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Abstract: Spherical harmonic descriptors are frequently used for describing three-

dimensional shapes in terms of Fourier coefficients corresponding to an expansion

of a function defined on the unit sphere. In a recent paper Dette, Melas and Pe-

pelysheff (2005) determined optimal designs with respect to Kiefer’s Φp-criteria

for regression models derived from a truncated Fourier series. In particular it

was shown that the uniform distribution on the sphere is Φp-optimal for spheri-

cal harmonic descriptors, for all p > −1. These designs minimize a function of

the variance-covariance matrix of the least squares estimate but do not take into

account the bias resulting from the truncation of the series.

In the present paper we demonstrate that the uniform distribution is also op-

timal with respect to a minimax criterion based on the mean square error, and

as a consequence these designs are robust with respect to the truncation error.

Moreover, we also consider heteroscedasticity and possible correlations in the con-

struction of the optimal designs. These features appear naturally in 3D shape

analysis, and the uniform design again turns out to be minimax robust against

erroneous assumptions of homoscedasticity and independence.
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1. Introduction and Summary

Spherical harmonic shape descriptors are widely used to visualize 3D data in
many fields including medicine, chemistry, architecture, agriculture and biology
because of their ability to describe and compare shapes of various structures in
terms of a relatively small number of parameters. See Brechbühler, Gerig and
Kübler (1995), Novotni and Klein (2003), Székely, Kelemen, Brechbühler and
Gerig (1996), Ding, Nesumi, Takano and Ukai (2000), Funkhouser, Min, Kazh-
dan, Chen, Halderman and Dobkin (2003) Kazhdan, Funkhouser and Rusinkiewicz
(2003), among others. In many cases 3D data appear in the form Yi = r(ψi) +
errori (i = 1, . . . , n), where

ψi = (θi, φi) ∈ S = {(θ, φ) | θ ∈ [0, π], φ ∈ (−π, π]} , (1.1)
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and where θi and φi denote the polar angle and azimuthal angle of the ith

observation. In other words, the corresponding point of the shape has spher-
ical coordinates (Yi sin θi cos φi, Yi sin θi sinφi, Yi cos θi)T . Let {Y m

l (ψ) | m ∈
{−l,−l + 1, . . . , l}; l ∈ N0} denote a complete orthonormal basis with respect
to the uniform distribution on the unit sphere, with density

µ (ψ) dψ =
sin θ

4π
dθdφ. (1.2)

If r : S → R denotes a (square integrable) function representing the radius in
direction ψ, the coefficients cm

l =
∫ π
0

∫ π
−π r(ψ)Y m

l (ψ)µ(ψ)dψ/4π of a spherical
harmonic expansion

r(ψ) =
∞∑
l=0

l∑
m=−l

cm
l Y m

l (ψ) (1.3)

are estimated from the 3D data. Because n data points do not allow one to de-
termine all coefficients in the expansion (1.3), the series is truncated at a specific
level, say d, and the coefficients cm

l in this approximation of r are estimated. In
this paper we concentrate on the (weighted) least squares criterion

min
cm
l

n∑
i=1

(
Yi −

d∑
l=0

l∑
m=−l

cm
l Y m

l (ψi)

)2

w(ψi) (1.4)

for an appropriate non-negative weight function w on S. The resulting estimates
of the coefficients are then used for describing and analyzing the 3D shapes. See
Ding et al. (2000), Kazhdan et al. (2003), Kelemen, Szekely and Gerig (1999),
among others.

In a recent paper Dette, Melas and Pepelyshev (2005) considered the optimal
design problem for estimating the coefficients cm

l . They demonstrated that the
commonly used designs (either a uniform distribution on S realized by a grid
or a uniform design taking observations on several circles with equal distances
on the z-axis - see e.g., Ding et al. (2000)) are rather inefficient if the emphasis
of the design of the experiment is the minimization of the variances of the least
squares estimates. In particular it is shown that the uniform distribution (1.2)
is optimal with respect to all Φp-criteria proposed by Kiefer (1974). The Φp-
optimal designs minimize a p-norm of the eigenvalues of the variance-covariance
matrix but do not take into account the bias, which is incurred by the truncation
of (1.3). Moreover, in 3D-shape analysis the bias has a serious impact on the
quality of the estimates (see e.g., Pawlak and Liao (2002)).

In the present paper, motivated by a desire for robustness, we consider this
design problem while taking a variety of possible model specification errors into
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account. The need for robustness of design against a misspecified regression
response was first elucidated in the seminal paper Box and Draper (1959). A
minimax approach over a broad class of departures from the fitted response was
subsequently formulated in Huber (1975). In a series of papers these notions were
extended to multiple linear regression (Pesotchinsky (1982) and Wiens (1992))
and to robustness against heteroscedasticity (Wiens (1998)). A feature of this
current article is that the continuous uniform design on the sphere is simulta-
neously optimal, and robust, in a variety of situations. The more ‘standard’
uniform distribution, i.e., with constant density, was previously shown to pos-
sess attractive robustness properties with respect to lack of fit testing in Wiens
(1991); this work was subsequently extended by Biedermann and Dette (2001),
and more recently by Bischoff and Miller (2006).

To define our models precisely, we suppose that the random variables Yi are
observed with additive error, i.e.,

Yi = Y (ψi) = r(ψi) + η(ψi) , i = 1, . . . , n, (1.5)

at ‘locations’ ψi = (θi, φi) ∈ S, where the η(ψi) denote centred random variables
with constant variance, say σ2

η > 0, and the polar angle and azimuthal angle
satisfy θi ∈ [0, π] and φi ∈ (−π, π], respectively. It is assumed that the function
r(ψ) has an L2-expansion of the form (1.3), where the Y m

n denote the spherical
harmonic descriptors defined by

Y m
n (ψ) =


√

2n + 1P 0
n (cos θ) , m = 0, n ≥ 0,√

2 (2n + 1) (n−m)!
(n+m)!P

m
n (cos θ) cos (mφ) , m = 1, . . . , n, n > 0,√

2 (2n + 1) (n+m)!
(n−m)!P

−m
n (cos θ) sin (mφ) , m = −n, . . . ,−1, n > 0.

Here Pm
n is the mth associated Legendre function of degree n; see Andrews, Askey

and Roy (1999) for more details. The expansion in (1.3) is truncated at a given
resolution d, and the linear regression model

E[Y |ψ] = zT (ψ) c, Var[Y |ψ] = σ2 > 0

is fitted to the data; here the vector of regressors is given by

z (ψ)=
(
Y 0

0 (ψ) , Y −1
1 (ψ) , Y 0

1 (ψ) , Y 1
1 (ψ) , . . . , Y −d

d (ψ) , . . . , Y d
d (ψ)

)T
∈R(d+1)2 .

We frequently use the fact that the spherical harmonic descriptors form a com-
plete orthonormal basis with respect to the uniform distribution on the sphere
defined by (1.2), that is ∫

S
z (ψ) zT (ψ) µ (ψ) dψ = I, (1.6)
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where the set S is defined at (1.1) and I denotes the identity matrix of order
(d + 1)2. Moreover it was shown in Dette, Melas and Pepelyshev (2005) that

‖z (ψ)‖ = d + 1, (1.7)

where ‖ · ‖ denotes the Euclidean norm.
We investigate several possible forms of model misspecification. First we

note that truncation of the expansion (1.3) leads to a bias f(ψ), so

r (ψ) = zT (ψ) c + f (ψ) , (1.8)

and this must be addressed in the design. In particular in 3D data the bias is
often not negligible compared to the variance (see Pawlak and Liao (2002)). Note
that the function f refers to the remainder in the expansion (1.3) in an L2-sense,
viz.

f(ψ) =
∞∑

l=d+1

l∑
m=−l

cm
l Y m

l (ψ). (1.9)

We also note that the assumptions of homoscedastic and uncorrelated errors
η (ψi) may be unrealistic in some applications of shape analysis. For this reason
we assume that the random error in (1.5) can be further decomposed as

η(ψ) = ε (ψ) + U (ψ) ,

where the ε (ψ) are centred and uncorrelated with each other but with possibly
heterogeneous variances, say σ2

εg (ψ) for some function g : S → R+, and where
U (ψ) is a random process, uncorrelated with ε (ψ), with mean 0 and covariance
function Cov

[
U (ψ) , U

(
ψ′)] = h

(
ψ, ψ′).

As a consequence of these assumptions, the model (1.5) can be written as

Yi = zT (ψi) c + f (ψi) + ε (ψi) + U (ψi) , i = 1, . . . , n, (1.10)

and, in particular, we have E [Y (ψ)] = r(ψ) = zT (ψ) c + f (ψ). Moreover, it
follows from (1.8) and (1.9) that∫

S
z (ψ) f (ψ) µ (ψ) dψ = 0, (1.11)

and that the vector c is obtained as

c = arg min
t

∫
S

(
E [r (ψ)] − zT (ψ) t

)2
µ (ψ) dψ,

and given by the vector of the first (d + 1)2 Fourier coefficients of the function
r. Let ĉ denote the estimate obtained from the least squares criterion (1.4)
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and define Ŷ (ψ) = zT (ψ) ĉ as the predicted response. In order to address
possible bias, heteroscedasticity and correlation in the design of the experiment,
we consider two integrated mean square error criteria:

IMSE1,f,g,h(ξ) =
∫
S

E

[{
Ŷ (ψ) − E [Y (ψ)]

}2
]

µ (ψ) dψ,

IMSE2,f,g,h(ξ) =
∫
S

E

[{
Ŷ (ψ) − Y (ψ)

}2
]

µ (ψ) dψ,

where ξ is the given experimental design. The criterion IMSE2,f,g,h measures
the difference between the value of a ‘new’ observation r, observed at location ψ,
and its predicted value r̂ (ψ), while IMSE1,f,g,h compares the prediction with
the expectation of a new observation. Note also that both criteria depend on the
bias f , variance function g, and the correlation structure h of the errors η. The
designs constructed by Dette, Melas and Pepelyshev (2005) are Φp-optimal for
the case f ≡ 0, h ≡ 0 and g ≡ 1; it is not clear if they are efficient or robust if
any of these assumptions is violated.

In order to obtain robust designs we propose a minimax approach, which
seeks designs that minimize the worst IMSE calculated over a certain class of
functions. Thus, let η2

f and η2
g denote positive constants and consider the classes

of functions

F =
{

f
∣∣∣ ∫

S
f2 (ψ) µ (ψ) dψ ≤ η2

f

}
, (1.12)

G =
{

g
∣∣∣ sup

ψ∈S
|g (ψ) − g0 (ψ)| ≤ η2

g

}
. (1.13)

For j = 1, 2 a design ξ∗j is called minimax-optimal if it minimizes the maximum
IMSEj,f,g,h over the classes F , G and H, i.e.,

ξ∗j = argminξ max
{

IMSEj,f,g,h(ξ)
∣∣∣ f ∈ F , g ∈ G, h ∈ H

}
, (1.14)

where the class H will be specified in Sections 2.1 and 2.2 corresponding to the
cases of uncorrelated and correlated data, respectively.

In Section 2 we treat the construction of continuous optimal designs with
respect to the minimax criterion based on IMSE calculated over the full set
S. Optimal design problems with respect to the integrated mean square error
calculated over a finite subset S0 = {ψi}

N
i=1 of S are considered in Section 3.

It is demonstrated there that the uniform distribution on the sphere remains
optimal with respect to a minimax mean square error criterion that takes into
account bias, heteroscedasticity, and correlations in the data. As a consequence,
this design is robust with respect to the bias arising from the truncation of the



88 HOLGER DETTE AND DOUGLAS P. WIENS

Fourier series, and with respect to violations of the standard assumptions of
homoscedastic and uncorrelated data.

Some numerical comparisons of the designs constructed in Section 3 with
some common competitors are given in Section 4. The examples of that section
demonstrate that our designs enjoy a considerable advantage over more con-
ventional uniform designs, especially for large values of d. There is as well a
computational benefit to the minimax designs - the corresponding information
matrix is a multiple of the identity, and thus the regression coefficients can be
computed without matrix inversions: we have ĉ =

∑N
i=1 z (ψi) miȲi·, where Ȳi·

is the average of the observations at ψi, and mi is the product of the design
and regression weights at ψi. Especially for the large values of d often used in
practice, this confers a considerable advantage to these designs (see Brechbühler,
Gerig and Kübler (1995)).

The derivations are given in the on-line supplement at http://www.stat.sinica.
edu.tw/statistica/.

2. Minimax Optimal Designs on S

In this section we suppose that any point ψ ∈ S = [0, π] × (−π, π] is a
possible design point. We will demonstrate that for uncorrelated data the uniform
distribution on the sphere remains optimal with respect to the minimax criterion
(1.14), and that this conclusion remains valid if robustness against a broad class
of correlation structures is required as well.

We will consider the uncorrelated and correlated cases separately. Before
doing this we present the loss functions for fixed functions f , g and h, and then
the maxima, over F and G, of these loss functions.

It follows from Lemma 1 of Wiens (1992) that we may assume that the
optimal design ξ∗j is absolutely continuous with respect to Lebesgue measure,
since otherwise the maximum loss (over F) would be infinite. For a design ξ

with density k(ψ) define m (ψ) = k (ψ) w (ψ), and assume that the average
weight is one, so that ∫

S
w (ψ) dξ (ψ) =

∫
S

m (ψ) dψ = 1

and m (·) is a probability density on S. If the vector c is estimated by weighted
least squares (with weight function w), then a straightforward calculation shows
that the resulting estimate can be expressed in terms of the design measure ξ

(equivalently, in terms of m) as

ĉ = c + B−1
m

∫
S
z (ψ) m (ψ) Y (ψ) dψ,
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where Y (ψ) denotes the (continuous) data, and the matrix Bm is defined by

Bm =
∫
S
z (ψ) zT (ψ) m (ψ) dψ.

The corresponding bias and covariance of this estimate are given by

E [ĉ] − c = B−1
m bf,m, Cov [ĉ] = B−1

m

[
σ2

ε

n
Cw,g,m + Dh,m

]
B−1

m ,

with

bf,m =
∫
S
z (ψ) f (ψ) m (ψ) dψ,

Cw,g,m =
∫
S
z (ψ) w (ψ) g (ψ) zT (ψ) m (ψ) dψ,

Dh,m =
∫
S

∫
S
z (ψ) h

(
ψ,ψ′) zT

(
ψ′)m (ψ) m

(
ψ′) dψdψ′.

Standard calculations yield, for the integrated mean square errors,

IMSE1,f,g,h(ξ) = bT
f,mB−2

m bf,m + tr

{
B−1

m

[
σ2

ε

n
Cw,g,m + Dh,m

]
B−1

m

}
+

∫
S

f2 (ψ) µ (ψ) dψ,

IMSE2,f,g,h(ξ) = bT
f,mB−2

m bf,m + tr

{
B−1

m

[
σ2

ε

n
Cw,g,m + Dh,m

]
B−1

m

}
+

∫
S

f2 (ψ) µ (ψ) dψ − 2trB−1
m Eh,m + σ2

εcg + ch,

where

Eh,m =
∫
S

∫
S
z

(
ψ′) h

(
ψ, ψ′) zT (ψ) m

(
ψ′)µ (ψ) dψ′dψ,

cg =
∫
S

g (ψ) µ (ψ) dψ, ch =
∫
S

h (ψ, ψ) µ (ψ) dψ.

We now seek to maximize the integrated mean square error with respect to f ∈ F
and g ∈ G. This is straightforward for the function g, and was carried out for
the function f in general regression models with µ (·) ≡ 1 by Wiens (1992). The
further generalization is straightforward.

Proposition 1. (1) The maximum of bT
f,mB−2

m bf,m with respect to f ∈ F
satisfying (1.11) is given by

η2
f

(
chmax

[
B−1

m KmB−1
m

]
− 1

)
, (2.1)
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where chmax [A] denotes the maximum eigenvalue of the matrix A and Km is
defined by

Km =
∫
S
z (ψ) zT (ψ)

m2 (ψ)
µ (ψ)

dψ.

The maximum value (2.1) is attained by any function f∗ of the form

f∗ (ψ) = ηfαT
m

[
m (ψ)
µ (ψ)

I − Bm

]
z (ψ) ,

where αm is any solution of the equation
(
Km − B2

m

)1/2
αm = βm, and βm is

any eigenvector of the matrix B−1
m

(
Km − B2

m

)
B−1

m corresponding to the maxi-
mum eigenvalue, normalized so that ‖βm‖ = 1. Moreover,

max
f∈F

IMSEj,f,g,h(ξ)

=


η2

fchmax

[
B−1

m KmB−1
m

]
+ tr

{
B−1

m

[
σ2

ε
n Cw,g,m + Dh,m

]
B−1

m

}
, if j = 1,

η2
fchmax

[
B−1

m KmB−1
m

]
+ tr

{
B−1

m

[
σ2

ε
n Cw,g,m + Dh,m

]
B−1

m

}
−2trB−1

m Eh,m + σ2
εcg + ch,

if j = 2.

(2) The functions trB−1
m Cw,g,mB−1

m and cg are maximized, with respect to g ∈ G,

by g∗ (ψ) = g0 (ψ) + η2
g . Moreover,

max
f∈F ,g∈G

IMSEj,f,g,h(ξ)

=


η2

fchmax

[
B−1

m KmB−1
m

]
+ tr

{
B−1

m

[
σ2

ε
n Cw,g∗,m + Dh,m

]
B−1

m

}
, if j = 1,

η2
fchmax

[
B−1

m KmB−1
m

]
+ tr

{
B−1

m

[
σ2

ε
n Cw,g∗,m + Dh,m

]
B−1

m

}
−2trB−1

m Eh,m + σ2
εcg∗ + ch,

if j = 2.

2.1. Uncorrelated data

Throughout this subsection we assume that robustness with respect to the
correlation structure of the errors does not have to be addressed in the optimality
criterion (1.14), and so we take h(·, ·) ≡ 0 in the expressions of Proposition 1.
We begin our development with the case of classical least squares estimation
based on uncorrelated and homoscedastic data, as considered in Dette, Melas
and Pepelyshev (2005). These authors however did not take the bias or possible
heteroscedasticity into account (in other words they put η2

f = 0, g0(ψ) = 1,
and η2

g = 0, in our notation) and showed that the uniform distribution on the
sphere defined by (1.2) is optimal with respect to all Φp-criteria. The following
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result shows that this design is also optimal with respect to both IMSE -criteria
considered in the present paper, if the errors in model (1.5) are homoscedastic
and uncorrelated.

Theorem 1. If the errors in model (1.5) are homoscedastic (i.e., η2
g = 0; g0 (·) ≡

1) and uncorrelated (i.e., h(·, ·) ≡ 0) and the weight function in the least squares
criterion (1.4) is constant, then the uniform design on the sphere defined by (1.2)
minimizes maxf∈F IMSEj,f,1,0(ξ) for j = 1, 2.

If heteroscedasticity is a concern, the experimenter will consider the use of
weighted least squares. From (2) of Proposition 1 it follows that the maximum
loss can be minimized with respect to the weight function w by minimizing

trB−1
m Cw,g∗,mB−1

m =
∫
S

w (ψ) g∗ (ψ) zT (ψ)B−2
m z (ψ) m (ψ) dψ (2.2)

over all non-negative functions w (·) subject to the requirement that the function
k (ψ) = m (ψ) /w (ψ) be a density, that is∫

S

m (ψ)
w (ψ)

dψ = 1. (2.3)

(Here we note that the weight function w occurs only in the expression Cw,g∗,m

of IMSEj , j = 1, 2). In (2.3) the integrand and w (ψ) are defined to be zero off
the support of m (·).

Proposition 2. The quantity (2.2) is minimized over non-negative weights,
subject to the normalizing condition (2.3), by

w∗ (ψ) =
γm∥∥B−1

m z (ψ)
∥∥√

g∗ (ψ)

on the support of m (·), where γm =
∫
S

∥∥B−1
m z (ψ)

∥∥√
g∗ (ψ)m (ψ) dψ and g∗ (ψ) =

g0 (ψ) + η. Moreover, the minimum value of (2.2) is given by

trB−1
m Cw∗,g∗,mB−1

m = γ2
m.

Note that the optimal weights depend on the given design m. As a conse-
quence of Proposition 2 we obtain minimax-optimal designs for weighted least
squares estimation with “optimal” weights that are robust against bias and het-
eroscedasticity. We assume here that the experimenter fits a homoscedastic
model, i.e., takes g0(ψ) ≡ 1.
Theorem 2. If the errors in model (1.5) are uncorrelated (i.e., h(·, ·) ≡ 0) and
the function g0 in (1.13) satisfies g0(ψ) ≡ 1, then the uniform design defined by
(1.2) minimizes

min
w

max
f∈F ,g∈G

IMSEj,f,g,0(ξ) (2.4)
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for j = 1, 2. In other words k∗ (ψ) = µ (·) is the minimax robust design density,
and constant regression weights are minimax in the presence of heteroscedastic
(but uncorrelated) errors.

Remark 1. Note that the optimality of the uniform design µ (·), or the uniform
design/weights combination has been established using only two properties of the
spherical harmonic basis functions:

(i) the norm ‖z (ψ)‖ is constant on S;
(ii) the regressors z (ψ) are orthonormal with respect to some measure µ (·).

In fact the crucial requirement is that the function

zT (ψ)
[∫

S
z (ψ) zT (ψ) µ (ψ) dψ

]−1

z (ψ)

be constant on S, since the transformed regressors

z̃ (ψ) =
[∫

S
z (ψ) zT (ψ) µ (ψ) dψ

]−1/2

z (ψ)

then satisfy conditions (i) and (ii). These properties, and hence the associated
optimality of the design m (·) = µ (·), hold in several other regression models.
Examples are Haar wavelet regression - see Herzberg and Traves (1994) and Oyet
and Wiens (2000), and trigonometric regression - see Karlin and Studden (1966).

2.2. Correlated data

In the previous subsection we have shown that for uncorrelated data the
uniform distribution on the sphere defined by (1.2) is robust in a minimax sense
with respect to the bias in the expansion (1.8), and to heteroscedasticity in the
data. We have not yet discussed robustness issues with respect to assumptions
regarding the correlation structure of the data. Here we will demonstrate that
the uniform distribution on the sphere is also optimally robust against a broad
class of correlation structures. We consider, for a given constant η2

h > 0, the
neighbourhood

H =
{

h
∣∣∣ 0 ≤

∫
S

∫
S

h
(
ψ,ψ′) f (ψ) f

(
ψ′) µ(ψ)µ(ψ′)dψdψ′

≤ η2
h

∫
S

f2 (ψ) µ(ψ)dψ ∀f ∈ L2
µ (S)

}
. (2.5)

Note that we then have, for any vector of functions a (ψ) with ‖a‖ ∈ L2
µ (S),

0 ≤
∫
S

∫
S

h
(
ψ,ψ′)aT (ψ)a

(
ψ′)µ (ψ) µ

(
ψ′) dψdψ′ ≤ η2

h

∫
S
‖a (ψ)‖2 µ (ψ) dψ.

(2.6)
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From (2) of Proposition 1 we see that the terms in maxf∈F ,g∈G IMSEj,f,g,h(ξ)
which contain h do not involve either w or g∗. The design m = µ, already seen
to be minimax robust in F and G, thus continues to be so in H if it minimizes

max
h∈H

trB−1
m Dh,mB−1

m =max
h

∫
S

∫
S

h
(
ψ,ψ′) zT

(
ψ′)B−2

m z (ψ) m (ψ) m
(
ψ′) dψdψ′

(2.7)
in the case of IMSE1,f,g,h, and

max
h∈H

{
trB−1

m Dh,mB−1
m − 2trB−1

m Eh,m + ch

}
= max

h∈H

{∫
S

∫
S

h
(
ψ,ψ′) zT

(
ψ′)B−2

m z (ψ) m (ψ) m
(
ψ′) dψdψ′

− 2
∫
S

∫
S
h

(
ψ,ψ′) zT

(
ψ′)B−1

m z (ψ) µ (ψ) m
(
ψ′) dψdψ′+

∫
S
h (ψ, ψ) µ (ψ) dψ

}
(2.8)

in the case of IMSE2,f,g,h. The proof of the following theorem consists of veri-
fying that m = µ is indeed the minimizer in each case.

Theorem 3. If the sets F , G and H are given by (1.12), (1.13) (with g0 (ψ) ≡ 1)
and (2.5), respectively, then the uniform design on the unit sphere defined by (1.2)
minimizes

min
w

max
f∈F ,g∈G,h∈H

IMSEj,f,g,h(ξ)

for j = 1, 2.

In other words k∗ (ψ) = µ (·) is the minimax robust design density, and
constant regression weights are minimax, in the presence of heteroscedastic and
correlated errors as well as bias.

Remark 2. If the class H is instead defined by

H̃=
{

h
∣∣∣ 0≤

∫
S

∫
S

h
(
ψ,ψ′) f (ψ) f

(
ψ′) dψdψ′ ≤ η2

h

∫
S
f2 (ψ) dψ, ∀f ∈L2 (S)

}
,

(2.9)
we obtain,by a similar argument as given in the proof of Theorem 3, that

min
w

max
f∈F ,g∈G,h∈H̃

IMSE1,f,g,h = η2
fchmax

[
B−1

m KmB−1
m

]
+

σ2
ε

n

(
1 + η2

g

) ∫
S

∥∥B−1
m z (ψ)

∥∥m (ψ) dψ + η2
h

∫
S

(∥∥B−1
m z (ψ)

∥∥m (ψ)
)2

dψ.

(2.10)

Note that the first and second terms in this expression are minimized by the
uniform distribution on the sphere. However, this design does not minimize the
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second integral at (2.10). This can be seen even in the simplest case d = 0,
where z (ψ) = 1 and Bm =

∫
S m (ψ) dψ = 1. In this case the second integral is

minimized by minimizing∫
S

(∥∥B−1
m z (ψ)

∥∥m (ψ)
)2

dψ =
∫
S

m2 (ψ) dψ

among probability densities m (ψ). The minimizer is easily seen to be the con-
ventional uniform density on S, i.e., m (ψ) ≡

(∫
S dψ

)−1 = 1/
(
2π2

)
. As a

consequence the uniform distribution on the sphere is in general not minimax
optimal, if the class (2.9) is used to address possible correlations in the data.

3. Minimax Optimal Designs on Discrete Subsets

The experimenter faces obvious difficulties in implementing a continuous
design such as µ (ψ), for there are then no atoms at which to place the design
points. In this section we address this problem in the following way. We restrict
attention to a subset S0 = {ψi}

N
i=1 ⊂ [0, π] × (−π, π] of the design space S,

which is finite but sufficiently large as to contain all points at which one might
contemplate making observations. We continue to analyze designs for the model
(1.10), and assume that the experimenter takes ni = n (ψi) ≥ 0 observations
Yij = Yj (ψi) (j = 1, . . . ni) at the location ψi, i = 1, . . . , N . Then n =

∑N
i=1 ni

denotes the total sample size. The weighted least squares estimate is given by

ĉ =

[
N∑

i=1

niz(ψi)w (ψi) z
T (ψi)

]−1 N∑
i=1

z(ψi)w (ψi)
ni∑

j=1

Yij (ψi) ,

where w (ψ) is again a non-negative weight function. We endow S0 with a proba-
bility measure, say µ, where µ {ψi} = µi > 0. Note that we again use the notion
of approximate designs in the sense of Kiefer (1974) and call any probability
measure with finite support S0 a design. If a design has masses k1, . . . , kN at the
points ψ1, . . . , ψN the experimenter takes approximately n (ψi) = nki observa-
tions at ψi (i = 1, . . . , N). As in Section 2 we consider, for a given design, the
normalized probabilities mi = kiw (ψi). We assume that the average weight is
one, i.e.,

∑N
i=1 wiki =

∑N
i=1 mi = 1, so that {mi}N

i=1 is a probability distribution
on S0. The analogues of (1.11), (1.12) and (1.13) are

N∑
i=1

µiz(ψi)f (ψi) = 0, (3.1)

F0 =
{

f
∣∣∣ N∑

i=1

µif
2 (ψi) ≤ η2

f

}
, (3.2)

G0 = {g | sup
S0

|g(ψ) − g0(ψ)| ≤ η2
g},
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respectively. In analogy with the approach taken in Section 2.2, we consider the
class of covariance structures

H0 =
{

h
∣∣∣ 0 ≤

N∑
i=1

N∑
j=1

h
(
ψi,ψj

)
f (ψi) f

(
ψj

)
µiµj ≤ η2

h

N∑
i=1

f2 (ψi) µi

}
,

for all functions f(·) bounded on S0.
As in the previous sections we discuss the integrated mean square error

criteria, but now evaluate the mean square error only at those points in S0, that
is

IMSE1,f,g,h(ξ) =
N∑

i=1

µiE

[{
Ŷ (ψi) − E [Y (ψi)]

}2
]

,

IMSE2f,g,h(ξ) =
N∑

i=1

µiE

[{
Ŷ (ψi) − Y (ψi)

}2
]

.

Our aim is to obtain optimal (minimax) weights {wi} and design probabilities
{ki}, where the maxima are taken over the classes F0, G0 and H0. We use the
following definitions:

f = (f(ψ1), . . . , f(ψN ))T , g = (g(ψ1), . . . , g(ψN ))T ,

P = diag (µ1, . . . , µN ) , µ = (µ1, . . . , µN )T = P1N ,

Z = (z(ψ1), . . . , z(ψN ))T , A = ZTPZ,

M = diag (m1, . . . ,mN ) , Bm = ZTMZ,

Q = Z
(
ZTMZ

)−1 ZT , W = diag (w1, . . . , wN ) ,

H =
(
h

(
ψi,ψj

))
i,j=1,...,n

, r = [diag(QPQMW)]1N .

A straightforward calculation yields, for the integrated mean square errors,

IMSE1,f,g,h(ξ) =
[
fTMQPQMf + fTPf

]
+

σ2
ε

n
rTg + trQPQMHM,

IMSE2,f,g,h(ξ) =
[
fTMQPQMf + fTPf

]
+ σ2

ε

(
µ +

1
n
r
)T

g

+ tr [(QM − I)H (MQ − I)P] .

As in Section 2 we begin with the calculation of the maximum loss over the
different classes.

Theorem 4. Let Z̃ be an N×
(
N − (d + 1)2

)
matrix whose columns are orthonor-

mal and form a basis for the orthogonal complement to the column space of the
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matrix Z. Then the maximum of the function L (f) = fTMQPQMf +fTPf over
the set the set F0 defined in (3.2), subject to condition (3.1), is maxf∈F0 L (f) =
η2

f (1 + λm), where

λm = chmax

[(
Z̃TP−1Z̃

)− 1
2 Z̃TP−1MQPQMP−1Z̃

(
Z̃TP−1Z̃

)− 1
2

]
. (3.3)

If e denotes an eigenvector of unit norm corresponding to this maximum eigen-
value, then the maximum of the function L is attained at fmax = ηfP−1Z̃(Z̃T

P−1Z̃)−1/2e.

The maximizations over the classes G0 and H0 are more straightforward.

Proposition 3. Let g∗(ψ) be as in Proposition 1 and let the vector g∗ have
elements g∗(ψi). The maximum loss over f ∈ F0, g ∈ G0, h ∈ H0 is

max
f∈F0,g∈G0,h∈H0

IMSEj,f,g,h = η2
f (1 + λm)

+


σ2

ε
n rTg∗ + η2

htr
[
QPQMP−1M

]
, if j = 1,

σ2
ε

(
µ + 1

nr
)T g∗ + η2

htr
[
(QM − I)P−1 (MQ − I)P

]
, if j = 2.

If heteroscedasticity in the data cannot be excluded, weighted least squares
estimation is a reasonable procedure, and we now exhibit the optimal weights
with respect to the minimax criterion. By virtue of Proposition 3, these are
obtained by minimizing rTg∗ subject to the constraint

N∑
i=1

ki =
N∑

i=1

mi

wi
= 1. (3.4)

For notational convenience we write rTg∗ = sTw for w = (w1, . . . , wN )T , s =
(s1, . . . , sN )T , and si =

∥∥A1/2B−1
m z (ψi)

∥∥2
mig∗,i. The proof of the following

result is analogous to that of Proposition 2, and is therefore omitted.

Proposition 4. The quantity sTw is minimized over non-negative weights w,
subject to the normalizing condition (3.4), by

w∗,i =
γm∥∥A1/2B−1

m z (ψi)
∥∥√

g∗,i
, (3.5)

where

γm =
N∑

i=1

mi

∥∥∥A 1
2 B−1

m z (ψi)
∥∥∥√

g∗,i.



ROBUST DESIGNS FOR 3D SHAPE ANALYSIS 97

The minimum value of sTw is given by sTw∗ = γ2
m. Thus minw maxf∈F0,g∈G0,h∈H0

IMSEj,f,g,h is given by

min
w

max
f∈F0,g∈G0,h∈H0

IMSEj,f,g,h = η2
f (1 + λm)

+


σ2

ε
n γ2

m + η2
htr

[
QPQMP−1M

]
, if j = 1,

σ2
ε

n γ2
m + σ2

εµ
Tg∗ + η2

htr
[
(QM − I)P−1 (MQ − I)P

]
, if j = 2.

(3.6)

Recall that the matrix A =
∑N

i=1 µiz(ψi)zT (ψi) = ZTPZ is the discrete
analogue of the matrix

∫
z(ψ)zT (ψ)µ (ψ) dψ = I(d+1)2 . It was shown by Dette,

Melas and Pepelyshev (2005), using properties of quadrature formulas, that for
sufficiently large N one can find points {ψi}

N
i=1 and probabilities {µi}N

i=1 such
that

A = I(d+1)2 . (3.7)

For the rest of this section we assume that S0 = {ψi}
N
i=1 has been constructed

in this manner and we denote the corresponding design by µ. As in Theorems 1
and 2 we also take g0 (ψ) ≡ 1. Then (3.6) becomes

min
w

max
f∈F0,g∈G0,h∈H0

IMSEj,f,g,h

= η2
f (1 + λm) +

σ2
ε

n

(
1 + η2

g

) ( N∑
i=1

mi

∥∥B−1
m z (ψi)

∥∥)2

+

{
η2

htr
[
QPQMP−1M

]
, if j = 1,

σ2
ε

(
1 + η2

g

)
+ η2

htr
[
(QM − I)P−1 (MQ − I)P

]
, if j = 2.

The following result shows that the design µ is the minimax robust design against
any combination of bias, heteroscedasticity and dependence.

Theorem 5. If (3.7) is satisfied and g0 (ψ) ≡ 1, then the design k∗
i = µi

(i = 1, . . . , N) together with constant weights (implying that m = µ) minimizes
maxf∈F0,g∈G0,h∈H0 IMSEj,f,g,h for j = 1, 2, and any combination of η2

f > 0,
η2

g > 0, and η2
h > 0.

4. Numerical Comparisons

In this section we construct discrete designs as described in Section 3 and
compute, for these and some competing designs, maxf∈F0,g∈G0,h∈H0 IMSEj,f,g,h

for a range of parameter values. Using g0 (ψ) ≡ 1 and unit regression weights in
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all cases, this is (from Proposition 3) given by

max
f∈F0,g∈G0,h∈H0

IMSEj,f,g,h = η2
f (1 + λm)

+


σ2

ε
n rTg∗ + η2

htr
[
QPQMP−1M

]
, if j = 1,

σ2
ε

(
µ + 1

nr
)T g∗ + η2

htr
[
(QM − I)P−1 (MQ − I)P

]
, if j = 2.

(4.1)

By defining

α =
η2

f

η2
f + σ2

ε
n

(
1 + η2

g

)
+ η2

h

, β =
σ2

ε
n

(
1 + η2

g

)
η2

f + σ2
ε

n

(
1 + η2

g

)
+ η2

h

, γ = 1 − α − β,

we can write (4.1) as
(
η2

f + σ2
ε

n

(
1 + η2

g

)
+ η2

h

)
× L (m; α, β), with

L (m; α, β) = α (1 + λm)

+


βtr

[
B−1

m A
]
+ γtr

[(
B−1

m ZTM
)T A

(
B−1

m ZTM
)
P−1

]
, if j = 1,

β
{
tr

[
B−1

m A
]
+ n

}
+γ

{
tr

[(
B−1

m ZTM
)T A

(
B−1

m ZTM
)
P−1

]
+ N − 2 (d + 1)2

}
,

if j = 2.

Here α, β, and γ may be interpreted as representing the relative importance of
errors due to bias, variance, and dependence, in the mind of the experimenter.
For our designs with m = µ we have

min
m

L (m; α, β)=α+

 (1−α) (d+1)2 , if j =1,

(1−α) (d+1)2+nβ+γ
{

N−2 (d+1)2
}

, if j =2.
(4.2)

Minimax designs satisfying our criteria may be constructed, for certain values
of N , by the methods of Dette, Melas and Pepelyshev (2005). For the sake of
completeness we briefly describe the method used here. Let Pd+1(x) (= P 0

d+1(x)
in the notation of Section 1) be the Legendre polynomial of degree d + 1. Let
x1 < · · · < xd+1 be the zeros, all of which lie in (−1, 1), of this polynomial. For
j = 1, . . . , d + 1, compute probabilities

vj =
1
2

∫ 1

−1

d+1∏
k=1,k 6=j

x − xk

xj − xk
dx.

For N = n0 · (d + 1) and n0 ≥ 2d + 1, let µ be the product measure µ = µ1 ⊗ µ2,
where µ1 places mass vj on each of the points θj = arccos (xj), and µ2 places
mass n−1

0 on each of n0 equally spaced points φk = δ + (2πk/n0) ∈ (−π, π]
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Table 1. Values of L (m;α, β) for the minimax design M and conventional
uniform design U1 from Example 4.1 (d = 2).

L (U1;α, β)
α L (M ;α, β) β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1.0
0 9.00 9.19 9.22 9.24 9.27 9.29 9.31

0.2 7.40 7.57 7.59 7.61 7.64 7.66 ∗
0.4 5.80 5.94 5.96 5.99 6.01 ∗ ∗
0.6 4.20 4.31 4.33 4.36 ∗ ∗ ∗
0.8 2.60 2.68 2.71 ∗ ∗ ∗ ∗
1.0 1.00 1.06 ∗ ∗ ∗ ∗ ∗

(k = 1, . . . , n0). Here δ is any value in (− (n0 + 1)π/n0,−π]; in our examples we
use δ = −π. Then (3.7) holds and the design µ on the set

{
ψj,k = (θj , φk)

}
is

minimax. Note that N > (d + 1)2; this is of course desirable from a robustness
standpoint.

We compare the minimax design (denoted by M) constructed as above with
three more conventional uniform designs. The first (denoted by U1) places mass
N−1 on each of the same support points as M. The second (denoted by U2)
is given by µ′ = µ′

1 ⊗ µ2, where µ′
1 places mass (d + 1)−1 on each of d + 1

equally spaced points θj = πj/(d + 1) (j = 1, . . . , d + 1). The third (denoted
by U3) is given by µ′′ = µ′′

1 ⊗ µ2, where µ′′
1 places mass (d + 1)−1 on each of

θj = arccos (1 − (2j/(d + 1))) (j = 1, . . . , d + 1). The design U3 was used by
Ding et al. (2000) for a principal component analysis of data from a spherical
harmonic regression analysis, and takes observations on several circles, equally
spaced on the z-axis. Note that all of M , U2 and U3 satisfy Bm= A and M = P;
these properties ensure that (4.2) holds for all three designs, i.e., all are minimax
with respect to their underlying measures µ, µ′, µ′′. However, of the three, only
the design M also satisfies (3.7). For the numerical comparisons three levels of
resolution - d = 2, 6, 13 - are considered.

Example 4.1. d = 2. In this case the support points of µ1, and corresponding
probabilities, are

θ: arccos
(√

3/5
)

, π/2, arccos
(
−

√
3/5

)
;

v: 5/18, 4/9, 5/18.

Example 4.2. d = 6. Here the support points of µ1, and corresponding proba-
bilities, are

θ: 0.320, 0.735, 1.153, 1.571, 1.989, 2.406, 2.821;
v: 0.065, 0.140, 0.191, 0.209, 0.191, 0.140, 0.065.
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Table 2. Values of L (m;α, β) for the minimax design M and conventional
uniform design U1 from Example 4.2 (d = 6).

L (U1;α, β)
α L (M ;α, β) β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1.0
0 49.00 50.42 51.38 52.34 53.30 54.26 55.22

0.2 39.40 40.59 41.55 42.51 43.47 44.43 ∗
0.4 29.80 30.75 31.71 32.68 33.64 ∗ ∗
0.6 20.20 20.92 21.88 22.84 ∗ ∗ ∗
0.8 10.60 11.09 12.05 ∗ ∗ ∗ ∗
1.0 1.00 1.26 ∗ ∗ ∗ ∗ ∗

Table 3. Values of L (m;α, β) for the minimax design M and conventional
uniform design U1 from Example 4.3 (d = 13).

L (U1;α, β)
α L (M ;α, β) β = 0 β = 0.2 β = 0.4 β = 0.6 β = 0.8 β = 1.0
0 196.00 200.22 206.30 212.38 218.46 224.54 230.62

0.2 157.00 160.50 166.58 172.66 178.74 184.82 ∗
0.4 118.00 120.78 126.86 132.94 139.02 ∗ ∗
0.6 79.00 81.06 87.14 93.22 ∗ ∗ ∗
0.8 40.00 41.34 47.42 ∗ ∗ ∗ ∗
1.0 1.00 1.62 ∗ ∗ ∗ ∗ ∗

Example 4.3. d = 13. The support points of µ1, and corresponding probabili-
ties, are

θ: 0.166, 0.381, 0.597, 0.813, 1.030, 1.246, 1.463,

1.679, 1.896, 2.112, 2.329, 2.545, 2.761, 2.976;
v: 0.018, 0.040, 0.061, 0.079, 0.093, 0.103, 0.108,

0.108, 0.103, 0.093, 0.079, 0.061, 0.040, 0.018.

Tables 1−3 contain the values of L (m; α, β) for M (or U2 or U3), U1, and a range
of values of α and β. We present only the results for j = 1 since the difference
L (U1; α, β) − L (M ; α, β) is the same for both values of j. We observe that,
with respect to the minimax criterion, the design U1 is rather efficient if the
dimension is small. For example, the loss of efficiency in the case d = 2 when
using U1 instead of M is usually less than 5%. As d increases, the difference
between M and U1 is more substantial. For example, in the cases d = 6 and
d = 13 the losses in efficiency are about 12% and 17%, respectively.

In view of the fact that each of M , U2 and U3 is a minimax design (with
respect to their underlying measures), one might choose between them on the
basis of their efficiency in the ideal model, with ηf = ηg = ηh = 0. The natural



ROBUST DESIGNS FOR 3D SHAPE ANALYSIS 101

Table 4. Values of the efficiencies of M relative to Uj when ηf = ηg = ηh = 0.

p
Uk d 0 1 2 ∞
U1 1.017 1.035 1.107 1.333
U2 2 1.216 1.400 2.493 3.238
U3 1.319 1.858 7.104 7.074

U1 1.072 1.127 1.364 1.463
U2 6 1.167 1.269 1.888 4.113
U3 1.440 16.33 8999.2 661.5

U1 1.108 1.177 1.495 1.507
U2 13 1.154 1.239 1.716 4.813
U3 1.596 31, 630 1.80 × 1011 5.94 × 106

measure is then Kiefer’s Φp criterion. In Table 4 we give the relative efficiencies

eff (k) =
Φp (Uk)
Φp (M)

= Φp (Uk)

for the uniform designs U1, U2, and U3, and a range of values of d and p. Clearly,
by this criterion the design M performs substantially better. However, the design
U1, which takes 1 observation at each of the same design points as M , yields
reasonable efficiencies and is substantially easier to implement.
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