 djDn,j(uj).
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Assume that fin(Xn) and gn(Xn) satisfy conditions (I) to (III) stated in Propo-

sition 1, which will be shown later in the Part 2. Then by varying cj and dj , we

can show that any chosen elements of Bn and Dn jointly converge in distribution

to an independent bivariate Gaussian process by application of Proposition 1.

For example, consider c1 = d1 = 1 and c2 = ... = cp = d2 = ... = dp = 0.

Then Proposition 1 states that the first element of Bn and the first element

of Dn converge jointly in distribution to an independent bivariate Gaussian. In

iterative fashion, we can show that jth element of Bn and kth element of Dn con-

verge in distribution to an independent bivariate Gaussian for all combinations

of (j, k) ∈ [1, 2, ..., p]× [1, 2, ..., p]. Therefore, Bn and Dn converge in distribution

to independent processes. We have shown that Bn, the MSCM full cohort score

process, converges in distribution to a Gaussian process. Therefore, what we

have left to show is that Dn converges in distribution to a Gaussian process (and

later to show that Cn converges in distribution to a Gaussian process).

In the above arguments we have shown that, for any dj (j = 1, ..., p),∑p
j=1 djDn,j converges in distribution to a univariate Gaussian because fin(Xn)

satisfies conditions in Proposition 1 for any dj (which, as we mentioned above, will

be shown in the Part 2). Therefore, it follows that Dn converges in distribution

to a multidimensional mean zero Gaussian random variable by the Cramer-Wold

device. As in Self and Prentice (1988), the fact that linear functionals of the

Gaussian processes are Gaussian combined with the fact that λ0(·) is absolutely

continuous with respect to the Lebesque measure leads to that Cn converges to

a Gaussian random variable, say C. Then it follows that Bn − Cn converges to

a mean zero Gaussian random variable with covariance ΣU + ∆α, as the limiting

covariance of Cn will be shown to equal ∆α later in the Part 3.

In the next two parts, we verify that fin(Xn) and gn(Xn) satisfy conditions

in Proposition 1, and show the explicit form of limiting covariance structure of

Cn respectively.

Part 2) Conditions in Proposition 1 Condition (I) in Proposition 1 is satisfied

by condition G-1(i) in the main text and the fact that the subcohort is selected

by the simple random sampling without replacement. The first subcondition of

condition (II) in Proposition 1 follows from the inequality used by Andersen and

Gill (1982) and Self and Prentice (1988),
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|a− b|2I{|a− b| > ε} ≤ 4|a|2I{|a| > ε/2}+ 4|b|2I{|b| > ε/2}, (1.28)

by letting n−1/2fin(Xn) be a and n−1/2f·n(Xn) be b, combined with conditions

D, F, and G-1(ii). Recall that condition (II) of Proposition 1 has the following

two subconditions:

For any ε > 0,

n−1
n∑
i=1

[fin(Xn)− f·n(Xn)]2I{|fin(Xn)−f·n(Xn)|>n1/2ε} →p 0, and (1.29)

S2
fn = n−1

n∑
i=1

[fin(Xn)− f·n(Xn)]2 →p σf . (1.30)

To show (1.29) based on the inequality (1.28), we need to show that for any

ε > 0,

n−1
n∑
i=1

|fin(Xn)|2I{|fin(Xn)| > n1/2ε/2} →p 0, and (1.31)

n−1|f·n(Xn)|2I{|f·n(Xn)| > n1/2ε/2} →p 0. (1.32)

To show (1.31), recall condition G-1(ii) in the main text: For any ε > 0

sup
t
n−1

n∑
i=1

Wi(t)
2Yi(t)r{β′0Ai(t)}2 (1.33)

× I{n−1/2Wi(t)Yi(t)r{β′0Ai(t)} > ε} →p 0,

sup
t
n−1

n∑
i=1

Wi(t)
2Yi(t)||r(1){β′0Ai(t)}||2 (1.34)

× I{n−1/2Wi(t)Yi(t)||r(1){β′0Ai(t)}|| > ε} →p 0,

where (1.33) implies

sup
t
n−1

n∑
i=1

Wi(t)
2Yi(t)r{β′0Ai(t)}2||eW(1)

(β0, t)||2 (1.35)

× I{n−1/2Wi(t)Yi(t)r{β′0Ai(t)}||eW(1)
(β0, t)|| > ε} →p 0.

It can be shown that (1.34) and (1.35) imply (1.31), by repeatedly applying
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(1.28). Also, we can rewrite

f·n(Xn) =

p∑
j=1

dj [S
(1)
W(1),j

(β0, t)− eW(1),j(β0, t)S
(0)
W(1)

(β0, t)].

Then (1.32) can immediately be seen by the stability property implied by condi-

tion D in the main text.

To show (1.30), note that S2
fn

can be rewritten as

S2
fn = n−1

n∑
i=1

[fin(Xn)− f·n(Xn)]2 (1.36)

= n−1
n∑
i=1

fin(Xn)2 − {f·n(Xn)}2.

For notational and calculational convenience, let

fin(Xn) =

p∑
j=1

dj(aj − bj)

by letting

aj = Wi(uj)Yi(uj)r
(1)
j {β

′
0Ai(uj)}, and

bj = eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}

then calculate the form of each term in (1.36). First term in (1.36) can be written

as follows:

n−1
n∑
i=1

fin(Xn)2 = n−1
n∑
i=1

[ p∑
j=1

dj(aj − bj)
]2

=n−1
n∑
i=1

[ p∑
j=1

d2j (aj − bj)2 + 2
∑
j<k

djdk(aj − bj)(ak − bk)
]

=n−1
n∑
i=1

[ p∑
j=1

d2j

{
Wi(uj)

2Yi(uj)r
(1)
j {β

′
0Ai(uj)}2

− 2Wi(uj)Yi(uj)r
(1)
j {β

′
0Ai(uj)}eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}

+ eW (1),j(β0, uj)
2Wi(uj)

2Yi(uj)r{β′0Ai(uj)}2
}

+ 2
∑
j<k

djdk

{
Wi(uj)Yi(uj)r

(1)
j {β

′
0Ai(uj)}Wi(uk)Yi(uk)r

(1)
k {β

′
0Ai(uk)}

−Wi(uj)Yi(uj)r
(1)
j {β

′
0Ai(uj)}eW (1),k(β0, uk)Wi(uk)Yi(uk)r{β′0Ai(uk)}
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− eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}Wi(uk)Yi(uk)r
(1)
k {β

′
0Ai(uk)}

+ eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}eW (1),k(β0, uk)Wi(uk)Yi(uk)r{β′0Ai(uk)}
}]

Then using Q(j)(j = 0, 1, 2) notation defined in condition G-2, the above equation

can be abbreviated as

n−1
n∑
i=1

fin(Xn)2 =

p∑
j=1

d2j

{
Q

(1)
(j,j)(β0, uj , uj)− 2eW (1),j(β0, uj)Q

(2)
j (β0, uj , uj)

+ eW (1),j(β0, uj)
2Q(0)(β0, uj , uj)

}
+2
∑
j<k

djdk

{
Q

(1)
(j,k)(β0, uj , uk)− eW (1),k(β0, uk)Q

(2)
j (β0, uk, uj)

− eW (1),j(β0, uj)Q
(2)
k (β0, uj , uk)

+ eW (1),j(β0, uj)eW (1),k(β0, uk)Q
(0)(β0, uj , uk)

}
.

Now it can be seen that the above equation converges in probability to a fixed

quantity in view of stability properties of Q(·) stated in condition G-2 in the main

text. The convergence of f·n(Xn) can be shown using the same manner as the

above. In particular, let

f·n(Xn) =

p∑
j=1

dj(aj − bj)

where

aj = S
(1)
W(1),j

(β0, uj), and

bj = eW (1),j(β0, uj)S
(0)
W(1)

(β0, uj),

then

{f·n(Xn)}2 =

p∑
j=1

d2j

{
S
(1)
W(1),j

(β0, uj)
2 − 2S

(1)
W(1),j

(β0, uj)eW (1),j(β0, uj)S
(0)
W(1)

(β0, uj)

+ eW (1),j(β0, uj)
2S

(0)
W(1)

(β0, uj)
2
}

+ 2
∑
j<k

djdk

{
S
(1)
W(1),j

(β0, uk)S
(1)
W(1),k

(β0, uk)

− S(1)
W(1),j

(β0, uj)eW (1),k(β0, uk)S
(0)
W(1)

(β0, uk)

− eW (1),j(β0, uj)S
(0)
W(1)

(β0, uj)S
(0)
W(1)

(β0, uk)



22 H LEE, MG HUDGENS, J CAI, AND SR COLE

+ eW (1),j(β0, uj)S
(0)
W(1)

(β0, uj)eW (1),k(β0, uk)S
(0)
W(1)

(β0, uk)
}
.

Then without further calculation, it can be seen that the above equation also

converges to a fixed quantity by conditions D, F, and G-2 in the main text, and

therefore we prove that (1.30) holds.

Lastly, gn(Xn) represents linear combinations of elements of the full cohort

MSCM score process all evaluated at a finite number of fixed time points in [0, 1].

It can easily be seen that, for any such gn(Xn), condition (III) of the Proposition

1 is satisfied due to the convergence of the full cohort MSCM score process to a

Gaussian process with mean zero and finite covariance function.

Part 3) Limiting Covariance function Now we need to show the limiting

covariance function of Cn. First we will show the limiting covariance function of

Dn. Let hn(Xn, δn) = Dn,j(uj)+Dn,k(uk) (i.e., let dj = dk = 1 and dl = 0 for all

l 6= j in
∑p

j=1 djDn,j(uj)). Covariance between Dn,j(uj) and Dn,k(uk) is given

by

Cov(Dn,j(uj), Dn,k(uk)) (1.37)

=
{

Var(hn(Xn, δn))−Var(Dn,j(uj))−Var(Dn,k(uk))
}
/2.

Then the limiting values of (1.37) will lead to the (j, k)th components of the

limiting covariance, i.e.,

lim
n→∞

Cov(Dn,j(uj), Dn,k(uk)) (1.38)

= lim
n→∞

{
Var(hn(Xn, δn))−Var(Dn,j(uj))−Var(Dn,k(uk))

}
/2.

By Proposition 1, we can obtain limiting values of Var(hn(Xn, δn)), Var(Dn,j(uj))

and Var(Dn,k(uk)) using sample covariances calculated based on corresponding

fin(Xn) equipped with conditions G-2 and G-3 in the main text. Note that

condition G-2 ensures the convergence of the finite sample covariance function

to that of the limiting distribution. For notational convenience, let

Fin,j(Xn) =
[
Wi(uj)Yi(uj)r

(1)
j {β

′
0Ai(uj)}

− eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}
]
, and

F·n,j(Xn) = n−1
n∑
i=1

Fin,j(Xn); j = 1, ..., p.
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Now, straightforward calculation based on Proposition 1 yields that

lim
n→∞

{
Var(hn(Xn, δn))−Var(Dn,j(uj))−Var(Dn,k(uk))

}
=(1− α)α−1 lim

n→∞
n−1

n∑
i=1

[
Fin,j(Xn) + Fin,k(Xn)− {F·n,j(Xn) + F·n,k(Xn)}

]2
− (1− α)α−1 lim

n→∞
n−1

n∑
i=1

[
Fin,j(Xn)− F·n,j(Xn)

]2
− (1− α)α−1 lim

n→∞
n−1

n∑
i=1

[
Fin,k(Xn)− F·n,k(Xn)

]2
=(1− α)α−1

{
lim
n→∞

n−1
n∑
i=1

[
Fin,j(Xn) + Fin,k(Xn)− {F·n,j(Xn) + F·n,k(Xn)}

]2
− lim
n→∞

n−1
n∑
i=1

[
Fin,j(Xn)− F·n,j(Xn)

]2
− lim
n→∞

n−1
n∑
i=1

[
Fin,k(Xn)− F·n,k(Xn)

]2}
.

The whole term after (1− α)α−1 can be simplified as follows:

lim
n→∞

n−1
n∑
i=1

[
{Fin,j(Xn)2 + 2Fin,j(Xn)Fin,k(Xn) + Fin,k(Xn)2}

− 2{Fin,j(Xn) + Fin,k(Xn)}{F·n,j(Xn) + F·n,k(Xn)}

+ {F·n,j(Xn)2 + 2F·n,j(Xn)F·n,k(Xn) + F·n,k(Xn)2}
]

− lim
n→∞

n−1
n∑
i=1

[
Fin,j(Xn)2 − 2Fin,j(Xn)F·n,j(Xn) + F·n,j(Xn)2

]
− lim
n→∞

n−1
n∑
i=1

[
Fin,k(Xn)2 − 2Fin,k(Xn)F·n,k(Xn) + F·n,k(Xn)2

]
= lim
n→∞

n−1
n∑
i=1

2
[
Fin,j(Xn)Fin,k(Xn)− Fin,j(Xn)F·n,k(Xn)− Fin,k(Xn)F·n,j(Xn)

+ F·n,j(Xn)F·n,k(Xn)
]

= lim
n→∞

2
[
n−1

n∑
i=1

Fin,j(Xn)Fin,k(Xn)− F·n,j(Xn)F·n,k(Xn)
]
,

where the first term inside the bracket is given by
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n−1
n∑
i=1

Fin,j(Xn)Fin,k(Xn)

=n−1
n∑
i=1

[
Wi(uj)Yi(uj)r

(1)
j {β

′
0Ai(uj)}Wi(uk)Yi(uk)r

(1)
k {β

′
0Ai(uk)}

− eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}Wi(uk)Yi(uk)r
(1)
k {β

′
0Ai(uk)}

−Wi(uj)Yi(uj)r
(1)
j {β

′
0Ai(uj)}Wi(uk)Yi(uk)r{β′0Ai(uk)}eW (1),k(β0, uk)

+ eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}Wi(uk)Yi(uk)r{β′0Ai(uk)}eW (1),k(β0, uk)
]

= Q
(1)
(j,k)(β0, uj , uk)− eW (1),j(β0, uj)Q

(2)
k (β0, uj , uk)

−Q(2)
j (β0, uk, uj)eW (1),k(β0, uk) + eW (1),j(β0, uj)Q

(0)(β0, uj , uk)eW (1),k(β0, uk),

and the second term inside the bracket is given by

F·n,j(Xn)− F·n,k(Xn) =S
(1)
W(1),j

(β0, uj)S
(1)
W(1),k

(β0, uk)

− eW (1),j(β0, uj)S
(0)
W(1)

(β0, uj)S
(1)
W(1),k

(β0, uk)

− S(1)
W(1),j

(β0, uj)eW (1),k(β0, uk)S
(0)
W(1)

(β0, uk)

+ eW (1),j(β0, uj)S
(0)
W(1)

(β0, uj)S
(0)
W(1)

(β0, uk)eW (1),k(β0, uk).

Then limn→∞ 2
[
n−1

∑n
i=1Fin,j(Xn)Fin,k(Xn)−F·n,j(Xn)F·n,k(Xn)

]
can be rewrit-

ten as

lim
n→∞

2
[{
Q

(1)
(j,k)(β0, uj , uk)− S

(1)
W(1),j

(β0, uj)S
(1)
W(1),k

(β0, uk)
}

− eW (1),j(β0, uj)
{
Q

(2)
k (β0, uj , uk)− S

(0)
W(1)

(β0, uj)S
(1)
W(1),k

(β0, uk)
}

−
{
Q

(2)
j (β0, uk, uj)− S

(0)
W(1)

(β0, uk)S
(1)
W(1),j

(β0, uj)
}
eW (1),k(β0, uk)

+ eW (1),j(β0, uj)
{
Q(0)(β0, uj , uk)− S

(0)
W(1)

(β0, uj)S
(0)
W(1)

(β0, uk)
}
eW (1),k(β0, uk)

]
= lim
n→∞

2
[
H

(1)
(j,k)(β0, uj , uk)− eW (1),j(β0, uj)H

(2)
k (β0, uj , uk)

−H(2)
j (β0, uk, uj)eW (1),k(β0, uk) + eW (1),j(β0, uj)H

(0)(β0, uj , uk)eW (1),k(β0, uk)
]
,

where

H(0)(β, x, v) = Q(0)(β, x, v)− S(0)
W(1)

(β, x)S
(0)
W(1)

(β, v)

H(1)(β, x, v) = Q(1)(β, x, v)− S(1)
W(1)

(β, x)S
(1)
W(1)

(β, v)′
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H(2)(β, x, v) = Q(2)(β, x, v)− S(0)
W(1)

(β, x)S
(1)
W(1)

(β, v).

It follows that (1.38) is the (j, k)th element of G(β0, uj , uk) in view of convergence

property implied by conditions D and G-2. Then it can be seen that the limiting

covariance function of Dn is given by G, and therefore we complete showing the

in distribution convergence of (1.26) to a Gaussian random variable. By apply-

ing the basic properties of covariance matrix, we obtain the limiting covariance

function of Cn given by ∆α. This completes the proof of Theorem 3.5.

Before presenting proof for the main result of this paper, asymptotic nor-

mality of β̃, let

Ĩ(β, t) = −∂2 l̃(β, t)/∂β2, and

I(β, t) = −∂2l(β, t)/∂β2.

In the proof of Theorem 3.6 we consider asymptotic properties of Ĩ instead of I
because the two processes converge in probability to the same quantity. To see

this, note

sup
β,t
|n−1{I(β, t)− Ĩ(β, t)}|

≤n−1
n∑
i=1

∫ 1

0
sup
β,u
|Wi(u){ṼW(1)

(β, u)− VW(1)
(β, u)}|dNi(u)

≤M1

∫ 1

0
sup
β,u
|{ṼW(1)

(β, u)− VW(1)
(β, u)}|n−1

n∑
i=1

dNi(u)→p 0

for any (β, t) ∈ B× [0, 1] due to conditions B, D, F, and G-3 in the main text, by

the continuous mapping theorem, and the fact that the total number of jumps

are bounded by n.

Theorem 3.6. (Asymptotic normality of β̃) Under conditions A-G,

n1/2(β̃ − β0)→d N(0,Σ−1W(1)
ΣŨΣ−1W(1)

)

where ΣŨ is given in Theorem 3.5.

Proof. A Taylor expansion of the MSCM case-cohort score process around β0
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evaluated at β̃ and t = 1 gives

n−1/2Ũ(β0, 1) =
{
− n−1∂

2 l̃(β̇, 1)

∂β2

}
n1/2(β̃ − β0) (1.39)

for any β̇ on the line segment between β̃ and β0. It is clear that we need to show

(in probability) convergence of −n−1∂2 l̃(β̇, 1)/∂β2, for any β̇ in between β̃ and

β0. Here, ṼW(1)
= S̃

(2)
W(1)

/S̃
(0)
W(1)
− (S̃

(1)
W(1)

/S̃
(0)
W(1)

)⊗2. Therefore, it is sufficient to

show that n−1I(β, 1) converges in probability to a fixed matrix. Using (2.10*),

decompose n−1I(β0, 1) by

n−1
n∑
i=1

∫ 1

0
Wi(u)

[S(2)
W(1)

(β0, u)S
(0)
W(1)

(β0, u)− {S(1)
W(1)

(β0, u)}⊗2

S
(0)
W(1)

(β0, u)2

]
dMi(u)

+

∫ 1

0

[S(2)
W(1)

(β0, u)S
(0)
W(1)

(β0, u)− {S(1)
W(1)

(β0, u)}⊗2

S
(0)
W(1)

(β0, u)2

]
S
(0)
W(1)

(β0, u)λ0(u)du.

The elements of the first term are local square integrable martingale with the

variation process for the (i, j) element equals

n−1
∫ 1

0

{
VW(1)

(β, u)
}2
ij
S
(0)
W(2)

(β0, u)λ0(u)du

which converges in probability to zero by virtue of the stability, regularity, and

boundedness conditions A-F. It follows that

n−1I(β, 1)→p

∫ 1

0
vW(1)

(β0, u)s
(0)
W(1)

(β0, u)λ0(u)du = ΣW(1)
(1.40)

for any β ∈ B, and therefore n−1I(β̇, 1) →p ΣW(1)
for any β̇ in between β̃ and

β0. Then Theorem 3.5 along with (1.39) complete the proof. In particular, the

covariance matrix Σ−1W(1)
ΣŨΣ−1W(1)

has a form

Σ−1W(1)
(ΣU + ∆α)Σ−1W(1)

= Σ−1W(1)
(ΣW(2)

+ ∆W(1),W(2)
+ ∆α)Σ−1W(1)

where ΣU = ΣW(2)
+ ∆W(1),W(2)

as in Theorem 3.4 and the explicit form of ∆α is

given by (1.19).
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S2. Implementation and Simulation

We have shown that we can obtain a consistent and asymptotically normally

distributed estimator of treatment effect in the case-cohort setting by fitting a

MSCM via inverse probability weighting. This provides theoretical justification

for simulation results shown in Cole et al. (2012). In this section we (i) describe

how a MSCM can easily be fit via inverse probability weighting for either the full

cohort or case-cohort setting using standard survival analysis software, such as

R or SAS, and (ii) present additional results from the simulation study described

in Section 4 of the main text, as well as results from a simulation study showing

finite sample performance of the cumulative baseline hazard estimator proposed

in Section 5.1 of the main text.

S2-1. Implementation

To fit a MSCM via inverse probability weighting for a full cohort, first cre-

ate a data set in which each person-visit corresponds to one row. Specifically,

let each row contain a subject identifier, visit (or date) information, treatment

and time-varying confounder information at the corresponding visit/date time,

and baseline covariates. Depending upon the user-defined models to estimate

Wi(t), the data set may be augmented by treatment/covariate histories in each

row as well. For example, one might fit pooled logistic models to obtain the

estimated probability of receiving treatment at time t by regressing the log-odds

of receiving treatment A(t) on prior treatment status (say, A(t−)) alone (for the

numerator in W T (t) (which is (2.5∗) in the main text)), or with current covari-

ate information L(t) (for the denominator in W T (t)) (Hernán, Brumback, and

Robins (2001)). Analogously, the estimated probability of being uncensored at

time t can be obtained by regressing the log-odds of being uncensored (C(t) = 0)

on current treatment status (A(t)) alone, or with L(t). For such models flexible

functional forms (e.g., splines) are often used for continuous confounders (Cole

and Hernán (2008); Cole et al. (2003, 2012)). Predicted values of the denomi-

nator and numerator probabilities in W T (t) and WC(t) (which is (2.6∗) in the

main text) can then be used to calculate Ŵi(t) for all participants i = 1, ..., n

and all study visit times t. Then Ŵi(t) needs to be added to the data set to

fit the MSCM. Finally, the data set should be prepared in the counting process

type format whereby each row contains the start and stop times corresponding
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to the previous and current visits, along with an event status indicator for the

current visit. Then standard software can be used to fit the MSCM via inverse

probability weighting. For instance, using the survival package in R (Therneau

(2013)), the following code can be used:

coxph(Surv(start, stop, delta) ~ trt, weight=w, data=dataname)

where delta is the event indicator having value 1 if an event occurred at stop and

0 otherwise, trt indicates whether an individual received treatment (assuming

treatment is a scalar) over the interval (start, stop], and w is Ŵi(t). The same

model can be fit in SAS by using the following code:

proc phreg data = dataname covout;

model (start,stop)*delta(0)=trt;

weight w;

run;

Fitting a MSCM in the case-cohort setting can be accomplished with some

additional data modifications. First, prepare a reduced (case-cohort) data set

including the randomly selected ñ subcohort members and all cases. Just as

in the full cohort data preparation, each row of the case-cohort data set should

correspond to each person-visit record. Second, estimate the individual-time-

specific weights Wi(t) based on the user-specified model as before (e.g., logistic

regression), except with individuals in the subcohort that are not cases weighted

by inverse-probability-sampling weights n/ñ (Cole et al. (2012)). For example, if

pi is the subcohort fraction ñ/n and sub is the subcohort indicator, we can use

the following SAS code to estimate W (t);

data casecohortdata;

if delta=1 then w2=1;

else if delta=0 and sub=1 then w2=1/pi;

run;

proc logistic data=casecohortdata;

weight=w2;

model trt= l1 l2;

output out=outdata1 p=denom;

run;
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where l1 and l2 are two (possibly time-varying) covariates included in the treat-

ment model. The variable denom in the outdata1 data set will contribute to the

calculation of the denominator of Ŵi(t). Similarly, contributions to the numer-

ator of Ŵi(t) can be obtained by using model trt= and output out=outdata2

p=num statement. Then we can merge outdata1 with outdata2 to create w.

After adding the estimated individual-time-specific weights Ŵi(t) to each

person-visit row, modify each nonsubcohort case to contribute only one line of

data with start time tj − ε and stop time tj where tj is the event time for

that individual and ε is chosen to be very small, for instance ε = 0.0001. This

insures that nonsubcohort cases appear only in the risk set when they fail. One

should make sure that the start times for nonsubcohort cases are positive, such

that tj − ε > 0 for your choice of ε. This modification of the data set for the

nonsubcohort cases is sufficient to obtain β∗, and the same R/SAS code as above

can be employed using the modified data set. Obtaining β̃ can be accomplished

with an additional data step wherein a dummy variable is coded equal to a

relatively small negative value (e.g., -20) for nonsubcohort cases and 0 otherwise

(Therneau and Li (1999)). Then, β̃ can be obtained as follows in R:

coxph(Surv(start, stop, delta) ~ trt + offset(dummy), weight=w)

or in SAS:

proc phreg data = dataname covout;

model (start,stop)*delta(0)=trt/offset=dummy;

weight w;

run;

The offset term enforces a relative weight of exp(−20) < 10−8, assuming -20 is

used for the dummy value, to the nonsubcohort cases so that they effectively do

not contribute to the sum of the log (inside the integral) in (2.8*) in the main

text. Therneau and Li (1999) suggested using -100 (exp(−100) < 10−40) for the

dummy variable value, however, we found that sometimes the coxph function in

R did not converge when dummy = −100; this convergence problem was observed

when the event rate was very low, say 3-4%. Therefore, we recommend several

dummy values be considered to ensure robustness of analysis results. The choice

of dummy = −20 yielded reasonable analysis results under average event rate
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≥5% in our simulation study.

The proposed variance estimator (3.1*) in the main text requires computa-

tion of four components: Σ̂−1W(1)
, Σ̂W(2)

, ∆̂W(1),W(2)
, and ∆̂α. The naive variance

estimator obtained by fitting the Cox model with the weight option is the in-

verse of minus the second derivative of l̃(β, 1) evaluated at β̃ (i.e., Ĩ−1(β̃, 1), the

inverse of the observed information matrix) which is n−1 times Σ̂−1W(1)
. Therefore,

Σ̂−1W(1)
can be obtained by multiplying n times the naive variance estimate. Like-

wise, Σ̂W(2)
can be obtained by multiplying n−1 times the inverse of the naive

variance estimate obtained by fitting the Cox model with the variable weight

equal to the square of the original weight variable. Unfortunately, it does not

seem that ∆̂W(1),W(2)
and ∆̂α can be obtained as simply as Σ̂W(1)

or Σ̂W(2)
. One

can create vectors/matrices of S̃
(j)

Ŵk
(β̃, ·), and then calculate ẼŴk

(β̃, ·), Q̃(j)(β̃, ·),
and H̃(j)(β̃, ·) to obtain ∆̂W(1),W(2)

and ∆̂α. Alternatively, one may want to apply

the LY estimator in practice (Cole et al. (2012)). The LY estimator appears to

perform well empirically if we have moderate subcohort size and event rate (See

Cole et al. (2012); Table 4.1 in the main text and Table 2.1 in S2-2 below), and

is computationally straightforward to implement. The LY estimator associated

with β̃ can be obtained by using the following R or SAS code:

coxph(Surv(start, stop, delta) ~ trt + offset(dummy)

+ cluster(id), weight=w)

proc phreg data = dataname covs(aggregate) covout;

id id;

model (start,stop)*delta(0)=trt/offset=dummy;

weight w;

run;

The LY estimator corresponding to β∗ can be obtained by deleting offset(dummy)

or /offset=dummy.

S2-2. Simulation

As Table 4.1 in the main text shows simulation results under the null hypoth-

esis only, we present additional simulation results obtained from the alternative

hypothesis using the same scenarios as in Table 4.1. Under the alternative hy-

potheis, β0 was set to log(1/2) ' −0.6931 representing a scenario that treatment



Supplementary Document for Marginal Structural Cox Models with Case-Cohort Sampling 31

Sub- Event Esti- Bias ESE ASE Coverage

cohort(%) rate(%) mator proposed LY proposed LY

5 5 β∗ -0.11 0.53 0.65 0.46 0.97 0.92

β̃ -0.23 0.78 0.98 0.36 0.97 0.77

25 β∗ 0.02 0.38 0.37 0.33 0.96 0.92

β̃ -0.01 0.44 0.38 0.36 0.94 0.92

10 5 β∗ -0.06 0.45 0.49 0.42 0.97 0.95

β̃ -0.08 0.47 0.50 0.36 0.97 0.89

25 β∗ 0.01 0.27 0.27 0.23 0.95 0.93

β̃ -0.01 0.28 0.27 0.26 0.94 0.94

20 5 β∗ -0.04 0.41 0.43 0.40 0.97 0.96

β̃ -0.05 0.41 0.43 0.37 0.97 0.94

25 β∗ 0.00 0.20 0.21 0.20 0.96 0.95

β̃ -0.01 0.21 0.21 0.21 0.95 0.95

Table 2.1: Summary of simulation study under the alternative hypothesis. Bias denotes the

empirical bias of the different estimators of β0. ESE denotes the empirical standard errors. ASE

denotes the average estimated standard errors and Coverage denotes the empirical coverage of

95% Wald-type confidence intervals using either (3.1*) or the LY variance estimator.

lowers the rate of having an event by half. See Section 4 of the main text for

additional details regarding the simulation study. Results from simulations un-

der the alternative hypothesis are summarized in Table 2.1. Similar to the null

hypothesis setting, β̃ and β∗ were nearly unbiased and the proposed variance esti-

mator was usually less biased than the LY variance estimator when the subcohort

fraction was only 5%, regardless of the event rate. Although not all simulation

results are shown in Table 2.1, our numerical study indicated that both the pro-

posed and the LY variance estimators were approximately unbiased when the

subcohort fraction and event rate were both greater than 15%. Wald confidence

intervals (CIs) using the LY variance estimator again tended to undercover when

the subcohort fraction was 5%, and also when event rate was 5% and subcohort

fraction was 10% if β̃ was used. Wald CIs using (3.1*) exhibited coverage close to

the nominal level. As seen from Table 4.1 in the main text, β̃ and β∗ along with

the proposed variance estimator exhibited good finite sample properties for the

scenarios considered, while performance of the LY variance estimator depended

on subcohort size and event rate.
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Subcohort Λ0(t) β0 = 0 β0 = log(1/2)

(%) Bias ESE Bias ESE

5 0.05 0.008 0.074 0.010 0.179

0.10 0.030 0.834 0.063 2.627

0.15 0.042 0.837 0.071 2.629

0.20 0.055 0.844 0.081 2.630

10 0.05 0.002 0.023 0.001 0.011

0.10 0.005 0.028 0.003 0.018

0.15 0.008 0.037 0.006 0.029

0.20 0.012 0.048 0.009 0.041

20 0.05 0.001 0.011 0.000 0.009

0.10 0.002 0.016 0.001 0.014

0.15 0.004 0.024 0.002 0.021

0.20 0.005 0.032 0.003 0.029

Table 2.2: Summary of simulation study to evaluate performance of Λ̃Ŵ (β̃, t) at event rate

25%. Bias denotes the empirical bias of Λ̃Ŵ (β̃, t) at different failure times. ESE denotes the

empirical standard error.

We also examined performance of the cumulative baseline hazard estimator

proposed in Section 5.1 of the main text. We use the same simulation settings as

in Section 4 of the main text at a fixed event rate 25%. Survival times when all in-

dividuals were untreated (i.e., potential outcome under no treatment) followed an

exponential distribution with mean 1 as in Cole et al. (2012). Therefore the true

cumulative baseline hazard function is given by Λ0(t) = t. We evaluated the bias

and standard error of the proposed estimator at time points t = 0.05, 0.10, 0.15,

and 0.20 under the null and alternative simulations. Results are summarized in

Table 2.2. For each time point, the bias and standard error of the proposed es-

timator decreased as the subcohort fraction increased, with negligible bias when

the subcohort fraction equaled 20%.

S3. Notation

In this section we present a list of key notation used throughout the main

text and this supplement.

1. l(β, t;W ): The log-WPPL under full cohort setting ((2.7*) in the main

text).
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2. l̃(β, t;W ): The log-WPPL under case-cohort setting (Self and Prentice

(1988) type; (2.8*) in the main text).

3. l∗(β, t;W ): The log-WPPL under case-cohort setting (Prentice (1986) type,

Cole et al. (2012); (2.9*) in the main text).

4. β̂, β̃, and β∗: solutions to ∂l(β, 1; Ŵ )/∂β = 0, ∂l̃(β, 1; Ŵ )/∂β = 0, and

∂l∗(β, 1; Ŵ )/∂β = 0, respectively. β0 is the parameter of interest in the

MSCM (See (2.4*) and (2.11*) in the main text).

5. X(β, t,W ) = n−1{l(β, t;W )− l(β0, t;W )}
X̃(β, t,W ) = n−1{l̃(β, t;W )− l̃(β0, t;W )}
X∗(β, t,W ) = n−1{l∗(β, t;W )− l∗(β0, t;W )}
W can be replaced to Ŵ if we plug-in estimator of IPWs into X, X̃, or X∗.

6. K(β, t,W ): compensator of X(β, t,W ), where dNi(u) inside the integral of

X(β, t,W ) is replaced by λi(u)du. (See S1-1)

7. S(j)(β, t) = n−1
∑n

i=1 Yi(t)r
(j){β′Ai(t)}; j = 0, 1, 2, where their limits are

defined by s(j)(β, t). (See Section 3 and condition D in the Appendix of the

main text.)

8. S
(j)
W(k)

= n−1
∑n

i=1Wi(t)
kYi(t)r

(j){β′Ai(t)} for j = 0, 1, 2 and k = 1, 2,

where their limits are defined by s
(j)
W(k)

(β, t). (See Section 3 and condition

D in the Appendix of the main text.)

9. S̃
(j)
W(k)

(β, t) = ñ−1
∑

i∈C̃Wi(t)
kYi(t)r

(j){β′Ai(t)} for j = 0, 1, 2 and k = 1, 2,

where their limits are defined by s
(j)
W(k)

(β, t). (See Section 3 and condition

G-3 in the Appendix of the main text.)

10. E = S(1)/S(0), with its limit e = s(1)/s(0)

EW(k)
= S

(1)
W(k)

/S
(0)
W(k)

, with their limits eW(k)
; k = 1, 2.

ẼW(k)
= S̃

(1)
W(k)

/S̃
(0)
W(k)

, with their limits eW(k)
; k = 1, 2.

V = S(2)/S(0) − E⊗2, with its limit v = s(2)/s(0) − e⊗2.
VW(k)

= S
(2)
W(k)

/S
(0)
W(k)
− E⊗2W(k)

, with their limits vW(k)
; k = 1, 2.

Σ =
∫ 1
0 v(β0, t)s

(0)(β0, t)λ0(t)dt

ΣW(k)
=
∫ 1
0 vW(k)

(β0, t)s
(0)
W(k)

(β0, t)λ0(t)dt; k = 1, 2

See Section 3 and conditions F and G in the Appendix of the main text.
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11. Q(0)(β, t, u) = n−1
∑n

i=1Wi(t)Yi(t)r{β′0Ai(t)}Wi(u)Yi(u)r{β′0Ai(u)}
Q(1)(β, t, u) = n−1

∑n
i=1Wi(t)Yi(t)r

(1){β′0Ai(t)}Wi(u)Yi(u)r(1){β′0Ai(u)}′

Q(2)(β, t, u) = n−1
∑n

i=1Wi(t)Yi(t)r{β′0Ai(t)}Wi(u)Yi(u)r(1){β′0Ai(u)},
where their limits are denoted by q(j); j = 0, 1, 2. Q(j) are covariance func-

tions based on full cohort. Similary, Q̃(j)(β, t, u) are covariance functions

based on subcohort members where their limits are also given by q(j). See

Theorem 3.5 in Section 3 and conditions G-2 and G-3 in the Appendix of

the main text.

12. n−1/2U(β0, t) = n1/2∂l(β, t)/∂β
∣∣
β=β0

: full cohort MSCM Score process

n−1/2Ũ(β0, t) = n1/2∂l̃(β, t)/∂β
∣∣
β=β0

: case-cohort MSCM Score process,

presented in Theorem 3.4 and 3.5 respectively.

13. (Theorem 3.4) ΣU = ΣW(2)
+ ∆W(1),W(2)

∆W(1),W(2)
=
∫ 1
0 {eW(2)

(β0, u)− eW(1)
(β0, u)}⊗2s(0)W(2)

(β0, u)λ0(u)du

Dn(t) = n1/2
[{
S̃
(1)
W(1)

(β0, t)−S(1)
W(1)

(β0, t)
}
−eW(1)

(β0, t)
{
S̃
(0)
W(1)

(β0, t)−S(0)
W(1)

(β0, t)
}]
S
(0)
W(1)

(β0, t)

14. (Theorem 3.5-3.6) ΣŨ = ΣU + ∆α

∆α =
∫ 1
0

∫ 1
0 G(β0, x, v)λ0(x)λ0(v)dxdv

G(β0, x, v) = (1−α)α−1
[
h(1)(β0, x, v)−eW(1)

(β0, x)h(2)(β0, x, v)′−h(2)(β0, v, x)eW(1)
(β0, v)′+

eW(1)
(β0, x)eW(1)

(β0, v)′h(0)(β0, x, v)
]

h(0)(β, x, v) = q(0)(β, x, v)− s(0)W(1)
(β, x)s

(0)
W(1)

(β, v)

h(1)(β, x, v) = q(1)(β, x, v)− s(1)W(1)
(β, x)s

(1)
W(1)

(β, v)′

h(2)(β, x, v) = q(2)(β, x, v)− s(0)W(1)
(β, x)s

(1)
W(1)

(β, v)

H(0)(β, x, v) = Q(0)(β, x, v)− S(0)
W(1)

(β, x)S
(0)
W(1)

(β, v)

H(1)(β, x, v) = Q(1)(β, x, v)− S(1)
W(1)

(β, x)S
(1)
W(1)

(β, v)′

H(2)(β, x, v) = Q(2)(β, x, v)− S(0)
W(1)

(β, x)S
(1)
W(1)

(β, v)

n−1Ĩ(β, t) = −n−1∂2 l̃(β, t)/∂β2

n−1I(β, t) = −n−1∂2l(β, t)/∂β2

15. Notation in S1 in the supplement:

Bn(t) = n−1/2
∑n

i=1

∫ t
0 Wi(u)[Ai(u)− EW(1)

(β0, u)]dMi(u)
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Cn(t) =
∫ t
0 Dn(u)λ0(u)du

Dn(u) = n1/2
[
{S̃(1)

W(1)
(β0, u)− S(1)

W(1)
(β0, u)}

− eW(1)
(β0, u){S̃(0)

W(1)
(β0, u)− S(0)

W(1)
(β0, u)}

]
S
(0)
W(1)

(β0, u)

gn(Xn) = n−1/2
∑n

i=1

∑p
j=1 cj

∫ t
0 Wi(u)[Ai,j(u)−EW(1),j(β0, u)]dMi(u) where

cj(j = 1, ..., p) can be any constant.

fin(Xn) =
∑p

j=1 dj

[
Wi(uj)Yi(uj)r

(1)
j {β′0Ai(uj)}−eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}

]
where dj(j = 1, ..., p) can be any constant.

f·n(Xn) = n−1
∑n

i=1 fin(Xn)

S2
fn

= n−1
∑n

i=1[fin(Xn)− f·n(Xn)]2

hn(Xn, δn) = n1/2[ñ−1
∑n

i=1 δinfin(Xn)− f·n(Xn)] =
∑p

j=1 djDn,j(uj)

δn = (δ1n, ..., δnn): vector of ñ ones and n− ñ zeros representing subcohort

membership.

Fin,j(Xn) =
[
Wi(uj)Yi(uj)r

(1)
j {β′0Ai(uj)}−eW (1),j(β0, uj)Wi(uj)Yi(uj)r{β′0Ai(uj)}

]
F·n,j(Xn) = n−1

∑n
i=1Fin,j(Xn); j = 1, ..., p


