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Abstract� In this paper we propose a method for wavelet��ltering of noisy signals

when prior information about the L��energy of the signal of interest is available�

Assuming the independence model� according to which the wavelet coe�cients are

treated individually� we propose a level dependent shrinkage rule that turns out to

be the ��minimax rule for a suitable class� say �� of realistic priors on the wavelet

coe�cients�

The proposed methodology is particularly well suited for denoising tasks where

signal�to�noise ratio is low� and it is illustrated on a battery of standard test func�

tions� Performance comparisons with some others methods existing in the literature

are provided� An example in atomic force microscopy �AFM� is also discussed�

Key words and phrases� Atomic force microscopy� bounded normal mean� ��mini�

maxity� shrinkage� wavelet regression�

�� Introduction

���� ��minimax theory

��minimax theory� originally proposed in Robbins ������� deals with the
problem of selecting decision rules� Philosophically� the ��minimax criterion is
situated in between the Bayes paradigm� which selects procedures that work well
	on average
� and the minimax paradigm� which guards against catastrophic
outcomes� however unlikely� It has evolved from seminal papers in the �fties
�Robbins ������ and Good ������� and early sixties� through an extensive re�
search on foundations and parametric families in the seventies� to a branch of
Bayesian robustness theory� in the eighties and nineties� In this latter setup a
comprehensive discussion of the ��minimax can be found in Berger ���
�� ��
���
A recent interest in the ��minimax theory has been pointed out� for example� in
the work of Vidakovic ������ and Noubiap and Seidel �������

The ��minimax paradigm involves incorporating the prior information about
the statistical model� not via a single prior distribution� but rather by a family of
plausible priors� say �� Such 	family of priors
 elicitations are often encountered
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in practice� Given this family of priors� the decision maker looks for selecting an
action that is optimal with respect to the least favorable prior in the family�

Inference of this kind is often interpreted in terms of a game� Suppose that
the decision maker is Player II� Player I� an intelligent opponent to Player II�
chooses the 	least favorable
 prior from the family �� Player II chooses an action
that will minimize his loss� irrespective of what prior Player I has selected� The
action of Player II is referred to as the ��minimax action�

The decision maker�s actions are functions of observed data� and such func�
tions are often called decision rules� In many models of interest� the exact ��
minimax rules are intractable or� at best� computationally involved�

Formally� let D be the set of all decision rules and � be a family of prior
distributions on the parameter space �� A rule �� is ��minimax if

inf
��D

sup
��


r��� �� � sup
��


r��� ����

where r��� �� � E�
h
E
Xj�
� L��� ��

i
� E�R��� �� is the Bayes risk under the loss

L��� ��� Note that when � is the set of all priors� the ��minimax rule coincides
with minimax rule� when � is a singleton� then the ��minimax rule coincides with
Bayes rule� The family � of plausible priors is usually given by parametric form
or under generalized moment conditions� When the decision problem� viewed as
a statistical game� has a value� then the ��minimax solution coincides with the
Bayes rule with respect to the least favorable prior �see Berger ���
�� Chap� ����

���� Wavelet shrinkage

In the present paper we consider a ��minimax approach to the classical
nonparametric regression problem

Yi � f�ti� � ��i� i � �� � � � � n� ���

where ti� i � �� � � � � n� is a deterministic equispaced design in ��� ��� the random
errors �i are i�i�d� standard normal random variables and the noise level ��

may� or may not� be known� The interest is to recover the function f using
the observations Yi� Additionally� we assume that the unknown signal f has
a bounded L��energy� hence it assumes values from a bounded interval� After
applying a linear and orthogonal wavelet transformation� model ��� becomes

cJ�k � �J�k � ��J�k� k � �� � � � � �J � ��
���

dj�k � �j�k � ��j�k� j � J� � � � � N � �� k � �� � � � � �j � ��

where dj�k �cJk�� �j�k and �j�k are the wavelet �scaling� coe�cients �at resolution
j and position k� of Y � f and �� respectively� J and N are the coarsest and
�nest level of the wavelet decomposition� Since the orthogonality of the wavelet
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transformation preserves the conditional independence of the wavelet coe�cients�
the stochastic structure of the noise and the bound on the energy� model ��� can
be written as

�dj�� � N ��� ���� ���

where� due to the independence of the coe�cients� we have omitted the double
indices j� k� The prior information on the energy bound implies that the unknown
wavelet coe�cient � would assume its values from a bounded parameter space�
say � � ��m�m��

Thresholding or shrinkage rules in the wavelet domain have been often pro�
posed in the literature to estimate the location parameter � in model ��� when
no additional information on the parameter space � is available� see for exam�
ple� Donoho and Johnstone �����b and ����� and related papers� Antoniadis
������� H�ardle� Kerkyacharian� Picard and Tsybakov ����
� �in the minimax
setup�� Abramovich� Sapatinas and Silverman ����
�� Abramovich and Sapati�
nas ������� Chipman� Kolaczyk and McCulloch ������� Clyde� Parmigiani and
Vidakovic ����
�� Clyde and George ������ ������ Figueiredo and Novak �������
Vidakovic ����
� and Vidakovic and Ruggeri ������ �in the Bayesian setup�� Re�
cently wavelet methods based on block�shrinkage strategy have showed excellent
performances� see Abramovich Besbeas and Sapatinas ������� Cai ������� Cai
and Silverman ������� Hall� Kerkyacharian and Picard ����
� ������ and Hall�
Penev� Kerkyacharian and Picard ������� For a comprehensive discussion of the
status of the art in wavelet methods for nonparametric regression problems we
refer to Antoniadis� Bigot and Sapatinas ������ where most of the methods are
described and numerically compared�

���� Bayesian model in the wavelet domain

Over the last decade Bayesian methods in the wavelet domain have received
considerable attentions� an extensive review can be found in the book by Vi�
dakovic ������� Informally speaking� a shrinkage rule in the wavelet domain re�
places the observed empirical wavelet coe�cients d with their shrunken versions
�� � ��d�� The form of the particular rule ���� characterizes the performance of
the estimate�

Bayesian models in the wavelet domain have showed to be capable of incorpo�
rating prior information about the unknown signal such as smoothness� periodic�
ity� sparseness� self�similarity and� for some particular basis �Haar�� monotonicity
�see for example Abramovich� Sapatinas and Silverman ����
�� Berliner� Wikle
and Milli� �������� This is usually achieved by eliciting a single prior distribution
� on the space of parameters �� and then choosing the estimator �� � ��d� that
minimizes the Bayes risk with respect to the given prior�

It is well known that most of the noiseless signals encountered in practical
applications have �for each resolution level� empirical distributions of wavelet
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coe�cients centered around zero and peaked at zero� A realistic Bayesian model

that takes into account this prior knowledge should consider a prior distribution�

say �� that produces a reasonable agreement with observations� A realistic prior

distribution on the wavelet coe�cient � is given by

���� � ���� � ��� �������� ���

where �� is a point mass at zero� � is a symmetric and unimodal distribution

on the parameter space � and �� is a �xed parameter in ��� ��� usually level de�

pendent� that regulates the amount of shrinkage for values of d close to �� Prior

models for wavelet coe�cients as ��� have been indicated in the early �����s by

Berger and M�uller �personal communication�� considered in Abramovich� Sapati�

nas and Silverman ����
�� Abramovich and Sapatinas ������� Vidakovic ����
�

and Vidakovic and Ruggeri ������� among others�

It is however clear that specifying a single prior distribution � on the pa�

rameter space � can never be done exactly� Indeed the prior knowledge of real

phenomena always contains some kind of approximation such that several types

of distributions can match the prior belief� meaning that on the basis of the par�

tial knowledge about the signal� it is possible to elicit only a family� say �� of

plausible priors� In a robust Bayesian point of view the choice of a particular

rule � should not be in�uenced by the choice of a particular prior� as long as it is

in agreement with our prior belief� Several approaches have been considered for

measuring the robustness of a speci�c rule� ��minimax being one compromise�

In this paper we would like to incorporate prior belief on the boundedness

of the energy of the signal �the L��norm of the regression function�� The prior

information on the energy bound often exists in real life problems and� as observed

in Section ���� it can be modelled by the assumption that the parameter space

� is bounded� Estimation of a bounded normal mean has been considered in

Bickel ���
��� Casella and Strawderman ���
��� Donoho� Liu and MacGibbon

������� Gatsonis� MacGibbon and Strawderman ���
��� Marchand and Perron

������� Miyasawa ������ �in the minimax setup� and in Vidakovic and DasGupta

������ �in the ��minimax setup�� It is however well known that estimating a

bounded normal mean represents a di�cult task� In our context� if the structure

of the prior ��� can be supported by the analysis of the empirical distribution

of the wavelet coe�cients� the precise elicitation of the distribution � cannot be

done without some kind of approximation� Of course� when prior knowledge on

the energy bound is available� then any symmetric and unimodal distribution

supported on the bounded set� say ��m�m�� can be a possible candidate for �����

Let � denote the family

� � f���� � ���� � ��� ���q���� q��� � �SU ��m�m
g� ���
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where �SU ��m�m
 is the class of all symmetric and unimodal distributions sup�
ported on ��m�m� and �� is point mass at zero� One way to handle the incomplete
speci�cation of the prior is through the following model���

��
dj� �N ��� ��
� � ���� � �
L��� �� � �� � ��� Squared Error Loss�

���

We stress that no generality is lost by assuming that �� � ��
The paper is organized as follows� Section � contains mathematical aspects

and results concerning the ��minimax rule and its application to model ���� An
exact risk analysis of the rule is discussed in Section �� Section � proposes a
sensible elicitation of hyper�parameters de�ning the model� Performance of the
shrinkage rule in the wavelet domain and application to a data set are given
in Section �� In Section � we summarize the results and provide discussion on
possible extensions� Proofs are deferred to the Appendix�

�� ��minimax Shrinkage

In this section we extend the result of Vidakovic and DasGupta ������ to
the class of priors de�ned in ���� We show that for m small the least favorable
distribution is the uniform on ��m�m� contaminated by a prior mass at zero� The
corresponding ��minimax rule is a shrinkage rule that is applied in the context
of wavelet regression�

Theorem ���� Under ���� where � is de�ned in ���� we have

inf
��D

sup
��


r��� �� � sup
��


inf
��D

r��� ���

The associated ��minimax rule is the Bayes rule with respect to the least favorable
prior

���� � ��� � ��� ���	���� � ��� ���
pX

k��

	kU ��mk�mk�� ���

where 	k � 	k���� � ��
Pp

k�� 	k � �� mk � mk���� s�t� � 
 m� 
 m� 
 � � � 

mp � m� The corresponding ��minimax rule is given by

���d� � d�

��� � ��� ���	��d��d� � ��� ���
pX

k��

	k
�mk

���d�mk�� ��d�mk��

��� � ��� ���	����d� � ��� ���
pX

k��

	k
�mk

���d�mk�� ��d�mk��

�

�
�
where � and � denote the density and the cumulative distribution function of the

standard normal random variable and U denotes the uniform distribution�
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Moreover� for any �� there exists m� � m����� such that� for any m � m��

the least favorable prior is of the form

���� � ���� � ��� ���U ��m�m� ���

and the ��minimax rule is given by

���d� � d�
��d��d��

�� ��
�m

���d�m�� ��d�m��

����d� �
�� ��
�m

���d�m�� ��d�m��
� ����

Remark ���� The value of m����� such that ��� holds is the largest value of
m for which the maximum of ���z�

R z
� R�v� ���dv is achieved at z � m� where

R��� ��� represents the frequentist risk of the rule ���

Table �� Values of m����� for which the least favorable distribution in �
is given by ���� and the corresponding values m����� of the support of the

second uniform distribution when m � m
� and � � ��

�� �� ���	 ��� ��
 ��� ��� ��	 ��
 ��� ��� ���

m
����� 
�	�
� 
��

 ��
�
 ����� ����
 ����
 ����
 ����
 ����
 ����� �����

m����� �� �� ��	�	 
���� ���

 ����	 ��	�� ����� ����� ���	� ��
��

For m exceeding m�� ��� is no longer the least favorable prior� the least fa�
vorable prior will contain other uniform distributions supported on ��mk�mk�
as in ���� Numerical work� analogous to that developed in Vidakovic and Das�
Gupta ������� can give an accurate approximation of the parameters 	k and mk

in ���� for any given �� and m� however the exact values of the parameters are
still unknown� Table � shows values of m����� for several choices of ��� and the
corresponding values of m����� at which the additional uniform component of the
prior is supported� The MATHEMATICA package was used in computing the
values in Table �� and in �nding� for each ��� the largest m for which  R de�ned
in ���� is maximized at z � m� Computations show that m� increases with ��
according to the analogous result obtained in DasGupta and Delampady �������
However� when �� is larger than about ���� the computed value of m����� tends to
be less accurate since the risk function  R becomes very �at in the neighborhood
of m� Comparing the results obtained here for the family � in ��� with related
results obtained in Vidakovic and DasGupta ������� where the case �� � � has
been considered� we see that for �� exceeding ��� no additional point mass at zero
is added with increasing m� i�e�� 	� in �
� is zero� However� for small values of ��
�for example �� � ������ 	� is not zero� Indeed Vidakovic and DasGupta ������
prove that� for the class of symmetric and unimodal distributions� the point mass
at zero appears in the least favorable distribution when m increases� but with
weight about �����
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When m is larger than m� then the number of uniform distributions in
the least favorable prior ��� increases� and the rule �
� can be only numerically
evaluated� However the computational cost of computing optimal parameters in
�
� for m large is high because of the multiplicity of parameters and because they
depend on ��� For this reason �
� is not well suited for unrestricted applications�

In Bickel ���
��� the problem of estimating a bounded mean of a normal dis�
tribution is considered within the minimax setup� It has been proved that whenm
increases� the weak limit of the least favorable priors �when taking the supremum
of the risk with respect to the class of all priors�� rescaled to the interval ���� ���
is g���� � cos���������j�j � ��� This fact implies that when m is large the least
favorable prior in �SU ��m�m
 is close to gm��� � ���m� cos������m���j�j � m��
Applying this result in our context� we have that the least favorable prior in �
is close to

���� � ���� � ��� ���
�

m
cos��

��

�m
���j�j � m�� ����

The corresponding Bayes rule does not have a simple analytical form� since it
involves the evaluation of the marginal distribution of d� and needs to be numer�
ically computed� In this case also the prohibitive computational cost of would
make the use of this rule not competitive in practical application� Figure �
shows rule ���� �solid line� and the Bayes rule corresponding to Bickel�s prior
���� �dashed line�� Both rules are evaluated for m � ��� �� � ��
 and �� � ��
We observe that� since the value m � �� exceeds m� in Table �� then ���� is no
longer the exact ��minimax rule� Nevertheless� the two rules depicted in Figure
� are very close� More discussion on this issue is deferred to Section ��

��� ��� �� ��

���

���

��

��

Figure �� Bayes shrinkage rule ���� �solid line� and the Bayes rule corre�
sponding to the prior ���� �dashed line�� evaluated for m � 
�� �� � ��� and
�
� � �� The �	� dotted line is superimposed as reference�
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���� ��minimax shrinkage in the wavelet domain

After a proper rescaling� ���� can be applied to model ��� as rationale for

the Bayesian wavelet shrinkage rule

��jk � djk � �
��
djk
�
�

�
djk
�

�
�

��� ����

�m

�
�

�
djk �m

�

�
� �

�
djk �m

�

��

���

�
djk
�

�
�

��� ����

�m

�
�

�
djk �m

�

�
� �

�
djk �m

�

�� ����

which is� from Theorem ���� the ��minimax rule under the assumption that m��

is !small� �Table � shows the bounds for what is meant by !small��� For practical

applications� we recommend using ���� for any value ofm� We stress that form��

exceeding the critical values in Table �� the rule ���� is not an exact ��minimax

rule� however it remains close to the ��minimax rule and is computationally in�

expensive� We observe that in order to apply ����� two hyper�parameters ��� and

m� can be conveniently chosen� The elicitation of such parameters is discussed

in Section ��

In order to complete model ���� we can place a di�use prior on a scaling coef�

�cient� i�e�� �Jk � N��� 
��� with 
� ��� When combining with the stochastic

model ���� the resulting estimate ��Jk � cJk leaves the scaling coe�cients un�

changed�

Throughout the paper we estimate� according to Donoho and Johnstone

�����b�� the noise level � by

�� �
median�fj �dN���kj " k � �� �� � � � � �N�� � �g�

������
� ����

where N � log� n represent the �nest level of wavelets detail� and we choose the

primary resolution level J as

J�n� � �oor�log��log�n��� � � ����

according to the asymptotic considerations given in Chapter �� of the book by

H�ardle et al� ����
��

�� Risk Analysis of the Rule

Exact risk analysis of any proposed rule has received considerable attention

since it allows for comparison of di�erent wavelet�shrinkage methods� When the

rule is given in a simple form� then the exact risk analysis can be carried out

explicitly� For instance� Donoho and Johnstone �����a� and Bruce and Gao

������ provide exact risk analyses for hard and soft thresholding under squared

error loss� Gao and Bruce ������ give the rationale for introducing the 	�rm
 or
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	semi�soft
 thresholding utilizing exact risk analysis� In our context the form of

shrinkage rule ���� is more complex and the exact risk analysis had to be done

numerically� The goal of our analysis is to explore robustness in risk� bias� and

variance when the prior hyper�parameters change�

Computations performed in the software package MATHEMATICA pro�

duced Figures � and �� We brie�y describe the numerical �ndings expressed

in the �gures� As depicted in Figure ��a�� for m � �� the shrinkage rules follow

a desirable shrinkage pattern� di�ering for small values of d� For large values of

��� rules heavily shrink small values of d� The rules generally remain close to d

for intermediate values of d� When jdj exceeds m� rules remain bounded by �m�

re�ecting the prior knowledge that the signal energy is bounded� The parameter

m controls the largest amplitude allowed in the wavelet coe�cient corresponding

to the signal and is directly proportional to the energy bound� We observe that�

given m� the amount of shrinkage essentially depends on the choice of ���

In Figure ��b� the risks of rules in Figure ��a� are presented� One can notice

an obvious trade�o� in the risk performance for small and large values of �� When

�� is large the risk remains close to �� for � small� the �attest risk curve in Figure

��b� corresponds to �� � ����

� � � � � � � � �

� �

� �

� �

�

�

�

� � � � � � � � �

���

�

���

�

�a� �b�

� � � � � � � � �

����

���

��	�

�

����

���

� � � � � � � � �

���

���

���

���

���

���

��	

�c� �d�

Figure 
� �a� ��minimax rules ���� form � � and �� ranging from ��� �upper

envelope function� to ��� �lower envelope function�� �b� Exact risks for rules

in �a�� �c� Bias� for rules in �a�� �d� Variances for rules in �a��
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The bias�squared� depicted in Figure ��c� is uniformly �in �� increasing when

�� increases� The lowest bias�squared curve correspond to �� � ����

The variance functions� like the risks� exhibit a trade�o� behavior for di�erent

values of ��� More precisely� large values of �� produce variance values close to

�� On the other hand the variances increase� for the same value of ��� when �

increases� This behavior is illustrated in Figure ��d��

Figure � describes the shape and the risk behavior of ��minimax rules for ��
�xed ��� � ��
� and m ranging from ��� to � with the step ���� The panel �a�

depicts forms of shrinkage rules� Note an overall heavy shrinkage for small values

of m� and a 	two�fold
 shrinkage for m large �the curve closest to d�� Inspection

of this �gure implies that the elicitation of m should be carefully considered since

it can substantially in�uence the performance of the estimator� The exact risk

behavior is similar for all rules at small values of �� but the risk rapidly increases

if m is small�

The bias�squared exhibits uniform monotonicity with respect to m� When

m is increasing� the squared biases decrease in ��

Finally� the variances depicted in Figure ��d� indicate that values of � close

to m produce the most variability� The shape of variance functions is similar�

the largest function corresponds to m � ��

� 	�� � � � ��� ��� � 	��

� �

� �

� �

� �

�

�

�

�

� � � � � �

�

�

�

�

�

�a� �b�

� � � � � �

�

�

�

�

� � � � � �

���

���

���

��


�

���

�c� �d�

Figure �� �a� ��minimax rules ���� for �� � ��� and m ranging from ��	 to

�� �b� Exact risks for rules in �a�� �c� Bias� for rules in �a�� �d� Variances for

rules in �a��
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�� Elicitation of Parameters

The shrinkage rule ���� depends on the choice of the hyper�parameters ��
and m that should be carefully elicited in order to achieve good performance�

Usually� the elicitation of hyper�parameters is one of the major issues in the

Bayesian analysis and is carried out by taking into account available prior infor�

mation� In our case such information concerns the smoothness� the sparseness�

periodicity� self�similarity� as well as the energy� of the unknown signal� In this

Section we propose a level dependent choice of hyper�parameters that is guided

by considerations on the exact risk properties and on the shape of the shrinkage

rule and that turns to be e�ective in our simulations�

It has been demonstrated that ��� the weight of the point mass at zero in the

class �� regulates the amount of shrinkage at zero� This weight should depend on

the prior information about the smoothness� It should be close to � at the �nest

level of detail and close to zero at coarse levels� However� the analysis of the

exact risk shows that the shrinkage rule ���� is robust with respect to the choice

of ��� at least for the values of �� between ��� and ����� For practical purpose

we propose an automatic choice of ��� one that is considered in Vidakovic and

Ruggeri ������� Level�dependent values of �� are de�ned as

���j� � ��
�

�j � J � ���
� J � j � N � �� ����

where J represents the coarsest level in the wavelet transformation and� in ab�

sence of additional information� the default value � � � is considered� Since for

smoother functions the wavelet coe�cients decay more rapidly� the hyperparam�

eter � should increase with an increase in smoothness�

The sensitivity analysis on the performance of the estimator respect to the

parameter � is discussed in Section ��

The elicitation of the hyper�parameter m requires more detailed discussion

since it has been noticed that the choice of m can substantially in�uence perfor�

mance of the estimator� In fact the ��minimax rule �� in Theorem ��� is sensitive

to m and considerably more so than with respect to �� �since the number of uni�

forms in the least favorable priors depends on m� while �� in�uences the values

of the parameters 	k and mk�� First� we already mention in Section ��� that the

shrinkage rule is given by ���� is the ��minimax rule under the assumption that

m�� 
 m������ However� for practical application� we can use ���� for any m���

Second� the elicitation of m �also if we limit attention to the shrinkage rule

����� bears more in�uence in the performance of the estimator� This can be seen

by inspecting the exact risk as a function of m�

In this paper we propose a level�dependent choice of m that depends only on

noisy data� In fact� we estimate the size of the support of the wavelet coe�cient
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at each level by

m�j� � max
k

�jdj�kj�� ����

We stress that such a choice of m gives raise to a scale invariant empirical

Bayesian shrinkage rule� which is particular interesting to work with in practical

applications as observed in Figueidero and Nowak ������� When the prior in�

formation about the distribution of energy content among the scales is available�

then this information can be incorporated by magnitudes of the ratios m�j����

A small m�j��� would re�ect the prior belief that the level j contributes little to

the energy of the signal� while larger values would convey the information that

the level is signi�cant� in the sense that energetic feartures of the signal 	live
 in

that particular scale�

�� Applications

In order to investigate the �nite sample size performance of the ��minimax

estimator ���� we carried out an extensive simulation study� We compared the

proposed estimator with various estimators existing in the literature� In partic�

ular we consider the term�by�term Bayesian estimator Bams of Vidakovic and

Ruggeri ������� the classical term�by�term estimators VisuShrink of Donoho and

Johnstone �����b� and Hybrid�SureShrink of Donoho and Johnstone ������� the

scale invariant term�by�term Bayesian ABE method of Figueiredo and Nowak

������� the 	leave�out�half
 version of the Cross�Validation method of Nason

������� the term�by�term False Discovery Rate method of Abramovich and Ben�

jamini ������� and �nally NeighCoe� of Cai and Silverman ������ and BlockJS of

Cai ������ which represent classical estimators that� for achieving a better per�

formance� incorporate the blocking procedure� Note that� for excellent numerical

performance� we consider the VisuShrink and the 	leave�out�half
 version of the

CrossValidation methods with the hard threshold and the BlockJS with the op�

tion �Agument� �see Antoniadis� Bigot and Sapatinas ��������

We considered several standard test functions �Wave� Blocks� HeaviSine�

Doppler� Corner� Blip� Angles� Parabolas and Time�Shifted Sine� which represent

typical examples of signals encountered in practical applications� For each test

function� M � ��� samples were generated by adding independent random noise

� � N��� ��� to n � ��� �small sample size�� ��� �moderate sample size� and

���� �large sample size� equally spaced points on ������ The value of the noise

level � was taken to correspond to the values � �high noise level�� � �moderate

noise level� and � �low noise level� for the root signal�to�noise ratio �RSNR�

RSNR�f� �� �

q
�
n

Pn
i���f�ti��  f��

�
� where  f�

�

n

nX
i��

f�ti��
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The goodness�of��t for an estimator �f of f was measured by its average mean
squared error �AMSE� from the M simulations� de�ned as

AMSE�f� �
�

nM

MX
m��

nX
i��

� �fm�ti�� f�ti��
��

Symmlet 
�tap �lter was used for all signals� except for Blocks where the Haar
�lter was considered� The hyper�parameters of the ��minimax rule are chosen
according to the criteria discussed in Section �� To fairly compare the estimators�
the AMSE were computed on the same set of simulated data� All computations
were carried out using MATLAB� with WaveLab toolbox �see Buckheit� Chen�
Donoho� Johnstone and Scargle ������� and GaussWaveDen toolbox �see Anto�
niadis� Bigot and Sapatinas ��������

The aim of the �rst simulation was to examine the in�uence of the param�
eter � on the �nite sample performance of the proposed method� For each test
function� sample size� and RSNR we have computed the AMSE �averaged over
M � ��� samples� for a wide range of �� The analysis shows that for moderate
or high RSNR� the performance of the ��minimax estimator in terms of AMSE
is quite robust with respect to the choice of �� Larger values of � would provide
an almost noise�free reconstruction� but at the price of oversmoothing the sin�
gularities� When RSNR decreases� AMSE is signi�cantly in�uenced by �� and
relatively large values of � perform better in most cases� The value of � � �
has been selected as a default value when no information on the true signal is
available� A relatively larger value of the parameter � is to be preferred for reg�
ular functions or when the sample size increases� The importance of increasing �
when the signal�to�noise ratio is small is clearly seen in the application described
in Section ����

In the second simulation the AMSE� computed using the default value � � ��
has been compared with the AMSE computed for the various classical and empir�
ical Bayes term�by�term or block wavelet schemes used in this simulation study�
The results across the various combinations of test functions� sample sizes and
RSNR show that the ��minimax method often outperforms well known methods
such as VisuShrink� Hybrid�SureShrink� Cross�Validation� ABE and FDR and
BlockJS methods� and performs as well as �sometimes even better� BAMS and
NeighCoe� methods� The ��minimax method shows improved performance com�
pared to the BAMS whenever the RSNR is low� For high RSNR the advantage
is not signi�cant� although the ��minimax would protect against least favorable
signals� Figures �� � and � show the boxplots of the AMSE computed for the
nine test functions based on n � �� ��� design points� We also observe that the
choice of the default parameter results is e�ective when no additional informa�
tion is available on the unknown regression function� We also reiterate that an
improvement in the performance of the estimator when applied to low RSNR can
be also achieved by increasing ��
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Figure �� Boxplots of the AMSE for the nine methods considered� ��� ��

minimax rule with � � 
� �
� BAMS ��� VisuShrink with hard thresholding�
��� Hybrid�SureShrink� �	� ABE �
� �Leave�out�half� version of CrossVal�

idation with hard thresholding� ��� FDR� ��� NeighCoe� and ��� BlockJS�
The AMSE was computed on n � �� �
� design points and RSNR���

Figure 	� The same as in Figure �� but with RSNR�	�
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Figure 
� The same as in Figures � and 	� but with RSNR���

Figure �� Estimates obtained using the ��minimax shrinkage with the default
value � � 
 for noisy samples of the nine test functions with RSNR�	 and
n � ��
��
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As an example of reconstruction� we show in Figure � the nine estimates
obtained using the ��minimax method from n � �� ��� equispaced values with
RSNR��� The estimates usually show a good compromise in the smoothness of
the function and the capability in preserving the singularities� smoother estimates
can be obtained by increasing ��

���� An example in atomic force microscopy

To illustrate features of the ��minimax shrinkage approach proposed here we
used measurements in atomic force microscopy �AFM��

The AFM is a type of scanned proximity probe microscopy �SPM� that can
measure the adhesion strength between two materials at the nanonewton scale
�Binnig� Quate and Gerber ���
���� In AFM� a cantilever beam is adjusted until
it bonds with the surface of a sample� and then the force required to separate the
beam and sample is measured from the beam de�ection� Beam vibration can be
caused by factors such as thermal energy of the surrounding air or the footsteps
of someone outside the laboratory� The vibration of a beam acts as noise on the
de�ection signal� in order for the data to be useful this noise must be removed�

The AFM data from the adhesion measurements between carbohydrate and
the cell adhesion molecule �CAM� E�Selectin was collected by Bryan Marshal
from the BME Department at Georgia Institute of Technology� The technical
description is provided in Marshall� McEver and Zhu �������

In Figure 
 the top panel shows the original noisy data� The middle panel
shows the ��minimax estimate with the default parameter � � �� while the
bottom panel shows ��minimax estimate with the parameter � � 
� The sample
size was n � ��� and Symmlet 
�tap �lter was used to obtain the estimate� We
observe that the latter estimate exhibits a smooth behavior� especially in the
long�middle part without oversmoothing the bumps which are local features of
interest�

�� Conclusions

In this paper we developed a method for wavelet��ltering of noisy signals
when prior information about the L��energy of the signal is available� Assuming
a ��minimax model� according to which the wavelet coe�cients are treated indi�
vidually� we propose a level dependent shrinkage rule� The proposed methodology
was found well suited to denoise signals at any signal�to�noise ratio� however its
advantage is of particular interest when the RSNR is low� which corresponds
to the most problematic case� Dealing with ��contaminated priors� a di�erent
approach has been recently considered in Angelini and Sapatinas ������� where
a wavelet thresholding rule based on the selection of the type II maximum like�
lihood prior is introduced� The resulting ML�IIThresh rule depends on only one
hyper�parameter� but requires �for each wavelet coe�cient� an iterative proce�
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� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �
�����

�

����

���

����

Atomic Force Microscopy Signal

�a�

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �
�����

�

����

���

����

�b�

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �
�����

�

����

���

����

�c�

��minimax rule �� � 	�
�

��minimax rule �� � ��
�

Figure �� Top� Original AFM measurements� Middle� ��minimax estimator

with the default parameter � � 
� Bottom� ��minimax estimator with the

parameter � � ��

dure to estimate the ML�II prior� Possible extensions of the method would use

the restricted �linear� polynomial� etc�� ��minimax rules instead of the unre�

stricted� Such rules would provide additional simplicity with a minor expense

in risk e�ciency� Other extensions can be obtained by extending the proposed

term�by�term shrinkage scheme to blocks of wavelet coe�cients�

We already mentioned that the Bayes rule with respect to the Bickel prior is
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not ��minimax� However� good approximations to ��minimax rules are possible�

Theorem ��� of Bickel ���
�� demonstrates how to construct an approximate min�

imax rule staring from g����� Bickel�s construction easily adapts to our context

and we hope to explore it elsewhere�

Appendix

Proof of Theorem ���� It is well known �Khintchine ����
�� Dharmadhikari

and Joag�dev ���

�� that any symmetric and unimodal random variable � in

��m�m� �with distribution Q���� and density q���� admits the representation

� � UZ where U � U ��m�m� and Z is a non negative random variable sup�

ported on ���m�� Moreover� U and Z are independent� Indeed there is a 	unique


correspondence between Q and the distribution function of Z� say F � up to a set

of measure zero� The statistical game has a value� since

r�q� �� �

Z m

�

Z �

��

�

�
R�uz� ��dudF �z�

�

Z m

�

�

�z

Z z

�z
R�v� ��dvdF �z�

�

Z m

�

�

z

Z z

�
R�v� ��dvdF �z�

def�
� r��F� ���

inf
��D

sup
��


r��� �� � inf
��D

sup
q�
SU��m�m�

r����� � ��� ���q� ��

� inf
��D

sup
q�
SU��m�m�

f��R��� �� � ��� ���r�q� ��g

� inf
��D

sup
F

f��R��� �� � ��� ���r
��F� ��g

� sup
F

inf
��D

f��R��� �� � ��� ���r
��F� ��g

� sup
��


inf
��D

r��� ���

We have used the fact that� for any �xed value of m� the term of the risk coming

from the point mass at zero� i�e�� r���� �� � R��� �� �
R�
�����d��� d��d�� does not

depend on Q �hence on F �� and that F is an arbitrary distribution in ���m��

Then� for any z � ���m� we can de�ne a new risk function

 R�z� �� � ��R��� �� � ��� ���
�

z

Z z

�
R�v� ��dv ����

�and by continuity  R��� �� � R��� ���� and prove that it satis�es the �ve condi�

tions on the risk given in Theorem ��� of Kempthorne ���
��� Indeed�
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�i� For any given distribution F on ���m� the Bayes rule with respect toRm
�

 R�z� ��dF �z� is unique� almost everywhere� due to the completeness of

the normal model�

�ii� If Fn is any sequence of distributions which converges weakly to a distri�

bution F� then the risk function ���� of the corresponding Bayes procedure

converges uniformly on compacts to the risk function of the Bayes procedure

corresponding to F "

j  R�z� �Fn��  R�z� �F �j

� ��jR��� �Fn��R��� �F �j� ��� ���
�

z

Z z

�
jR�v� �Fn��R�v� �F �jdv�

Using the chain of implications

Fn
weak
�� F 	 �n

weak
�� � 	 �Fn���

Uin���
�� �F ���	 R��� �Fn�

U�in�
�� R��� �F ��

where
Uin���
�� denotes uniform convergence� we get the result�

�iii�The parameter space is a compact and separable metric space since the sup�

port of F is ���m��

�iv���v� The risk function ���� is� for any decision rule� upper semi�continuous

and analytic in the parameter space since it is true for the class of symmetric

and unimodal distributions �the second term in ������ the �rst term in ����

is a continuous� analytic function�

It follows that the least favorable distribution with respect to the risk  R�z� ��

is discrete �i�e�� it is a linear combination of point masses at knots mi � ��� ��

with probability 	i� F ��z� � 	���z � �� �
Pp

k�� 	k��z � mk�� Hence� the

corresponding q� � �SU ��m�m
 is q
��d� � 	��� �

Pp
k�� 	kU ��mk�mk�� and the

least favorable prior in � is the linear combination of uniforms and point mass

at zero given in ����

Finally� given the prior ���� it is easy to check that �
� is the Bayes rule�

Indeed� since dj� � N��� ��� the Bayes rule will have the form ���d� � d �

�f ���d��f��d��� where f���� denotes the marginal distribution of d when the prior

on � is given by ���� By standard calculation we have

f���� �

Z
�
��d� ������ d� � c���d� �

pX
k��

ck

Z mk

�mk

�

�mk

��d� �� d�

� c���d� �
pX

k��

ck
�mk

���d�mk�� ��d�mk�� �

where c� � �� � �� � ���	� and ck � �� � ���	k� k � �� � � � � p� After taking the

derivative of f� with respect to d� we obtain �
��
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To conclude� the case of small m �i�e�� m � m������ has been considered in
DasGupta and Delampady ������ in a more general setup� Limiting the attention
to model ��� we have that a distribution � � � is least favorable if

sup
���


r���� ��� � r��� ��� � r��� � inf
��D

r��� ���

where �� is any prior in �� � is any rule in D� and � and �� are de�ned in ��� and
����� respectively� For a �xed ��� supq�
SU��m�m�

r�q� ����r�U ��m�m�� ���� 
m �
m�� where m� is de�ned in Remark ����

In fact� using the standard representation of a symmetric and unimodal
random variable� we have

sup
q�
SU��m�m�

r�q� �� � sup
q�
SU��m�m�

EqR��� ��

� sup
F

Z �

��

Z m

�
R�uz� ��dudF �z�

� sup
��z�m

�

z

Z z

�
R�v� ��dv � r�U ��m�m�� ���

Finally� we have

sup
���


r���� ��� � sup
q�
SU��m�m�

f��R��� ��� � ��� ���r�q� ���g

� ��R��� ��� � ��� ��� sup
q�
SU��m�m�

r�q� ���

� ��R��� ��� � ��� ���r�U ��m�m�� ���

� r����� � ��� ����U ��m�m�� � r��� ����

where �� is de�ned in ���� and � in ����

Remark 	��� We observe that the term R��� ��� in ���� is a constant with
respect to z� Hence  R�z� ��� reaches its maximum value at z � m if and only if
���z�

R z
� R�v� ���dv reaches its maximum at z � m� Since �� depends on ��� the

value of m� depends on ��� as well� Moreover� the parameters 	k and mk� in the
least favorable distribution ���� depend on ���
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