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Abstract: Maximum likelihood recursions were proposed in Wu (1985, 1986) to ob-

tain recursive procedures for nonlinear sequential design problems associated with

many commonly used generalized linear models. It was argued empirically and

heuristically there that these recursions should lead to asymptotically consistent

and efficient designs. We prove that such recursions are consistent and asymptot-

ically normal, at least for the location models including logistic, Poisson, gamma

and inverse Gaussian. We show that a simple truncation leads to robust designs

so that even if the models are incorrectly specified, the recursions still converge to

the desired optimal design points. Asymptotic results concerning the sequential

designs for the location-scale models are also obtained.
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1. Introduction

The stochastic approximation of Robbins and Monro (1951) is a sequential
design for locating the zero of an unknown regression function. Let x denote the
design point and y the corresponding response, whose mean M is a function of
x. Robbins and Monro (1951) proposed to use xn, which is generated from the
following recursion

xn+1 = xn − anyn, (1.1)

where an is a sequence of preassigned constants, to approximate the root M .
They showed that, with an properly chosen, the sequentially determined xn con-
verges to the root of M . Numerous further refinements have been developed
since the pioneering work of Robbins and Monro (cf. Blum (1954), Chung (1954),
Sacks (1958), Robbins and Siegmund (1971) and Lai and Robbins (1979)). The
stochastic approximation method has many important applications, including
those in engineering: (Goodwin, Ramadge and Caines (1981), Kumar (1985)),
biomedical science: (Finney (1978)) and educational testing: (Lord (1971)).

The Robbins-Monro recursion (1.1) can be interpreted as a maximum like-
lihood (ML) recursion when y and x follow the standard regression model y =
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α + βx + ε, where ε is normally distributed with mean 0 and variance σ2. By
solving the linear equation α+βx = 0, the root M is −α/β. By further assuming
β is known, the ML estimate of M based on n observations yi, xi, i = 1, . . . , n is

Mn = − α̂n
β

= xn − yn
β
. (1.2)

If the next observation yn+1 is taken at the current estimate Mn of M, i.e.,

xn+1 = Mn, (1.3)

Lai and Robbins (1979) showed that (1.3) is equivalent to the Robbins-Monro
recursion (1.1) with an = (nβ)−1. If β is unknown and estimated by the ML
estimate β̂n (which is also the least squares estimate), the ML recursion as defined
in (1.3) with β replaced by β̂n was interpreted by Wu (1986), eq. (11) as a special
case of (1.1) with an taking a complicated form,

an = (nβ̂n)−1
[
1 +

(n− 1)2(yn−1/β̂n−1)2

n
∑n
i=1(xi − xn)2

]
. (1.4)

The observations made in these two papers are quite significant because they
connect two seemingly distinct approaches to nonlinear sequential design. The
approach that leads to (1.3) is parametric in that it is motivated by a linear
function that links E(y) and x and, to a lesser extent, by the normality of errors
(which makes the least squares estimator fully efficient). On the other hand,
the stochastic approximation (1.1) is nonparametric in that its asymptotic per-
formance does not depend on the knowledge of E(y) as a function of x. The
assumption y = α + βx + ε is useful for motivating and generating design pro-
cedures. The validity and performance of the resulting design are nonetheless
independent of the assumption.

Once this connection is recognized, we can greatly expand both approaches
to cover more general variations. From the likelihood point of view, the Robbins-
Monro recursion has better efficiency when the errors are normal or nearly nor-
mal, even though it is consistent and asymptotically normal for very general error
distributions. For distributions that are distinctly different from normal, e.g., bi-
nomial, Poisson, gamma and inverse Gaussian, it is more natural to extend (1.1)
by adopting the ML recursion approach with the likelihood or quasi-likelihood
function capturing the nature of the variation. This is essentially the viewpoint
taken in Wu (1986). To illustrate this approach, consider a binary experiment in
which the outcome y is denoted by 1 (response) or 0 (nonresponse). The prob-
ability of response is related to a stress level x (at which the experimentation is
performed) by

G(x) = Prob{y = 1|x} = E(y|x).
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Suppose the interest focuses on estimating the 100p-th percentile αp of G(x), i.e.,
G(αp) = p. Since G is unknown, we assume (correctly or not) that G follows a
one-parameter model H(x−α) with H known, H(0) = p and α to be estimated.
Under this assumption we can estimate the only parameter α in the model by
using the ML method and denote it by α̂n. Then we can choose the next design
point xn+1 to be the current best estimate of αp, which is α̂n under the given
model assumption. So, in the ML recursion design

xn+1 = α̂n.

Further discussions on this recursion scheme, its relation to the Robbins-Monro
recursion (1.1), and extensions to cover the location-scale model H(β(x − α))
can be found in Wu (1985, 1986) and the later sections of the present paper.
Extensions of this recursive scheme to generalized linear models were given in
Wu (1986). Wu’s description of a sequential design of Poisson experiments is of
particular interest.

In general, when the underlying probability law of y given x is specified
up to a finite number of parameters, Wu (1986) proposed using, at each stage,
the updated maximum likelihood estimate to set the next design point. To be
specific, suppose the density of the response y given x is f(·|x, θ), where θ is
an unknown parameter vector, and the objective of the design is to select x so
that E(y|x, θ) stays as closely as possible to some preset target value p. Let g(θ)
denote the unique value determined from

E(y|x = g(θ), θ) = p.

Wu’s proposal is to compute the ML estimator θ̂n based on the first n observations
and set the next design point xn+1 = g(θ̂n), which is the best current “guess”
of the target value g(θ). Because of its full and efficient use of the data, this
procedure is likely to bring xn close to g(θ) in a relatively fewer number of
steps. Indeed, for the binary response data, Wu (1985) has demonstrated, both
empirically and heuristically, the advantages of using the ML recursion for the
sequential design problem.

In this paper we are concerned with the convergence of the sequential designs
derived from the maximum likelihood and its related recursions. In the next
section, we show that the ML recursions for one-parameter location models lead
to consistent and asymptotically normal design sequences under certain regularity
conditions, which are verifiable for the commonly used generalized linear models.
A simple truncation is introduced in Section 3, where it is shown that with such
modification, consistency and asymptotic normality still hold even if the model
is incorrectly specified. Section 4 presents similar asymptotic results for the
sequential designs in the two-parameter location-scale models.
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2. Sequential Designs Based on Location Models

Here we consider a generalized linear model: if the design level is set at x,
the mean response of y is given by

E(y|x) = H(x− α), (2.1)

where H is a known function and α an unknown parameter. Without loss of
generality, let p = H(0) be the value of the desired mean response for y. It is
known that in many situations the optimal design for minimizing the asymptotic
variance of the ML estimator of α is to put all the design points at x = α. Wu
(1988) proved this for the binomial variation and Ford, Torsney and Wu (1992)
and Sitter and Torsney (1995) extended it to generalized linear models. Assume
the variance of y at x is of the form V (x − α). The setup includes all location
models for which the effect of the design is a shift of location on the distribution
of y, or any parametric models that can be transformed into the location models.

We shall study the asymptotic behavior of {xn}, a random sequence with x1

the initial value and the subsequent x’s defined recursively by

n∑
i=1

ψ(xi) [yi −H(xi − xn+1)] = 0, n = 1, 2, . . . , (2.2)

where ψ ≥ 0 is a prespecified weight function. The recursion actually combines
two steps involving estimation of α and design of x. Letting α̂n denote xn+1,
(2.2) can alternately be expressed as

n∑
i=1

ψ(xi)[yi −H(xi − α̂n)] = 0, (2.3)

xn+1 = α̂n. (2.4)

The preceding recursion was proposed by Wu (1986) and is essentially a my-
opic strategy for approximating the optimal design x = α in the ideal situation
of known location parameter α. The first step (2.3) mimics the maximum like-
lihood estimating equation for α. In fact, with ψ properly chosen, it becomes
the maximum likelihood estimating equation for the five most commonly used
generalized linear models as given in Table 2.1 of McCullagh and Nelder (1989).
Equation (2.4) is just the most obvious myopic way of selecting the best current
design level.

It is not clear how to prove the convergence of the design sequence {xn}
if it is at all true. The difficulty lies in the complicated dependency among
the xn and yn. Furthermore, because (2.2) involves the whole history of xi,
i = 1, . . . , n, the techniques developed for proving convergence of the classical
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stochastic approximation algorithms, which connect xn+1 to yn and xn only, are
not applicable. We adopt a different approach here. For technical reasons, we
need to introduce the following conditions:
(C1) H is continuous and strictly increasing, and with probability 1; (2.2) is well

defined for all large n.
(C2) for every K > 0, ∞ >sup|t|≤K {ψ(t+α)V (t)} ≥ inf |t|≤K{ψ(t+α)V (t)} > 0.

(C3) lim inf
|t|→∞

|H(t)−p|
V (t)ψ(t+α) > 0 and lim inf

|t|→∞
|H(2t)−H(t)|
V (t)ψ(t+α) > 0.

(C4) V is continuous at 0, H is continuously differentiable in a neighborhood of
0 and H ′(0) > 0.

Conditions (C1), (C2) and (C4) are satisfied by almost all sensible models.
Condition (C3) is more restrictive, but is verifiable in the subsequent examples,
which motivate this investigation. It is about the tail growth rates of the mean,
variance and weight functions. We now use the five generalized linear models
listed in Table 2.1 of McCullagh and Nelder (1989) to illustrate the sequential
design given by (2.2) and conditions (C1)–(C4).

Example 1. (Normal model) Suppose that the distribution of y given x is N(x−
α, σ2), where σ2 may or may not be known. Given observations x1, y1, . . . , xn, yn
(at stage n), the ML estimating equation for α is

n∑
i=1

[yi − (xi − α̂n)] = 0. (2.5)

Thus φ ≡ 1, H(t) = t and V (t) = σ2. Conditions (C1)–(C4) are clearly satisfied.
From (2.5) we get

xn+1 = α̂n = − 1
n

n∑
i=1

(yi − xi) = α− 1
n

n∑
i=1

εi,

where εi = yi − (xi − α) are i.i.d. N(0, σ2).

Example 2. (Logit model for binary response data) As before, let p denote the
target mean response, which must be strictly between 0 and 1. Then the mean,
variance and weight functions are respectively

H(t) =
pet

1 − p+ pet
, V (t) =

p(1 − p)et

(1 − p+ pet)2
and ψ(t) = 1.

So the “success” probability of y given x isH(x−α). The ML estimating equation
of α at stage n is

n∑
i=1

(
yi − pexi−α̂n

1 − p+ pexi−α̂n

)
= 0. (2.6)
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It is easy to see that if the yi in (2.6) take both 0 and 1 values, then α̂n is uniquely
defined. Furthermore, (C1), (C2) and (C4) are clearly satisfied, and (C3) can be
verified directly.

Example 3. (Poisson model) In this case, P (y=k|x)=(pex−α)kexp{−pex−α}/k!
and the ML estimating equation of α at stage n is

n∑
i=1

(
yi − pexi−α̂n

)
= 0. (2.7)

So V (t) = H(t) = pet and ψ(t) ≡ 1. Also, as long as at least one of yi, i ≤ n

is not 0, (2.7) has a unique solution xn+1 = α̂n. Conditions (C1)–(C4) can be
easily verified.

Example 4. (Gamma model) Following McCullagh and Nelder (1989), we as-
sume, for the gamma model, that the density function y given x is

f(u|x, α, ν)=exp{−ν[ p−1e−(x−α)u+x−α]−ν log p+(ν−1) log u−log Γ(ν)+ν log ν},

where ν is the shape parameter that is not required to be known. It follows
that H(t) = pet and V (t) = ν−1p2e2t. Furthermore, the ML estimating equation
becomes

n∑
i=1

(yi − pexi−α̂n)e−xi = 0, (2.8)

so ψ(t) = e−t. Equation (2.8) always has a unique solution except when all yi’s
are 0, which has probability 0. Again (C1), (C2) and (C4) are clearly satisfied.
Note that |H(t) − p|/[V (t)ψ(t)] = νp−1|et − 1|e−t = νp−1|1 − e−t| and |H(2t) −
H(t)|/[V (t)ψ(t)] = νp−1|e2t − et|e−t = νp−1|et − 1|. So (C3) is also satisfied.

Example 5. (Inverse Gaussian) Here we assume the density function of y given
x to be

f(u|x, α, σ2) = exp{[−2−1p−2e−2(x−α)u+ p−1e−(x−α)]/σ2 + g(σ2, u)},

where σ2 may or may not be known, g(σ2, u) = −2−1[log(2πσ2u3) + (σ2u)−1], a
function not involving α. Thus we have H(t) = pet and V (t) = σ2p3e3t. The ML
estimating equation for α is

n∑
i=1

e−2xi(yi − pexi−α̂n) = 0. (2.9)

The weight function is ψ(t) = e−2t. As before, (C1), (C2) and (C4) hold trivially
and (C3) can be easily verified.
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There are other situations in which the ML estimating equations have to
be modified in order to make use of (2.2). For example, in probit analysis, the
response y given x is assumed to be Bernoulli with success probability Φ(x−α+
cp), where Φ is the normal curve and cp its pth quantile. Letting φ be the normal
density function, the ML estimator α̂∗

n solves
n∑
i=1

φ(xi − α̂∗
n + cp)

Φ(xi − α̂∗
n + cp)(1 − Φ(xi − α̂∗

n + cp))
[yi − Φ(xi − α̂∗

n + cp)] = 0. (2.10)

This equation is not a special case of (2.3) because the weight function depends
intrinsically on α. However, since when xn is close to α, the corresponding weight
becomes close to some constant, we can modify (2.10) to

n∑
i=1

[yi − Φ(xi − α̂n + cp)] = 0, (2.11)

which is clearly a special case of (2.2). Moreover, conditions (C1), (C2) and
(C4) are trivially satisfied; to check (C3), we note that lim|t|→∞ (|Φ(t) − p|)/
(Φ(t)(1 − Φ(t))) = ∞ and

lim
t→∞

Φ(2t− cp)−Φ(t)
Φ(t)(1−Φ(t))

=− lim
t→−∞

Φ(2t−cp)−Φ(t)
Φ(t)(1−Φ(t))

= lim
t→∞

(
1− 1−Φ(2t−cp)

1−Φ(t)

)
=1.

The next theorem contains the main results of the section and is applica-
ble to all the preceding examples. It shows that under suitable conditions, the
sequential designs of the form (2.2) are strongly consistent and asymptotically
normal.

Theorem 1. Let yi, xi be defined as in the beginning of the section. Suppose the
corresponding mean, variance and weight functions H, V and ψ satisfy conditions
(C1)-(C3). Define the disjoint events Aα = {xn → α}, A∞ = {xn → ∞} and
A−∞ = {xn → −∞}.

(i) P{Aα ∪A∞ ∪A−∞} = 1; in fact P{Aα|∑∞
n=1 ψ2(xn)V (xn − α) = ∞} = 1

and P{A∞ ∪A−∞|∑∞
n=1 ψ2(xn)V (xn − α) <∞} = 1.

(ii) If lim inft→∞ ψ2(t)[1+V (t−α)] > 0, then P (A∞) = 0; and if lim inft→−∞
ψ2(t)[1 + V (t− α)] > 0, then P (A−∞) = 0.

(iii) Suppose V and ψ satisfy the tail growth condition

lim inf
|t|→∞

ψ2(t)[1 + V (t− α)] > 0. (2.12)

Then xn → α a.s.
(iv) If (C4) is also satisfied and xn → α a.s., then

√
n (xn−α) L−→N(0, (H ′(0))−2

V (0)). In particular, if (C4) and (2.12) hold, then
√
n (xn − α) L−→N(0,

(H ′(0))−2V (0)).
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Remark 1. Part (i) implies that xn→α if and only if
∑∞
n=1ψ

2(xn)V (xn−α)=∞.

Remark 2. We have shown that the sequential designs derived from the ML
recursions in Examples 1–5 satisfy conditions (C1)–(C4). Thus, in view of The-
orem 1(iv), in order to show any of these designs to be strongly consistent, it
suffices to verify that the corresponding ψ and V satisfy (2.12). For ψ ≡ 1, (2.12)
holds trivially. So, for Example 1, the normal model,

√
n(xn − α) L−→N(0, σ2);

for Example 2, the logit model,
√
n(xn − α) L−→N

(
0, [ p(1 − p)]−1

)
;

for Example 3, the Poisson model,
√
n(xn − α) L−→N(0, p−1);

for the probit model with modified maximum likelihood recursion (2.11),

√
n(xn − α) L−→N(0, 2πp(1 − p)ec

2
p).

Now for Example 4, the gamma model, ψ2(t)(1 + V (t)) ≥ ν−1p2 > 0. So (2.12)
is satisfied and the sequential design xn satisfies

√
n(xn − α) L−→N(0, ν−1).

Remark 3. Theorem 1(i) and (ii) are useful for situations in which (2.12) either
does not hold or is difficult to verify. We use Example 5 to illustrate this. In this
case, we have lim inft→∞ ψ2(t)[1+V (t−α)] = 0, but lim inft→−∞ ψ2(t)[1+V (t−
α)] = ∞. Therefore, (iii) is not applicable but (ii) implies that P (xn → −∞) = 0.
In view of (i), in order to show xn → α a.s, it suffices to rule out xn → ∞. Again
by (i), xn → ∞ can only happen on {∑∞

n=1 ψ2(xn)V (xn − α) < ∞}, which
implies the convergence of

∑n
i=1 (yi − pexi−α)ψi. But by definition

∑n
n=1 yiψi =∑n

n=1 pe
xi−xn+1. So

∑n
n=1[ pe

xi−xn+1 − pexi−α]ψi = p(e−xn+1 − e−α)
∑n
n=1 e

xi

converges to a finite limit. But this obviously rules out xn → ∞. So we conclude
xn → α a.s. and √

n(xn − α) L−→N(0, σ2p).

Proof of Theorem 1. We first note that (iii) is a direct consequence of (i) and
(ii). Furthermore, (iv) is also easy to get via the following argument. From (2.2),

n∑
i=1

ψ(xi) [yi −H(xi − α)] =
n∑
i=1

ψ(xi) [H(xi − xn+1) −H(xi − α)] . (2.13)
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Since xn → α, we can apply Taylor’s expansion to (2.13) to get

√
n(xn+1−α) = − [ψ(α)H ′(0) + op(1)

]−1 1√
n

n∑
i=1

[yi −H(xi − α)]ψ(xi)+op(1),

which converges to N(0, [H ′(0)]−2V (0)) by the martingale central limit theorem
(Pollard (1984), p. 171).

It remains to prove (i) and (ii). A key idea in the subsequent proof is to
use the martingale local convergence theorem of Chow (1965), Corollary 5, from
which it follows that

∞∑
n=1

ψ(xn) [yn −H(xn − α)]∑n
i=1 ψ2(xi)V (xi − α)

converges a.s. (2.14)

On the set that the denominator in (2.14) goes to infinity, it will be argued
via Kronecker’s lemma that the design sequence converges to α, whereas on its
complement, it goes to either ∞ or −∞.

We first prove that on the event {∑∞
n=1 ψ2(xn)V (xn − α) < ∞}, xn → ∞

or xn → −∞ a.s. On this event we have ψ2(xn)V (xn − α) → 0, which implies
|xn| → ∞ in view of (C2). Thus all we need to do is to rule out the possibility that
lim sup xn = ∞ and lim inf xn = −∞ occur simultaneously. If this were true,
then, since lim |xn| = ∞, we could find a subsequence nk such that xnk

→ −∞
and xnk+1 → ∞ as k → ∞. From (2.2), we would have

ψ(xnk
) [ynk

−H(xnk
− xnk+1)] =

nk−1∑
i=1

[H(xi − xnk+1) − yi]ψ(xi)

=
nk−1∑
i=1

[H(xi − xnk+1) −H(xi − xnk
)]ψ(xi)

≤
m∑
i=1

[H(xi − xnk+1) −H(xi − xnk
)]ψ(xi)

for every fixed m < nk since H(xi − xnk+1) −H(xi − xnk
) ≤ 0. Equivalently,

ψ(xnk
) [ynk

−H(xnk
− α)] ≤

m∑
i=1

[H(xi − xnk+1) −H(xi − xnk
)]ψ(xi)

+ψ(xnk
) [H(xnk

− xnk+1) −H(xnk
− α)] . (2.15)

But the left-hand side of (2.15) → 0 in view of (2.14), while the right-hand side
of (2.15) can be made smaller than a fixed negative number. Thus the desired
contradiction occurs.
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We now prove xn → α on the event {∑∞
n=1 ψ2(xn)V (xn − α) = ∞}. By

(2.14) and Kronecker’s Lemma,∑n
i=1 ψ(xi)[yi −H(xi − α)]∑n

i=1 ψ2(xi)V (xi − α)
−→ 0 a.s. (2.16)

Combining (2.16) with (2.2), we get∑n
i=1 ψ(xi)[H(xi − xn+1) −H(xi − α)]∑n

i=1 ψ2(xi)V (xi − α)
−→ 0 a.s. (2.17)

If supn |xn| < ∞, then because of the strict monotonicity of H, (2.17) implies
xn → α. So we only need to prove that supn |xn| < ∞ indeed holds. Suppose
it did not. Then we could find a subsequence xnk

such that |xnk
| → ∞ and

|xi| ≤ |xnk
|, i ≤ nk. By choosing a further subsequence, we may assume, without

loss of generality, that xnk
→ ∞.

From (C2) and (C3), there exist constants ε0 > 0, C0 > 0 such that

p−H(xi − α)
V (xi − α)ψ(xi)

≤ −ε0 for all xi ≥ C0.

Since xi ≤ xnk
, this shows

H(xi − xnk
) −H(xi − α)

V (xi − α)ψ(xi)
≤ p−H(xi − α)
V (xi − α)ψ(xi)

≤ −ε0 (2.18)

for all xi ≥ C0. For |xi| ≤ C0, it is easy to see

H(xi − xnk
) −H(xi − α)

V (xi − α)ψ(xi)
≤ −ε1 (2.19)

for some ε1 > 0 and large k because of the strict monotonicity of H. For xi ≤
−C0, since H(xi − xnk

) = H(xi − α− (xnk
− α)) ≤ H(2(xi − α)),

H(xi − xnk
) −H(xi − α)

V (xi − α)ψ(xi)
≤ H(2(xi − α)) −H(xi − α)

V (xi − α)ψ(xi)
≤ −ε2 (2.20)

for some positive ε2, where the last inequality follows from (C3). In view of
(2.18)–(2.20),

lim sup
k→∞

∑nk
i=1 [H(xi − xnk

) −H(xi − α)]∑nk
i=1 V (xi − α)

≤ − min (ε0, ε1, ε2) < 0,

which clearly contradicts (2.17). Thus (i) holds.

For (ii), we only prove the first part, i.e., lim inft→∞ ψ2(t)[1 +V (t−α)] > 0
implies P (xn → ∞) = 0. The second part can be proven in exactly the same
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way. From the stated assumption, we have either lim inft→∞ ψ2(t)V (t− α) > 0
or lim inft→∞ ψ2(t) > 0. If lim inft→∞ ψ2(t)V (t−α) > 0, then on {xn → ∞} we
necessarily have

∑
n ψ2(xn)V (xn − α) = ∞. But by (i), xn → α a.s., which is

impossible. Suppose now that lim inft→∞ ψ2(t) > 0. We prove that xn → ∞ is
impossible by contradiction. On {xn → ∞}, ∑n ψ2(xn)V (xn − α) < ∞ by (i).
This and (2.14) imply that

ψ(xn) [yn −H(xn − α)] −→ 0. (2.21)

On the other hand, from (2.2), with nk chosen so that xnk
≤ xnk+1,

ψ(xnk
)[ynk

−H(xnk
− α)]

=
nk∑
i=1

ψ(xi)[H(xi−xnk+1)−H(xi − xnk
)]+ψ(xnk

) [ p−H(xnk
− α)]

≤ ψ(xnk
) [ p−H(xnk

− α)] (2.22)

Since (C2) entails ψ > 0, we have

ynk
−H(xnk

− α) ≤ p−H(xnk
− α) (2.23)

from (2.22). The left-hand side of (2.23) converges to zero while its right-hand
side converges to p−H(∞) < 0, which is a contradiction.

3. Extension to Models with Misspecified Link(mean) Functions

The Robbins-Monro stochastic approximation is nonparametric in the sense
that, except for a local monotonicity assumption, no prior knowledge of the
mean response function is assumed. In contrast, the analysis of the ML-based
sequential design in the preceding section hinges on the correct specification
of the link function H. In this section, we deal with the situation in which
the link function is misspecified. It will be shown that if the optimal level α
is known to lie in a bounded interval, then a simple modification of (2.2) or,
more precisely, (2.3)–(2.4) by truncation leads to a strongly consistent design
sequence. Asymptotic normality for the design sequence is also obtained under
certain regularity conditions.

As in Section 2, the response y at x has mean H(x−α) and variance V (x−α),
where, throughout this section, H is assumed to be continuous, strictly increasing
and H(0) = p, and V is assumed to be positive and continuous. However, H̃,
another mean function, is used to generate the design sequence:

n∑
i=1

ψ(xi)(yi − H̃(xi − α̂n)) = 0,
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xn+1 = max {min(α̂n, b), a}, (3.1)

where a and b are predetermined constants and ψ is bounded away from 0 and
infinity in [a, b]. We need the following conditions for the analysis of (3.1):
(C5) H̃ is twice continuously differentiable, H̃ ′(t) > 0 and H̃(0) = p;
(C6) There exists C > 0 such that H̃(−C) < H(x−α) < H̃(C) for all x ∈ [a, b];
(C7) suptε[a,b]E[|y|4|x = t] <∞.

Theorem 2. Under conditions (C5)–(C7), xn → α a.s.

Proof. By the martingale local convergence theorem of Chow (1965) we know
that (2.14) still holds. Since a ≤ xn ≤ b, we have

∑∞
n=1 V (xn − α)ψ(xn) = ∞.

Thus Kronecker’s lemma implies∑n
i=1[yi −H(xi − α)]ψ(xi)∑n

i=1 V (xi − α)ψ(xi)
−→ 0 a.s. (3.2)

From (C6), there exist ∆ > 0 and δ > 0 such that H̃(x − ∆) −H(x − α) ≤ −δ
and H̃(x+ ∆) −H(x− α) ≥ δ for all x ∈ [a, b]. So for any t ≥ ∆ (or t ≤ −∆),

n∑
i=1

[H̃(xi − t) −H(xi − α)]ψ(xi) ≤ −δ
n∑
i=1

ψ(xi)
(
or ≥ δ

n∑
i=1

ψ(xi)
)
.

But in view of the first equation in (3.1) and (3.2), we have

1
n

n∑
i=1

[H̃(xi − α̂n) −H(xi − α)]ψ(xi) → 0 a.s.,

implying that |α̂n| ≤ ∆ for all large n. Thus, the truncation step in (3.1) is in
effect only for a finite number of steps and eventually xn+1 = α̂n. Furthermore,
modifying the tails of H̃ if necessary, we can assume that H̃ ′(x) is bounded away
from 0 and |H̃ ′′(x)| is bounded away from ∞.

The main idea in the rest of our proof for the strong consistency is to first
transform the sequential design (3.1) into a Robbins-Monro-type recursion and
then apply a convergence result established for the latter procedure. From the
definition of α,

ψ(xn)(yn−p) =
n∑
i=1

ψ(xi)
[
H̃(xi − α̂n) − H̃(xi − α̂n−1)

]
= Jn(α̂n−1− α̂n), (3.3)

where Jn(u) =
∑n
i=1 ψ(xi)[H̃(xi − α̂n−1 + u) − H̃(xi − α̂n−1)]. Obviously Jn is

strictly increasing, twice continuously differentiable and Jn(0) = 0. Inverting Jn
in (3.3) we get

α̂n = α̂n−1 − J−1
n (ψ(xn)(yn − p)). (3.4)
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Letting Qn(v) = J−1
n (v), we have

Q′
n(v) =

1
J ′
n(Qn(v))

, Q′′
n(v) =

−J ′′
n(Qn(v))

J ′3
n (Qn(v))

.

By taking a Taylor’s expansion of Qn at 0, we obtain

α̂n = α̂n−1 − ψ(xn)
J ′
n(0)

(yn − p) + ξn, (3.5)

where ξn = J ′′
n(θ∗n)ψ2(xn)(yn−p)2/[2J ′3

n (θ∗n)] for some θ∗n between 0 and α̂n−1−α̂n.
Let Fn−1 be the σ-field generated by yi, xi, i ≤ n− 1. Since |J ′′

n(θ∗n)/J ′3
n (θ∗n)| ≤

δ0n
−2 for some δ0 > 0, we have E(|ξn|+ ξ2n|Fn−1) = O(n−2) a.s. in view of (C7).

From this and (3.5) it follows that

E
{
(α̂n − α)2|Fn−1

}
≤ (α̂n−1−α)2−ψ(xn)

J ′
n(0)

(α̂n−1−α)(H(xn−α)−p)+ηn (3.6)

with ηn ≥ 0 and
∑∞
n=1 ηn <∞. Therefore, Theorem 1 of Robbins and Siegmund

(1971) can be applied to (3.6) to obtain that limn→∞ (α̂n − α)2 exists and
∞∑
n=1

ψ(xn)
J ′
n(0)

(α̂n−1 − α)(H(xn − α) − p) <∞.

Since H is strictly increasing at 0 and xn = α̂n−1 for all large n, we must have
limn→∞ α̂n = α a.s. or equivalently limn→∞ xn = α a.s.

Theorem 3. Suppose that the assumptions in Theorem 2 are satisfied, ψ is
continuous at α and H̃ ′(0) < 2H ′(0). Then

√
n (xn − α) L−→N

(
0,

V (0)
H̃ ′(0)[2H ′(0) − H̃ ′(0)]

)
.

Proof. The idea here is to show that the procedure is asymptotically equivalent
to the Robbins-Monro recursion so that the asymptotic normality as given in Lai
and Robbins (1979) for the latter can be applied to the former. From Theorem
2, xn+1 = α̂n for all large n. Thus we can deduce from (3.5) that

xn+1 = xn −
[ ψ(xn)
J ′
n(0)

− J ′′
n(θ∗n)

2J ′3
n (θ∗n)

ψ2(xn)(yn − p)
]
(yn − p)

= xn − 1
nβ∗n

(yn − p), say,

for some θ∗n between 0 and xn − xn+1. Clearly

β∗n −
J ′
n(0)

nψ(xn)
= O

(
yn − p

n

)
= op(n−

3
5 ),
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and J ′
n(0)/[nψ(xn)] ∈ Fn−1 and converges to H̃ ′(0) a.s.. Therefore, Theorem 4

(iv) of Lai and Robbins (1979) can be used to obtain the desired convergence
for

√
n(xn − α). Note that the i.i.d. assumption on yi − H(xi − α) in Lai and

Robbins can be relaxed to cover the current setup.

4. Sequential Designs in Location-Scale Models with Estimated Scale
Parameter

When the link function H in (2.1) is specified only up to a scale parameter,
we are faced with a more general model:

E(y|x) = H(β(x− α)), (4.1)

where both α and β > 0 are unknown. Wu (1985) gave an extensive analysis in
the case of a logistic link function for which E(y|x) = eβ(x−α)/[1 + eβ(x−α)]. Lai
and Robbins (1979) in their construction of optimal adaptive stochastic approxi-
mation algorithms obtained strong consistency and asymptotic normality for the
design sequence with the scale parameter estimated sequentially. Following Lai
and Robbins, we first assume that a strongly consistent sequence of estimators
β̂n is available. With β̂n, a sequential design scheme is defined and its consis-
tency and asymptotic normality are obtained under suitable conditions. We then
deal with the situation for which the link function may be misspecified and the
estimator of the scale parameter may be inconsistent.

Now consider the model with link function (4.1) and variance V (x−α). Let
ψ be, as before, the weight function. If β were known, then one would follow
(2.2) to define the design sequence {xn, n ≥ 1} by

n∑
i=1

ψ(βxi)[yi −H(β(xi − xn+1))] = 0. (4.2)

In ignorance of β, we can substitute β in (4.2) by its updated estimator β̂n ∈
Fn−1, the σ-field generated from yi, xi, i ≤ n− 1, to get xn+1:

n∑
i=1

ψ(β̂nxi)[yi −H(β̂n(xi − xn+1))] = 0. (4.3)

For technical reasons, we also consider an alternative algorithm

n∑
i=1

ψ(β̂ixi)[yi −H(β̂i(xi − xn+1))] = 0. (4.4)

To analyze the convergence of xn defined by either (4.3) and (4.4), we need to
introduce variants of the conditions (C3) and (C4):
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(C3′) lim inf|t|→∞
|H(βt)−p|
V (t)ψ(t+α) > 0 and

lim inf|t|→∞
|H(λβt)−H(βt)|
V (t)ψ(t+α) > 0 for some 1 < λ < 2.

(C4′) V is continuous at 0, H is twice continuously differentiable in a neighbor-
hood of 0 and H ′(0) > 0.

Theorem 4. Suppose that conditions (C1), (C2) and (C3′) are satisfied and that
{xn} is defined either by (4.3) or (4.4).

(i) With probability 1, either xn → α, or xn → ∞, or xn → −∞,
(ii) If lim inft→∞ ψ2(t)[1 + V (t− α)] > 0, then P (xn → ∞) = 0;

if lim inft→−∞ ψ2(t)[1 + V (t− α)] > 0, then P (xn → −∞) = 0.
(iii) If lim|t|→∞ ψ2(t)[1 + V (t− α)] > 0, then xn → α a.s.
(iv) For the xn defined by (4.4), if (C4′) is also satisfied, xn → α a.s. and

β̂nεFn−1, then

√
n(xn − α) L−→N(0, [βH ′(0)]−2V (0)).

Proof. We can apply the same arguments as in the proof of Theorem 1 to show
(i) and (ii). The details are therefore omitted. Part (iii) follows directly from (i)
and (ii).

To prove (iv), we employ an idea used in Section 3, i.e., by showing that
the problem is equivalent to a corresponding stochastic approximation problem.
From (4.4), we have

n∑
i=1

ψ(xi)[H(β̂i(xi − xn+1)) −H(β̂i(xi − xn))] = ψ(xn)(yn − p).

Thus
xn+1 = xn − Ĵ−1

n (ψ(xn)(yn − p)), (4.5)

where Ĵn(u) =
∑n
i=1 ψ(xi)[H(β̂i(xi−xn−u))−H(β̂i(xi−xn))]. As in the proof of

Theorem 2, the first and second derivatives of Ĵ−1
n are respectively of the orders

n−1 and n−2. Thus (4.5) can be rewritten as

α̂n = α̂n−1 − 1
nb∗n

ψ(xn)(yn − p)

with b∗n satisfying b∗n − n/J ′
n(0) = o(n−

1
2
−ε0) for some ε0 > 0. Since J ′

n(0)εFn−1

and n/J ′
n(0) → 1/[βH ′(0)], we can again apply Theorem 4 (iv) of Lai and Rob-

bins (1979) to obtain the desired convergence in distribution.

We now relax the restrictions so that (i) H may be misspecified, and (ii) β̂n
may not be consistent. We shall show that, by the truncation method as given
in (3.1), we can still guarantee the consistency of the design sequence xn.
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To be specific, let β̂n ∈ Fn−1 be a sequence of estimators of β such that for
some ε0 > 0, β̂n ∈ [ε0, ε−1

0 ]. Define xn and α̂n recursively by

n∑
i=1

ψ(β̂ixi)[yi − H̃(β̂i(xi − α̂n))] = 0,

xn+1 = max {min (α̂n, b), a}, (4.6)

where H̃ is twice continuously differentiable, H̃ ′(t) > 0 for all t ∈ [a − α, b − α]
and H̃(0) = p. Assume that there exists a constant ∆̃ such that H̃(−∆̃) ≤
H(β(x − α)) ≤ H̃(∆̃) for all xε[a, b]. Furthermore, H(0) = p, H is strictly
increasing at 0 and suptε[a,b]E[|y|4|x = t] <∞.

Theorem 5. Suppose that H̃ and H satisfy the preceding assumptions. Let xn
be defined by (4.6).

(i) xn → α a.s.
(ii) If β̂n → βH ′(0)/H̃ ′(0) a.s., then

√
n(xn − α) L−→N(0, V (0)/[βH ′(0)]2).

The proof is omitted since it is similar to those of Theorems 2 and 3.
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