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Abstract: In this paper we propose a method for wavelet-filtering of noisy signals
when prior information about the L?-energy of the signal of interest is available.
Assuming the independence model, according to which the wavelet coefficients are
treated individually, we propose a level dependent shrinkage rule that turns out to
be the I'-minimax rule for a suitable class, say I, of realistic priors on the wavelet
coefficients.

The proposed methodology is particularly well suited for denoising tasks where
signal-to-noise ratio is low, and it is illustrated on a battery of standard test func-
tions. Performance comparisons with some others methods existing in the literature
are provided. An example in atomic force microscopy (AFM) is also discussed.
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maxity, shrinkage, wavelet regression.

1. Introduction
1.1. I'-minimax theory

[-minimax theory, originally proposed in Robbins (1951), deals with the
problem of selecting decision rules. Philosophically, the I'-minimax criterion is
situated in between the Bayes paradigm, which selects procedures that work well
“on average”, and the minimax paradigm, which guards against catastrophic
outcomes, however unlikely. It has evolved from seminal papers in the fifties
(Robbins (1951) and Good (1952)) and early sixties, through an extensive re-
search on foundations and parametric families in the seventies, to a branch of
Bayesian robustness theory, in the eighties and nineties. In this latter setup a
comprehensive discussion of the I'-minimax can be found in Berger (1984, 1985).
A recent interest in the ['-minimax theory has been pointed out, for example, in
the work of Vidakovic (2000) and Noubiap and Seidel (2001).

The I'-minimax paradigm involves incorporating the prior information about
the statistical model, not via a single prior distribution, but rather by a family of
plausible priors, say ['. Such “family of priors” elicitations are often encountered
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in practice. Given this family of priors, the decision maker looks for selecting an
action that is optimal with respect to the least favorable prior in the family.

Inference of this kind is often interpreted in terms of a game. Suppose that
the decision maker is Player II. Player I, an intelligent opponent to Player II,
chooses the “least favorable” prior from the family I'. Player II chooses an action
that will minimize his loss, irrespective of what prior Player I has selected. The
action of Player II is referred to as the I'-minimax action.

The decision maker’s actions are functions of observed data, and such func-
tions are often called decision rules. In many models of interest, the exact I'-
minimax rules are intractable or, at best, computationally involved.

Formally, let D be the set of all decision rules and I' be a family of prior
distributions on the parameter space ©. A rule §* is ['-minimax if

inf supr(m, o) = supr(m,o*
Jnf sup (7, ) Sup (m,6%),

where r(r,0) = E° [que[,(O, 5)] = EYR(0,6) is the Bayes risk under the loss
L(0,6). Note that when I' is the set of all priors, the I'-minimax rule coincides
with minimax rule; when I' is a singleton, then the I"-minimax rule coincides with
Bayes rule. The family I' of plausible priors is usually given by parametric form
or under generalized moment conditions. When the decision problem, viewed as
a statistical game, has a value, then the I'-minimax solution coincides with the
Bayes rule with respect to the least favorable prior (see Berger (1985, Chap. 4)).

1.2. Wavelet shrinkage

In the present paper we consider a I'-minimax approach to the classical
nonparametric regression problem

}/;:f(tz)—i_o-slu 22177n7 (1)

where ¢;, i = 1,...,n, is a deterministic equispaced design in [0, 1], the random
errors ¢; are i.i.d. standard normal random variables and the noise level o2
may, or may not, be known. The interest is to recover the function f using
the observations Y;. Additionally, we assume that the unknown signal f has
a bounded L?-energy, hence it assumes values from a bounded interval. After
applying a linear and orthogonal wavelet transformation, model () becomes

cir =0y +oesp, k=0,...,27 -1,

. 2
djr=0;r+o¢€j, j=J...,N—1, k=0,...,20 —1, 2)

where d; i, (cji), 0 and €; are the wavelet (scaling) coefficients (at resolution
J and position k) of Y, f and ¢, respectively; J and N are the coarsest and
finest level of the wavelet decomposition. Since the orthogonality of the wavelet
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transformation preserves the conditional independence of the wavelet coefficients,
the stochastic structure of the noise and the bound on the energy, model (2Z) can
be written as

[d]6] ~ N (8,0°), (3)

where, due to the independence of the coefficients, we have omitted the double
indices 7, k. The prior information on the energy bound implies that the unknown
wavelet coefficient 8 would assume its values from a bounded parameter space,
say © = [-m,m].

Thresholding or shrinkage rules in the wavelet domain have been often pro-
posed in the literature to estimate the location parameter 6 in model ([B) when
no additional information on the parameter space © is available; see for exam-
ple, Donoho and Johnstone (1994b and 1995) and related papers, Antoniadis
(1997), Hardle, Kerkyacharian, Picard and Tsybakov (1998) (in the minimax
setup), Abramovich, Sapatinas and Silverman (1998), Abramovich and Sapati-
nas (1999), Chipman, Kolaczyk and McCulloch (1997), Clyde, Parmigiani and
Vidakovic (1998), Clyde and George (1999, 2000), Figueiredo and Novak (2001),
Vidakovic (1998) and Vidakovic and Ruggeri (2001) (in the Bayesian setup). Re-
cently wavelet methods based on block-shrinkage strategy have showed excellent
performances, see Abramovich Besbeas and Sapatinas (2002), Cai (1999), Cai
and Silverman (2001), Hall, Kerkyacharian and Picard (1998, 1999), and Hall,
Penev, Kerkyacharian and Picard (1997). For a comprehensive discussion of the
status of the art in wavelet methods for nonparametric regression problems we
refer to Antoniadis, Bigot and Sapatinas (2001) where most of the methods are
described and numerically compared.

1.3. Bayesian model in the wavelet domain

Over the last decade Bayesian methods in the wavelet domain have received
considerable attentions, an extensive review can be found in the book by Vi-
dakovic (1999). Informally speaking, a shrinkage rule in the wavelet domain re-
places the observed empirical wavelet coefficients d with their shrunken versions
0 = 6(d). The form of the particular rule §(-) characterizes the performance of
the estimate.

Bayesian models in the wavelet domain have showed to be capable of incorpo-
rating prior information about the unknown signal such as smoothness, periodic-
ity, sparseness, self-similarity and, for some particular basis (Haar), monotonicity
(see for example Abramovich, Sapatinas and Silverman (1998), Berliner, Wikle
and Milliff (1999)). This is usually achieved by eliciting a single prior distribution
7 on the space of parameters ©, and then choosing the estimator 6 = § (d) that
minimizes the Bayes risk with respect to the given prior.

It is well known that most of the noiseless signals encountered in practical
applications have (for each resolution level) empirical distributions of wavelet
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coefficients centered around zero and peaked at zero. A realistic Bayesian model
that takes into account this prior knowledge should consider a prior distribution,
say m, that produces a reasonable agreement with observations. A realistic prior
distribution on the wavelet coeflicient 6 is given by

m(0) = eodo + (1 — €0)&(0), (4)

where Jg is a point mass at zero, ¢ is a symmetric and unimodal distribution
on the parameter space © and ¢ is a fixed parameter in [0, 1], usually level de-
pendent, that regulates the amount of shrinkage for values of d close to 0. Prior
models for wavelet coefficients as (@) have been indicated in the early 1990’s by
Berger and Miiller (personal communication), considered in Abramovich, Sapati-
nas and Silverman (1998), Abramovich and Sapatinas (1999), Vidakovic (1998)
and Vidakovic and Ruggeri (2001), among others.

It is however clear that specifying a single prior distribution 7 on the pa-
rameter space © can never be done exactly. Indeed the prior knowledge of real
phenomena always contains some kind of approximation such that several types
of distributions can match the prior belief, meaning that on the basis of the par-
tial knowledge about the signal, it is possible to elicit only a family, say I', of
plausible priors. In a robust Bayesian point of view the choice of a particular
rule § should not be influenced by the choice of a particular prior, as long as it is
in agreement with our prior belief. Several approaches have been considered for
measuring the robustness of a specific rule, ['-minimax being one compromise.

In this paper we would like to incorporate prior belief on the boundedness
of the energy of the signal (the Ls-norm of the regression function). The prior
information on the energy bound often exists in real life problems and, as observed
in Section 1.2, it can be modelled by the assumption that the parameter space
O is bounded. Estimation of a bounded normal mean has been considered in
Bickel (1981), Casella and Strawderman (1981), Donoho, Liu and MacGibbon
(1990), Gatsonis, MacGibbon and Strawderman (1987), Marchand and Perron
(2001), Miyasawa (1953) (in the minimax setup) and in Vidakovic and DasGupta
(1996) (in the I'-minimax setup). It is however well known that estimating a
bounded normal mean represents a difficult task. In our context, if the structure
of the prior (#) can be supported by the analysis of the empirical distribution
of the wavelet coeflicients, the precise elicitation of the distribution £ cannot be
done without some kind of approximation. Of course, when prior knowledge on
the energy bound is available, then any symmetric and unimodal distribution
supported on the bounded set, say [—m, m], can be a possible candidate for £(8).

Let I' denote the family

I'= {71-(0) = €gdp + (1 - 50)‘](0)7(1(0) € FSU[—m,m}}v (5)
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where gy m) 1s the class of all symmetric and unimodal distributions sup-
ported on [—m, m] and Jj is point mass at zero. One way to handle the incomplete
specification of the prior is through the following model

de ~N(,1)
0 ~m(f) el (6)
L(0,6) = (0 — §)? Squared Error Loss.

We stress that no generality is lost by assuming that o2 = 1.

The paper is organized as follows. Section 2 contains mathematical aspects
and results concerning the I'-minimax rule and its application to model (2]). An
exact risk analysis of the rule is discussed in Section 3. Section 4 proposes a
sensible elicitation of hyper-parameters defining the model. Performance of the
shrinkage rule in the wavelet domain and application to a data set are given
in Section 5. In Section 6 we summarize the results and provide discussion on
possible extensions. Proofs are deferred to the Appendix.

2. I'minimax Shrinkage

In this section we extend the result of Vidakovic and DasGupta (1996) to
the class of priors defined in (Bl). We show that for m small the least favorable
distribution is the uniform on [—m, m| contaminated by a prior mass at zero. The
corresponding I'-minimax rule is a shrinkage rule that is applied in the context
of wavelet regression.

Theorem 2.1. Under (6), where I' is defined in (B), we have

inf supr(m,d) = sup inf r(m, ).
€D zer (m9) wel 0€D (m9)
The associated I'-minimax rule is the Bayes rule with respect to the least favorable
prior
P
71'(9) = (60 + (1 - 60)0(0)(50 + (1 - 60) Z akU[—mk,mk], (7)
k=1
where a = ag(eg) >0, YL _jar =1, my = mi(e) s.t. 0 <my <m2<...<
my, = m. The corresponding I'-minimaz rule is given by

p
(0 + (1 = eo)aw)dp(d) — (1~ c0) Y- 5= Ok (p(d + my) — $(d — mi))

Sr(d) = d— 12

?

k
(€0 + (1 — e0)ao)p(d) + (1 — € Z ®(d + my) — ®(d — mi))
. ®)

where ¢ and ® denote the density and the cumulative distribution function of the
standard normal random variable and U denotes the uniform distribution.
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Moreover, for any €y there exists m* = m*(eg) such that, for any m < m*,
the least favorable prior is of the form

7(0) = €0dp + (1 — €o)U[—m, m] 9)

and the I'-minimax rule is given by

codp(d) — 0 ($(d+m) ~ §(d —m)
Or(d) =d — T (10)
cop(d) + —— (B(d +m) — B(d — m))

2m

Remark 2.1. The value of m*(ey) such that (@) holds is the largest value of
m for which the maximum of (1/z) [; R(v,dr)dv is achieved at z = m, where
R(-,05) represents the frequentist risk of the rule J;.

Table 1. Values of m*(eg) for which the least favorable distribution in T’

is given by (9), and the corresponding values m;(eg) of the support of the

second uniform distribution when m = m* and o = 1.

€0 0. 0050102 |03] 04| 05|06 |07 ]| 08] 09
m*(eo) || 2.5323 |2.862 | 3.606 | 4.171 | 4.346 | 4.416 | 4.442 | 4.446 | 4.446 | 4.447 | 4.448
m1 (€o) 0. 0. |1.595(2.784|3.166|3.395|3.573|3.733 | 3.888 | 4.053 | 4.284

For m exceeding m*, (9) is no longer the least favorable prior; the least fa-
vorable prior will contain other uniform distributions supported on [—my, mg]
as in (7). Numerical work, analogous to that developed in Vidakovic and Das-
Gupta (1996), can give an accurate approximation of the parameters oy and my
in (7)), for any given €y and m, however the exact values of the parameters are
still unknown. Table 1 shows values of m*(ey) for several choices of €y, and the
corresponding values of mq (eg) at which the additional uniform component of the
prior is supported. The MATHEMATICA package was used in computing the
values in Table 1, and in finding, for each €y, the largest m for which R defined
in (17) is maximized at z = m. Computations show that m* increases with ¢
according to the analogous result obtained in DasGupta and Delampady (1994).
However, when ¢ is larger than about 0.7, the computed value of m*(eg) tends to
be less accurate since the risk function R becomes very flat in the neighborhood
of m. Comparing the results obtained here for the family I' in (H) with related
results obtained in Vidakovic and DasGupta (1996), where the case ¢y = 0 has
been considered, we see that for ¢y exceeding 0.1 no additional point mass at zero
is added with increasing m, i.e., o in (B) is zero. However, for small values of ¢
(for example ¢y = 0.05), g is not zero. Indeed Vidakovic and DasGupta (1996)
prove that, for the class of symmetric and unimodal distributions, the point mass
at zero appears in the least favorable distribution when m increases, but with
weight about 0.07.
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When m is larger than m* then the number of uniform distributions in
the least favorable prior (7)) increases, and the rule () can be only numerically
evaluated. However the computational cost of computing optimal parameters in
(®) for m large is high because of the multiplicity of parameters and because they
depend on €. For this reason (B) is not well suited for unrestricted applications.

In Bickel (1981), the problem of estimating a bounded mean of a normal dis-
tribution is considered within the minimax setup. It has been proved that when m
increases, the weak limit of the least favorable priors (when taking the supremum
of the risk with respect to the class of all priors), rescaled to the interval [—1, 1],
is g1(0) = cos?(w0/2)1(|0] < 1). This fact implies that when m is large the least
favorable prior in I'gy[_m,m) is close to gm(0) = (1/m) cos?(x0/2m)1(]0] < m).
Applying this result in our context, we have that the least favorable prior in '
is close to

7(0) = epdp + (1 — 60)%c082(%)1(|0| < m). (11)

The corresponding Bayes rule does not have a simple analytical form, since it
involves the evaluation of the marginal distribution of d, and needs to be numer-
ically computed. In this case also the prohibitive computational cost of would
make the use of this rule not competitive in practical application. Figure 1
shows rule (I0) (solid line) and the Bayes rule corresponding to Bickel’s prior
() (dashed line). Both rules are evaluated for m = 20, ¢, = 0.8 and 02 = 1.
We observe that, since the value m = 20 exceeds m™* in Table 1, then (I0) is no
longer the exact I'-minimax rule. Nevertheless, the two rules depicted in Figure
1 are very close. More discussion on this issue is deferred to Section 6.

20 P
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Figure 1. Bayes shrinkage rule ({I0) (solid line) and the Bayes rule corre-
sponding to the prior (1) (dashed line), evaluated for m = 20, ¢, = 0.8 and
0% = 1. The 45° dotted line is superimposed as reference.
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2.1. I'-minimax shrinkage in the wavelet domain

After a proper rescaling, (I0) can be applied to model (2) as rationale for
the Bayesian wavelet shrinkage rule

o (t2) e |yt ). (ta )
() T o () o (2.7

2m
which is, from Theorem 2.1, the I'-minimax rule under the assumption that m/o
is ‘small’ (Table 1 shows the bounds for what is meant by ‘small’). For practical
applications, we recommend using (I2) for any value of m. We stress that for m /o
exceeding the critical values in Table 1, the rule ([2) is not an exact [-minimax
rule, however it remains close to the I'-minimax rule and is computationally in-
expensive. We observe that in order to apply (I2)), two hyper-parameters (ey and
m) can be conveniently chosen. The elicitation of such parameters is discussed

01 = dj, — o (12)

in Section 4.

In order to complete model (2)), we can place a diffuse prior on a scaling coef-
ficient, i.e., 07, ~ N(0,72), with 72 — co. When combining with the stochastic
model (2)), the resulting estimate 0 7k = cji leaves the scaling coefficients un-
changed.

Throughout the paper we estimate, according to Donoho and Johnstone
(1994b), the noise level o by

median({|dy_1 x| : k= 0,1,...,2V"1 —1})
0.6745 ’

6= (13)
where N = logy n represent the finest level of wavelets detail, and we choose the
primary resolution level J as

J(n) = floor(logs(log(n))) + 1 (14)

according to the asymptotic considerations given in Chapter 10 of the book by
Hérdle et al. (1998).

3. Risk Analysis of the Rule

Exact risk analysis of any proposed rule has received considerable attention
since it allows for comparison of different wavelet-shrinkage methods. When the
rule is given in a simple form, then the exact risk analysis can be carried out
explicitly. For instance, Donoho and Johnstone (1994a) and Bruce and Gao
(1996) provide exact risk analyses for hard and soft thresholding under squared
error loss. Gao and Bruce (1997) give the rationale for introducing the “firm” or



I-MINIMAX WAVELET SHRINKAGE 111

“semi-soft” thresholding utilizing exact risk analysis. In our context the form of
shrinkage rule () is more complex and the exact risk analysis had to be done
numerically. The goal of our analysis is to explore robustness in risk, bias, and
variance when the prior hyper-parameters change.

Computations performed in the software package MATHEMATICA pro-
duced Figures 2 and 3. We briefly describe the numerical findings expressed
in the figures. As depicted in Figure 2(a), for m = 3, the shrinkage rules follow
a desirable shrinkage pattern, differing for small values of d. For large values of
€o, rules heavily shrink small values of d. The rules generally remain close to d
for intermediate values of d. When |d| exceeds m, rules remain bounded by +m,
reflecting the prior knowledge that the signal energy is bounded. The parameter
m controls the largest amplitude allowed in the wavelet coefficient corresponding
to the signal and is directly proportional to the energy bound. We observe that,
given m, the amount of shrinkage essentially depends on the choice of €.

In Figure 2(b) the risks of rules in Figure 2(a) are presented. One can notice
an obvious trade-off in the risk performance for small and large values of §. When
€o is large the risk remains close to 0, for € small; the flattest risk curve in Figure
2(b) corresponds to ¢y = 0.1.

Figure 2. (a) [-minimax rules (I0) for m = 3 and ¢y ranging from 0.1 (upper
envelope function) to 0.9 (lower envelope function); (b) Exact risks for rules
in (a); (c) Bias? for rules in (a); (d) Variances for rules in (a).
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The bias-squared, depicted in Figure 2(c) is uniformly (in €) increasing when
€o increases. The lowest bias-squared curve correspond to ey = 0.1.

The variance functions, like the risks, exhibit a trade-off behavior for different
values of €y. More precisely, large values of ¢y produce variance values close to
0. On the other hand the variances increase, for the same value of ¢y, when 6
increases. This behavior is illustrated in Figure 2(d).

Figure 3 describes the shape and the risk behavior of I'-minimax rules for ¢
fixed (ep = 0.8) and m ranging from 0.5 to 4 with the step 0.5. The panel (a)
depicts forms of shrinkage rules. Note an overall heavy shrinkage for small values
of m, and a “two-fold” shrinkage for m large (the curve closest to d). Inspection
of this figure implies that the elicitation of m should be carefully considered since
it can substantially influence the performance of the estimator. The exact risk
behavior is similar for all rules at small values of 8, but the risk rapidly increases
if m is small.

The bias-squared exhibits uniform monotonicity with respect to m. When
m is increasing, the squared biases decrease in 6.

Finally, the variances depicted in Figure 3(d) indicate that values of 6 close
to m produce the most variability. The shape of variance functions is similar;
the largest function corresponds to m = 4.

Figure 3. (a) I-minimax rules (I0) for ¢ = 0.8 and m ranging from 0.5 to
4; (b) Exact risks for rules in (a); (c) Bias? for rules in (a); (d) Variances for
rules in (a).
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4. Elicitation of Parameters

The shrinkage rule (I2) depends on the choice of the hyper-parameters ¢
and m that should be carefully elicited in order to achieve good performance.
Usually, the elicitation of hyper-parameters is one of the major issues in the
Bayesian analysis and is carried out by taking into account available prior infor-
mation. In our case such information concerns the smoothness, the sparseness,
periodicity, self-similarity, as well as the energy, of the unknown signal. In this
Section we propose a level dependent choice of hyper-parameters that is guided
by considerations on the exact risk properties and on the shape of the shrinkage
rule and that turns to be effective in our simulations.

It has been demonstrated that ey, the weight of the point mass at zero in the
class I, regulates the amount of shrinkage at zero. This weight should depend on
the prior information about the smoothness. It should be close to 1 at the finest
level of detail and close to zero at coarse levels. However, the analysis of the
exact risk shows that the shrinkage rule (I0) is robust with respect to the choice
of €y, at least for the values of ¢y between 0.6 and 0.95. For practical purpose
we propose an automatic choice of ¢y, one that is considered in Vidakovic and
Ruggeri (2001). Level-dependent values of €y are defined as

. 1 .
60(]):1—m7 J<j<N-1, (15)
where J represents the coarsest level in the wavelet transformation and, in ab-
sence of additional information, the default value v = 2 is considered. Since for
smoother functions the wavelet coefficients decay more rapidly, the hyperparam-
eter v should increase with an increase in smoothness.

The sensitivity analysis on the performance of the estimator respect to the
parameter «y is discussed in Section 5.

The elicitation of the hyper-parameter m requires more detailed discussion
since it has been noticed that the choice of m can substantially influence perfor-
mance of the estimator. In fact the I'-minimax rule §, in Theorem 2.1 is sensitive
to m and considerably more so than with respect to €y (since the number of uni-
forms in the least favorable priors depends on m, while ¢y influences the values
of the parameters ay and my). First, we already mention in Section 2.1 that the
shrinkage rule is given by (I2) is the I'-minimax rule under the assumption that
m/o < m*(ey). However, for practical application, we can use (I2) for any m/o.

Second, the elicitation of m (also if we limit attention to the shrinkage rule
(I2)) bears more influence in the performance of the estimator. This can be seen
by inspecting the exact risk as a function of m.

In this paper we propose a level-dependent choice of m that depends only on
noisy data. In fact, we estimate the size of the support of the wavelet coeflicient
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at each level by

). (16)

We stress that such a choice of m gives raise to a scale invariant empirical

mi(j) = max(|djx

Bayesian shrinkage rule, which is particular interesting to work with in practical
applications as observed in Figueidero and Nowak (2001). When the prior in-
formation about the distribution of energy content among the scales is available,
then this information can be incorporated by magnitudes of the ratios m(j)/o.
A small m(j)/o would reflect the prior belief that the level j contributes little to
the energy of the signal, while larger values would convey the information that
the level is significant, in the sense that energetic feartures of the signal “live” in
that particular scale.

5. Applications

In order to investigate the finite sample size performance of the I'-minimax
estimator (I2)) we carried out an extensive simulation study. We compared the
proposed estimator with various estimators existing in the literature. In partic-
ular we consider the term-by-term Bayesian estimator Bams of Vidakovic and
Ruggeri (2001), the classical term-by-term estimators VisuShrink of Donoho and
Johnstone (1994b) and Hybrid-SureShrink of Donoho and Johnstone (1995), the
scale invariant term-by-term Bayesian ABE method of Figueiredo and Nowak
(2001), the “leave-out-half” version of the Cross-Validation method of Nason
(1996), the term-by-term False Discovery Rate method of Abramovich and Ben-
jamini (1995), and finally NeighCoeff of Cai and Silverman (2001) and BlockJS of
Cai (1999) which represent classical estimators that, for achieving a better per-
formance, incorporate the blocking procedure. Note that, for excellent numerical
performance, we consider the VisuShrink and the “leave-out-half” version of the
CrossValidation methods with the hard threshold and the BlockJS with the op-
tion ’Agument’ (see Antoniadis, Bigot and Sapatinas (2001)).

We considered several standard test functions (Wave, Blocks, HeaviSine,
Doppler, Corner, Blip, Angles, Parabolas and Time-Shifted Sine) which represent
typical examples of signals encountered in practical applications. For each test
function, M = 200 samples were generated by adding independent random noise
e ~ N(0,0%) to n = 256 (small sample size), 512 (moderate sample size) and
1024 (large sample size) equally spaced points on [0,1]. The value of the noise
level o was taken to correspond to the values 3 (high noise level), 5 (moderate
noise level) and 7 (low noise level) for the root signal-to-noise ratio (RSNR)

15 ) — £)2 n
RSNR(f,0) = \/” Ziza(f () — /) ., where f:%Zf(ti).
=1

o
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The goodness-of-fit for an estimator f of f was measured by its average mean
squared error (AMSE) from the M simulations, defined as

M n
AMSE(f) = —= 3 " (Fn(t) (1)
nM “— 4
m=1i=1
Symmlet 8-tap filter was used for all signals, except for Blocks where the Haar
filter was considered. The hyper-parameters of the I'-minimax rule are chosen
according to the criteria discussed in Section 4. To fairly compare the estimators,
the AMSE were computed on the same set of simulated data. All computations
were carried out using MATLAB, with WaveLab toolbox (see Buckheit, Chen,
Donoho, Johnstone and Scargle (1995)) and GaussWaveDen toolbox (see Anto-
niadis, Bigot and Sapatinas (2001)).

The aim of the first simulation was to examine the influence of the param-
eter v on the finite sample performance of the proposed method. For each test
function, sample size, and RSNR we have computed the AMSE (averaged over
M = 200 samples) for a wide range of y. The analysis shows that for moderate
or high RSNR, the performance of the I'minimax estimator in terms of AMSE
is quite robust with respect to the choice of v. Larger values of v would provide
an almost noise-free reconstruction, but at the price of oversmoothing the sin-
gularities. When RSNR decreases, AMSE is significantly influenced by ~y, and
relatively large values of v perform better in most cases. The value of v = 2
has been selected as a default value when no information on the true signal is
available. A relatively larger value of the parameter 7y is to be preferred for reg-
ular functions or when the sample size increases. The importance of increasing vy
when the signal-to-noise ratio is small is clearly seen in the application described
in Section 5.1.

In the second simulation the AMSE, computed using the default value vy = 2,
has been compared with the AMSE computed for the various classical and empir-
ical Bayes term-by-term or block wavelet schemes used in this simulation study.
The results across the various combinations of test functions, sample sizes and
RSNR show that the ['-minimax method often outperforms well known methods
such as VisuShrink, Hybrid-SureShrink, Cross-Validation, ABE and FDR and
BlockJS methods, and performs as well as (sometimes even better) BAMS and
NeighCoeff methods. The I'-minimax method shows improved performance com-
pared to the BAMS whenever the RSNR is low. For high RSNR the advantage
is not significant, although the I'-minimax would protect against least favorable
signals. Figures 4, 5 and 6 show the boxplots of the AMSE computed for the
nine test functions based on n = 1,024 design points. We also observe that the
choice of the default parameter results is effective when no additional informa-
tion is available on the unknown regression function. We also reiterate that an
improvement in the performance of the estimator when applied to low RSNR can
be also achieved by increasing +.
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Figure 4. Boxplots of the AMSE for the nine methods considered: (1) I'-
minimax rule with v = 2, (2) BAMS (3) VisuShrink with hard thresholding,
(4) Hybrid-SureShrink, (5) ABE (6) “Leave-out-half” version of CrossVal-
idation with hard thresholding, (7) FDR, (8) NeighCoeff and (9) BlockJS.
The AMSE was computed on n = 1,024 design points and RSNR=3.
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Figure 6. The same as in Figures 4 and 5, but with RSNR=7.
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Figure 7. Estimates obtained using the I'-minimax shrinkage with the default
value v = 2 for noisy samples of the nine test functions with RSNR=5 and

n = 1024.
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As an example of reconstruction, we show in Figure 6 the nine estimates
obtained using the I'-minimax method from n = 1,024 equispaced values with
RSNR=5. The estimates usually show a good compromise in the smoothness of
the function and the capability in preserving the singularities; smoother estimates
can be obtained by increasing +.

5.1. An example in atomic force microscopy

To illustrate features of the '-minimax shrinkage approach proposed here we
used measurements in atomic force microscopy (AFM).

The AFM is a type of scanned proximity probe microscopy (SPM) that can
measure the adhesion strength between two materials at the nanonewton scale
(Binnig, Quate and Gerber (1986)). In AFM, a cantilever beam is adjusted until
it bonds with the surface of a sample, and then the force required to separate the
beam and sample is measured from the beam deflection. Beam vibration can be
caused by factors such as thermal energy of the surrounding air or the footsteps
of someone outside the laboratory. The vibration of a beam acts as noise on the
deflection signal; in order for the data to be useful this noise must be removed.

The AFM data from the adhesion measurements between carbohydrate and
the cell adhesion molecule (CAM) E-Selectin was collected by Bryan Marshal
from the BME Department at Georgia Institute of Technology. The technical
description is provided in Marshall, McEver and Zhu (2001).

In Figure 8 the top panel shows the original noisy data. The middle panel
shows the I'-minimax estimate with the default parameter v = 2, while the
bottom panel shows I'-minimax estimate with the parameter v = 8. The sample
size was n = 2!' and Symmlet 8-tap filter was used to obtain the estimate. We
observe that the latter estimate exhibits a smooth behavior, especially in the
long-middle part without oversmoothing the bumps which are local features of
interest.

6. Conclusions

In this paper we developed a method for wavelet-filtering of noisy signals
when prior information about the L?-energy of the signal is available. Assuming
a I'-minimax model, according to which the wavelet coefficients are treated indi-
vidually, we propose a level dependent shrinkage rule. The proposed methodology
was found well suited to denoise signals at any signal-to-noise ratio, however its
advantage is of particular interest when the RSNR is low, which corresponds
to the most problematic case. Dealing with e-contaminated priors, a different
approach has been recently considered in Angelini and Sapatinas (2002), where
a wavelet thresholding rule based on the selection of the type II maximum like-
lihood prior is introduced. The resulting ML-IIThresh rule depends on only one
hyper-parameter, but requires (for each wavelet coefficient) an iterative proce-
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Atomic Force Microscopy Signal

0.15 T T T T T
0.1 4
0.05
off ,
_005 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(a)
[-minimax rule (y = 2.0)
015 T T T T T
0.1- b
0.05 B
0 4
_0.05 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(b)
[-minimax rule (y = 8.0)
0.15 T T T T T
0.1 4
O-OBﬂwM
ok i
_005 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0. 0.6 0.7 0.8 0.9 1

5
(c)
Figure 8. Top: Original AFM measurements; Middle: [-minimax estimator

with the default parameter v = 2; Bottom: [-minimax estimator with the
parameter v = 8.

dure to estimate the ML-II prior. Possible extensions of the method would use
the restricted (linear, polynomial, etc.) T'-minimax rules instead of the unre-
stricted. Such rules would provide additional simplicity with a minor expense
in risk efficiency. Other extensions can be obtained by extending the proposed
term-by-term shrinkage scheme to blocks of wavelet coefficients.

We already mentioned that the Bayes rule with respect to the Bickel prior is
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not ['-minimax. However, good approximations to I'-minimax rules are possible.
Theorem 2.2 of Bickel (1981) demonstrates how to construct an approximate min-
imax rule staring from g (6). Bickel’s construction easily adapts to our context
and we hope to explore it elsewhere.

Appendix

Proof of Theorem 2.1. It is well known (Khintchine (1938), Dharmadhikari
and Joag-dev (1988)) that any symmetric and unimodal random variable € in
[—m,m] (with distribution Q(f), and density ¢(#)) admits the representation
6 = UZ where U = U[—m,m] and Z is a non negative random variable sup-
ported on [0, m]. Moreover, U and Z are independent. Indeed there is a “unique”
correspondence between () and the distribution function of Z, say F', up to a set
of measure zero. The statistical game has a value, since

:/m /1 lR(uz, d)dudF(z)

/ R (v, 6)dvdF (2)

_/ /RvédvdF() (F,5),

inf supr(m,d) = inf sup r(egdo + (1 — €9)q, 0
pupr(rd) = jnf s et + (- ).)

= inf sup  {eR(0,0) + (1 —€y)r(q,d)}
0D gelgyy

—m,m]

= gg% Sl;p{eoR(O, §) + (1 — eo)r'(F,0)}
= sup inf {eoR(O, §) + (1 — eo)r'(F,0)}

=su mfr d).
WE{_‘)&ED ( )

We have used the fact that, for any fixed value of m, the term of the risk coming

from the point mass at zero, i.e., r(dp, §) = R(0,0) = [*°_(6(d))? d®(d), does not

depend on @ (hence on F), and that F' is an arbitrary distribution in [0, m].
Then, for any z € [0, m] we can define a new risk function

R(2,6) = oR(0,5) + (1 — eg)= /Rua (17)

(and by continuity R(0,8) = R(0,4)), and prove that it satisfies the five condi-
tions on the risk given in Theorem 2.4 of Kempthorne (1987). Indeed,
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(i) For any given distribution F' on [0,m] the Bayes rule with respect to
f" R(z,6)dF(z) is unique, almost everywhere, due to the completeness of
the normal model.

(ii) If F,, is any sequence of distributions which converges weakly to a distri-
bution F, then the risk function (I7) of the corresponding Bayes procedure
converges uniformly on compacts to the risk function of the Bayes procedure
corresponding to F':

1R (201 = Rz 01
1 z
< 6ol R(0.31,) = RO0.07)| + (1 = o) | [R(v.05,) = B(o. ¢ v

Using the chain of implications

Fn weak AL Gy NN T Uﬂc T = 5Fn( ) ﬂ) 5F() = R(e,(an) UL)TL@ R(e 5F)

where Ug) denotes uniform convergence, we get the result.

(iii) The parameter space is a compact and separable metric space since the sup-
port of F' is [0, m].

(iv)—(v) The risk function (I7) is, for any decision rule, upper semi-continuous
and analytic in the parameter space since it is true for the class of symmetric
and unimodal distributions (the second term in ([I7)); the first term in (7))
is a continuous, analytic function.

It follows that the least favorable distribution with respect to the risk R(z, §)
is discrete (i.e., it is a linear combination of point masses at knots m; € [0, 1]
with probability «;) F*(z) = apl(z = 0) + Y}y ax1(z = my). Hence, the
corresponding ¢* € gy m) 18 ¢°(d) = apdy + Sb_ agld[—my,my), and the
least favorable prior in I' is the linear combination of uniforms and point mass
at zero given in (7).

Finally, given the prior (7), it is easy to check that (8) is the Bayes rule.
Indeed, since d|f ~ N(6,1), the Bayes rule will have the form d,(d) = d +
(fr(d)/ fx(d)), where fr(.) denotes the marginal distribution of d when the prior
on 6 is given by (7). By standard calculation we have

/qu 0)7(0) db = cog(d +ch/ —qu 0) do

=cog(d

(d + my) — D(d — my)]

where ¢y = ¢y + (1 — eo)ag and ¢ = (1 — eg)ag, k = 1,...,p. After taking the
derivative of f; with respect to d, we obtain (8.
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To conclude, the case of small m (i.e., m < m*(ep)) has been considered in
DasGupta and Delampady (1994) in a more general setup. Limiting the attention
to model (6) we have that a distribution 7 € T" is least favorable if

sup r(7*,0,) = r(m,d;) = r(n) = inf r(=,J),

m el 0eD
where 7* is any prior in ', § is any rule in D, and 7 and 0, are defined in ([9) and
(I0), respectively. For a fixed €y, SUDger g, r(q,0z)=rU[—m,m],0z), Vm <
m”, where m* is defined in Remark 2.1.

In fact, using the standard representation of a symmetric and unimodal
random variable, we have

sup  r(g,0) = sup  FE,R(0,90)

qEFSU[fm,m] quSU[fm,m]
1 m
= Sup/ / R(uz,d)dudF(z)
F J-1Jo

= sup %/Oz R(v,d0)dv = r(U[—m,m],0).

0<z<m

m,m]

Finally, we have

sup r(7*,0,) = sup  {eoR(0,0:) + (1 —€9)r(q,0r)}
el quSU[fm,m]

=eoR(0,0r) + (1 — o) sup 7(q, 0x)
qEFSU[—m,m]
=eoR(0,67) + (1 — eo)r(U[—m, m], b7)
=7r(€epdo + (1 — o) (U[—m, m]) = r(m,r),
where §, is defined in (I0) and 7 in (@).

Remark 7.1. We observe that the term R(0,d;) in (IZ) is a constant with
respect to z. Hence R(z, ;) reaches its maximum value at z = m if and only if
(1/2) [y R(v,0z)dv reaches its maximum at z = m. Since 0, depends on €y, the
value of m* depends on ¢, as well. Moreover, the parameters «aj and my, in the
least favorable distribution (7), depend on ¢j.
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