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PLAID MODELS FOR GENE EXPRESSION DATA
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Abstract: Motivated by genetic expression data, we introduce plaid models. These

are a form of two-sided cluster analysis that allows clusters to overlap. Plaid models

also incorporate additive two way ANOVA models within the two-sided clusters.

Using these models we find interpretable structure in some yeast expression data,

as well as in some nutrition data and some foreign exchange data.
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1. Introduction

This article introduces the plaid model, a tool for exploratory analysis of
multivariate data. The motivating application is the search for interpretable
biological structure in gene expression microarray data. Eisen, Spellman, Brown
and Botstein (1998) is an early and influential paper advocating the use of cluster
methods to identify groups of co-regulated genes from microarray data. We
present the model and illustrate it on gene expression and other data. The plaid
model allows a gene to be in more than one cluster, or in none at all. It also
allows a cluster of genes to be defined with respect to only a subset of samples, not
necessarily with respect to all of them. Thus, for example, some yeast genes may
belong together in a cluster according to the way they are expressed when the
yeast is forming spores, while clustering with other genes under other conditions.

Section 2 introduces the plaid model as a sum of terms called layers, using
microarray data as motivation. Section 3 describes our approach to fitting this
model to data. Section 4 is devoted to the problem of deciding how many layers
to include in a model. Sections 5, 6 and 7 present examples using data on food
composition, foreign exchange rates, and gene expression in yeast, respectively.
Our main interest is in the microarray application, but the other examples give
us insight into how the model works. Section 8 compares the plaid model to
others in the literature. Section 9 presents our conclusions.

2. Plaid Model

DNA microarrays allow the measurement of expression levels for a large
number of genes, perhaps all genes of an organism, within a number of different
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experimental samples. The samples may correspond to different toxins or time
points. In other cases, the samples may have come from different organs, from
tumors or healthy tissue, or from different individuals. The data take the form of
a large matrix Yij, i = 1, . . . , n, j = 1, . . . , p, where i indexes n genes and j indexes
p samples. The value Yij measures the strength with which gene i is expressed
in sample j. The number np of data values can be very large, over 500, 000 with
present technology, and continues to increase with time. Simply visualizing such
a volume of data is challenging, and extracting biologically relevant knowledge
is harder still.

A natural starting point is to form a color image of the data on an n by p

grid, with each cell colored according to the value of Yij. Figure 1 shows one
such image described in Section 7. The ordering of the rows and sometimes of
the columns in such an image can be arbitrary. It is natural then to consider
ways of reordering the rows and columns in order to group together similar
rows and similar columns, thus forming an image with blocks of similar color.
Bertin (1983) uses the term “reorderable matrix” for data of this type and gives
examples of reordering. That text contains a photograph of an old manual device
for reordering matrices. The larger Yij values are represented by dark beads, and
the user can lift and permute rows or columns of beads until a nearly block
diagonal pattern emerges. The rows in Figure 1 were ordered after running a
hierarchical clustering on the genes.

An ideal reordering of the array would produce an image with some number
K of rectangular blocks on the diagonal. Each block would be nearly uniformly
colored, and the part of the image outside of these diagonal blocks would be of a
neutral background color. This ideal corresponds to the existence of K mutually
exclusive and exhaustive clusters of genes, and a corresponding K-way partition
of the samples. Every gene in gene-block k is expressed within, and only within,
those samples in sample-block k. Algebraically, this ideal corresponds to the
representation

Yij
.= µ0 +

K∑
k=1

µkρikκjk, (1)

where µ0 is a background color, µk describes the color in block k, ρik is 1 if gene
i is in the k′th gene-block (zero otherwise), and κjk is 1 if sample j is in the k′th
sample-block (zero otherwise). The conditions that every gene and every sample
be in exactly one cluster are then

∑
k ρik = 1 for all i, and

∑
k κjk = 1 for all j,

respectively.
It has long been recognized (see Needham (1965)) that such an ideal reorder-

ing will seldom exist in real data. It is more likely that the blocks will overlap in
some places. That is, we may need to allow

∑
k ρik ≥ 2 for some i, or

∑
k κjk ≥ 2
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for some j. Similarly there may be some genes or samples that do not fit well
into any cluster. In clustering there is often a miscellaneous (or “ragbag”) clus-
ter for items that do not belong to any well defined cluster. This corresponds
to

∑
k ρik = 0 for some i, or

∑
k κjk = 0 for some j, assuming that the ragbag

cluster is close to the background level. 
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Figure 1. Yeast expression data.

If we remove the constraints
∑

k ρik = 1 and
∑

k κjk = 1 from equation (1)
we obtain a model which represents the data as a sum of possibly overlapping
constant layers that do not have to cover the whole array.
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In model (1) a layer describes a response µk that is shared by all genes in
the layer, for all samples in the layer. It would also be biologically interesting to
identify a subset of genes that have identical responses to a subset of conditions,
or to identify a subset of conditions that produce identical responses across a
subset of genes. The following models support one or the other or both of these
notions

Yij
.= µ0 +

K∑
k=1

(µk + αik) ρikκjk, (2)

Yij
.= µ0 +

K∑
k=1

(µk + βjk) ρikκjk, (3)

Yij
.= µ0 +

K∑
k=1

(µk + αik + βjk) ρikκjk, (4)

where each ρik ∈ {0, 1}, each κjk ∈ {0, 1} and, if αik is used,
∑

i ρikαik = 0 avoids
overparameterization, with a similar condition on βjk. The name “plaid model”
describes the appearance of a color image plot of µk + αik + βjk.

Each model (1) to (4) approximates the image by a sum of layers. We use
the notation θijk to represent µk, µk +αik, µk +βjk, or µk +αik +βjk, as needed.
We get a little more generality by mixing layer types, so that αik or βjk might
appear in some but not all θijk. The model may then be written as a sum of
layers,

Yij
.=

K∑
k=0

θijkρikκjk, (5)

where θij0 describes the background layer. In some settings it might make sense
to have a background layer with αi0 and/or βj0 terms.

We conclude this section by describing some interpretations of the layers. If
ρik = 1 for all i, but κjk is not 1 for all j, then layer k describes a cluster of
samples. A converse description applies for a cluster of genes. If the layer for a
cluster of genes contains a term βjk, then that cluster of genes is a set of p-vectors
centered near the vector (µk + β1k, . . . , µk + βpk). If that layer also contains a
term αik, then the genes cluster along a line segment through this center.

Each layer may represent the presence of a particular set of biological pro-
cesses or conditions. The values of αik and βjk provide orderings of the effects
of layer k upon the genes and samples. Genes with larger values of |µk +αik| are
more greatly affected under the conditions of layer k than other genes within the
layer. These effects are also greater for samples with larger values of |µk + βjk|.
If µk + αik is positive for one gene i and negative for another, then the first gene
is upregulated and the second gene is downregulated within layer k.
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A layer may contain some but not all genes, and some but not all samples.
This can be interpreted as a group of genes that express themselves similarly
within the given set of samples. Such layers combine gene clustering with variable
selection on the samples. To avoid repetition, we will not describe converses to
all of the features of the plaid model.

These interpretations are most straightforward if there is only one layer, or
if multiple layers do not overlap significantly. Where layers overlap, the inter-
pretations for layer k apply to the values of Yij, after first subtracting the other
layers.

3. Estimation

Suppose we seek a plaid model with a small value of

1
2

n∑
i=1

p∑
j=1

(
Yij − θij0 −

K∑
k=1

θijkρijκjk

)2
. (6)

For each layer k, there are (2n − 1) (2p − 1) ways to select the participating genes
and conditions. Even for modestly large n and p, it is impossible to investigate
all of these selections, and so there is no assurance of finding the best fitting
model for a given number K of layers. Gordon (1996) notes that many clustering
problems are NP-hard, and we cannot expect the present problem to be simpler.
For an up-to-date survey of optimization issues in clustering, see Hansen and
Jaumard (1997). Even though an optimal fit is likely to be beyond our ability,
we may still find that a numerical search provides an interpretable layer.

To simplify matters, suppose we have K − 1 layers and are seeking the K’th
layer to minimize the sum of squared errors. Let

Q =
1
2

n∑
i=1

p∑
j=1

(Zij − θijKρiKκjK)2 , (7)

where

Zij = ZK−1
ij = Yij − θij0 −

K−1∑
k=1

θijkρijκjk (8)

is the residual from the first K − 1 layers.
We adopt an iterative approach with each cycle updating θ values, ρ values

and κ values in turn. Let θ(s) denote all θiK values at iteration s. Similarly let ρ(s)

and κ(s) represent all ρiK and κjK values at iteration s. After selecting starting
values ρ(0) and κ(0) as described below, we follow S full update iterations. For
s = 1, . . . , S, at iteration s, θ(s) is updated from ρ(s−1) and κ(s−1), then ρ(s) is
updated from θ(s) and κ(s−1), and finally κ(s) is updated from θ(s) and ρ(s−1). A
reasonable alternative is to update θ values, then ρ values, then κ values, using
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at each stage the most recent values of the other variables. Instead, we opted to
treat the genes and samples symmetrically in this iteration. The ρ and κ updates
would be the same if they were done in the opposite order. The final update only
changes θ(S+1), so that the final layer values are ρ(S), κ(S), and θ(S+1).

It is convenient to consider ρ and κ values in a continuous range, only forcing
them to takes values 0 or 1 in the last one or several iterations. At intermediate
stages, the values of θijK describe a “fuzzy analysis of variance” in which ρiK and
κjK are not necessarily 0 or 1. Replacing binary or integer variables by continuous
ones is a very common device in integer programming (Wolsey (1998)), where it
is known as relaxation. In what follows we drop the subscript K to simplify the
presentation.

3.1. Updating θij

To update the θij values, given ρi and κj we minimize

Q =
1
2

n∑
i=1

p∑
j=1

(Zij − (µ + αi + βj) ρiκj)2 (9)

subject to identifying conditions

0 =
n∑

i=1

ρ2
i αi =

p∑
j=1

κ2
jβj . (10)

Straightforward Lagrange multiplier arguments show that

µ =
∑

i

∑
j ρiκjZij(∑

i ρ2
i

) (∑
j κ2

j

) , (11)

αi =
∑

j (Zij − µρiκj) κj

ρi
∑

j κ2
j

, (12)

βj =
∑

i (Zij − µρiκj) ρi

κj
∑

i ρ2
i

. (13)

The update (11) for µ above is the same whether or not the K ′th layer includes αi

or βj , and updates (12) and (13) for αi and βj , respectively, are the same whether
or not the other is included in the layer. If ρi is near zero, so observation i is
effectively absent, then αi is taken to be zero, and similarly when κj is close to
zero, βj is taken to be zero.

3.2. Updating ρi and κj

Given values for θij and κj , the values for ρi that minimize Q are

ρi =
∑

j θijκjZij∑
j θ2

ijκ
2
j

, (14)
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and similarly, given θij and ρi, the minimizing values for κj are

κj =
∑

i θijρiZij∑
i θ2

ijρ
2
i

. (15)

The quantities ρi and αi pertaining to gene i are updated only with data from
that gene. This makes the updates particularly fast.

We do not allow the values ρi and κj to move too quickly towards 0 or 1, as
this might “lock in” a suboptimal initial condition. Instead, at iteration s, ρi and
κj are replaced by 0.5 + s/(2S) if they are larger than 0.5, and by 0.5 − s/(2S)
otherwise.

3.3. Starting values

In order to search in the residuals Zij = ZK−1
ij for the K’th layer of the

model, we need starting values of ρi and κj . We have considered starting values
all equal to 0.5, and starting values randomly generated near 0.5. The most
successful starting values have been found as follows: fix θijK = 1 for all i and
j, and perform several iterations updating ρ and κ values only. The ρ and κ

vectors then approach multiples of the singular vectors u1 and v1, respectively, of
the matrix Z corresponding to the largest singular value λ1. The matrix λ1u1v

′
1

is the closest rank one approximation to Z as measured by the sum of squared
matrix entry errors. The iteration used to get ρ and κ is known as the the power
method. The starting values are obtained by replacing the singular vectors ρ and
κ by their absolute values, scaled so that they sum to n/2 and p/2 respectively.

The search for the largest singular values itself needs starting ρ and κ values.
The search can fail if the initial ρ (respectively κ) is orthogonal to u1 (respectively
v1). We start the iteration with each ρi and κj equal to 0.5 plus very small random
numbers, to reduce the likelihood of such a failure.

3.4. Further issues

For a given value of k, the values of µk, αik, and βjk are easy to optimize
with all other parameters in the model fixed. For a set of K layers, it is simple
to re-estimate all of the θijk, by cycling through k = 1, . . . ,K in turn, several
times. These backfitting cycles conduct a partial re-optimization, updating all of
the θijk parameters but not the ρ and κ parameters. They tend to be extremely
fast, especially if the layers are small. We typically run backfitting after each
new layer has been added to the model.

Deciding how large K should be is the subject of Section 4 below.
In the basic algorithm ρi tends to approach 1 instead of 0 if including gene

i in the layer reduces the total sum of squared errors. This can happen because
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the gene fits the layer well, or because the gene has a very large residual, a
small proportion of which is explained by the layer. The algorithm has an option
to trim away such genes. Under this option, any gene whose sum of squared
residuals is not reduced by a user specified proportion is released from the layer
(ρi set to 0), possibly to be included in some later layer.

A variant on the algorithm updates ρi and κj by 0.5 ± ∆s where ∆s =
min(s/(2(S −T )), 0.5) for some nonnegative integer T < S. The effect is that, of
S steps, the final T of them pick ρi and κj values in {0, 1}. We use 6 iterations
to find the starting values, then 10 iterations increasing ∆s to 0.5, and finally 3
iterations where ρi and κj are placed in the set {0, 1}. The algorithm does not
appear to be very sensitive to these choices.

In another variant of the algorithm, the updates of ρi and κj are as in (14) and
(15), except that the quantity

∑n
i=1

∑p
j=1 ρ2

ikκ
2
jkθ

2
ijk is added to the denominator

of (14) if there are any αik terms, and to the denominator of (15) if there are any
βjk terms. This builds in a preference for layers with smaller numbers of genes
or experiments.

A layer can be easier to interpret if every µ + αi and every µ + βj has the
same sign (that of µ). The algorithm has a “unisign” option that builds in a
preference of this kind. Under this option, each time ρi is updated the algorithm
checks whether µ + αi and µ are of the same sign. If not, the value of ρi is
reduced.

4. Regularization

A greedy algorithm that adds one layer at a time requires a stopping rule.
We suppose that as each layer is removed from the data, the residual becomes
more and more like unstructured noise. We propose a simple rule that will give
only a small number of extra layers once the data have been reduced to noise.

First, we measure the size or importance of layer k by the sum of squares
σ2

k =
∑n

i=1

∑p
j=1 ρikκjkθ

2
ijk. We would like to accept a layer if it is significantly

larger than what we would find in noise. The distribution of σ2
k on noise is not

known. Instead of using that distribution, we expand on a permutation technique
(called random 3) in Eisen, Spellman, Brown and Botstein (1998). Let Zij be
the residual matrix in which we search for layer k. For each r = 1, . . . , R, let
Z̃

(r)
ij be a matrix obtained by randomly permuting every row of Zij and then

randomly permuting every column of the result. All (n + p)R permutations are
independent and all are uniformly distributed. This means that, when permuting
column entries, each of n! possible permutations is equally probable, and similarly
for the p! possible row permutations. Let σ̃2,r

k denote the size of the layer found
by the algorithm in the randomized data Z̃

(r)
ij .
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The stopping rule is: if σ2
k > max1≤r≤R σ̃2,r and k < Kmax, add the new

layer k to the model, otherwise stop. Here Kmax is a prespecified limit on the
number of layers in the model.

One way to characterize noise is to say that the data values are independent of
row and column labels. The chance of accepting a layer in such noise is 1/(R+1).
It is reasonable to suppose that the probability of accepting m or more layers
from noise is approximately (R + 1)−m, and that the expected number of layers
accepted after the residual has become noise is approximately 1/R. For instance,
when searching in noise with R = 3, there is approximately a 3/4 probability of
finding 0 noise layers, a 3/16 probability of finding 1 layer, a 3/64 probability
of finding 2 layers, and a 1/64 probability of finding more than 2 layers. These
approximations would be the exact if subtracting a layer from noise left a residual
that was noise.

One might choose R = 99 (or 19) to give only a 1% (respectively 5%) chance
of accepting a layer in noise. We prefer to work with R between 1 and 4, depend-
ing on the size of the data set. Computational costs are proportional to R + 1,
so this represents a worthwhile speedup, at the expense of slightly raising the
expected number of noise layers. By speeding up the algorithm, there is more
time to explore variations of the algorithm.

In practice we have seen that this stopping rule sometimes gives a large
number of layers. When this happens each real-data layer is always somewhat
bigger than the ones fitted to permuted data, but as k increases both σ2

k and
σ̃2,r

k usually decrease. One interpretation is that such layers are statistically
significant even though they may not be practically significant. The data analyst
could reasonably delete them from the model, or not bother to interpret them.
In other examples, the stopping rule gives a small number of layers.

There is a small risk that this rule will stop too soon because an unusually
highly structured random permutation was generated. This risk can be reduced
by accepting a layer if at most a of R randomized layers are larger than it. The
probability of accepting a layer fit to noise is (a+1)/R and the expected number
of layers found in noise is then close to (a + 1)/(R − a). We have found the
original a = 0 stopping rule to be acceptable.

5. Food Example

The first example uses nutritional data from 961 different foods. These
data were found at http://www.ntwrks.com/∼mikev/chart1.html. For each food,
the following were recorded: grams of fat, calories of food energy, grams of
carbohydrate, grams of protein, milligrams of cholesterol, grams of saturated
fat, and the weight of the food item in grams. Some foods appear in different
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serving sizes, as for example a piece of cherry pie, or an entire pie. To measure
food composition, each of the first six variable values was divided by the weight
of the food item, yielding the value Xij for food i and composition variable j.
The calorie values have a variance that is over 850 times as large as the saturated
fat values. To equalize the variance, the data were centered and scaled, leading
to Yij = (Xij − X̄·j)/Sj ,where X̄·j = (1/n)

∑n
i=1 Xij and S2

j = (1/n)
∑n

i=1(Xij −
X̄·j)2.

By taking out the mean of each column, the background layer corresponds
to foods and food measures near the column means. Some foods are unusually
rich by some measures. For example, egg yolks are about 18 standard deviations
above the mean cholesterol level. A few foods (like salt) have low values in all
measures. If we had not subtracted out the columns means, such foods would
have been at the background level.

Our algorithm was as follows: we searched for up to 10 layers containing
both αi and βj components. We used R = 4 shuffles in the stopping rule, opted
to prefer a common sign for µ+αi and for µ+βj within each layer, and released
any row (or column) from a layer if joining the layer did not reduce its sum of
squares by at least 51%. All 10 layers were larger than noise. We decided to
drop the last 5 layers because they were small. The layer sizes during and after
search are shown in Table 1.

Table 1. Layer sizes for the food example. σ2
k are the sizes found during

greedy training. σ̃2
k,r are the corresponding sizes found on randomized data.

The final two columns show σ2
k for K = 10 and 5 layers respectively, after

backfitting.

Original Randomized After backfitting
k σ2

k σ̃2
k,1 σ̃2

k,2 σ̃2
k,3 σ̃2

k,4 K = 10 K = 5
1 1799.02 459.85 809.05 987.79 1057.44 2634.25 1799.02
2 944.44 0.00 356.79 370.94 0.00 1325.25 759.94
3 811.28 417.89 355.38 377.96 393.91 788.88 831.14
4 667.91 256.21 192.84 244.49 369.22 420.74 669.50
5 413.23 198.28 184.64 95.32 225.06 932.80 775.76
6 152.05 104.49 67.86 101.17 75.61 400.03
7 120.72 50.02 75.30 59.99 79.29 201.04
8 83.35 57.07 34.07 67.08 65.04 331.64
9 100.14 35.53 46.33 30.83 28.75 168.63

10 61.47 23.13 23.14 44.73 35.49 120.48

Layer 1 contains 180 foods and the variables fat proportion, saturated fat
proportion and calories per gram, as shown in Table 2. Because µ1 = 1.54, these
foods are about 1.54 standard deviations above the mean. The values of β1j range
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from 0.14 standard deviations for fat proportion to −0.09 standard deviations
for calories per gram. These are high calorie fatty foods. The 20 foods with the
highest αi are listed in Table 2. This layer also contains more oils, margarines,
nuts and some dairy products.

Table 2. Top 20 of 180 foods in layer 1.

µ = 1.54 Layer 1

αi Food

2.86 LARD 1 CUP

2.83 LARD 1 TBSP

2.81 BUTTER, SALTED 1/2 CUP

2.81 BUTTER, UNSALTED 1/2 CUP

2.76 BUTTER, SALTED 1 TBSP

2.76 BUTTER, UNSALTED 1 TBSP

2.73 BUTTER, SALTED 1 PAT

2.73 BUTTER, UNSALTED 1 PAT

2.13 FATS, COOKING/VEGETBL SHORTENG1 TBSP

2.11 FATS, COOKING/VEGETBL SHORTENG1 CUP

1.76 SOYBEAN-COTTONSEED OIL, HYDRGN1 TBSP

1.75 SOYBEAN-COTTONSEED OIL, HYDRGN1 CUP

1.73 PEANUT OIL 1 TBSP

1.70 PEANUT OIL 1 CUP

1.62 SOYBEAN OIL, HYDROGENATED 1 TBSP

1.60 SOYBEAN OIL, HYDROGENATED 1 CUP

1.55 OLIVE OIL 1 TBSP

1.53 OLIVE OIL 1 CUP

1.51 CORN OIL 1 TBSP

1.49 CORN OIL 1 CUP

βj Nutritional variable

0.13 Fat Proportion

−0.04 Saturated Fat Proportion

−0.09 Calories per Gram

Layer 2 is described in Table 3. This layer contains foods that are high in
cholesterol and especially high in protein. For protein the value of µ + β is 2.08
standard deviations, and for cholesterol it is 0.53 standard deviations. This layer
also contains some more meats, seafoods, nuts and cheeses.

Layer 3, shown in Table 4, contains foods that are low in all of the variables
except possibly cholesterol. Most are also low in cholesterol, as indeed are most
of the foods not in this layer.

Layer 4 is presented in Table 5. It contains foods that are on average 1.42
standard deviations above the mean in proportion of carbohydrate. The ap-
pearance of breakfast cereals near to pure sugar reflects that both have high
carbohydrate counts. A data set that broke carbohydrates into fiber, starch and
sugar or that included vitamin content would be likely to distinguish these foods.



72 LAURA LAZZERONI AND ART OWEN

Table 3. Top 20 of 143 foods in layer 2.

µ = 1.31 Layer 2

αi Food

2.88 GELATIN, DRY 1 ENVELP

1.40 BEEF HEART, BRAISED 3 OZ

1.25 SEAWEED, SPIRULINA, DRIED 1 OZ

1.04 PARMESAN CHEESE, GRATED 1 OZ

1.04 PARMESAN CHEESE, GRATED 1 CUP

1.00 LAMB,CHOPS,ARM,BRAISED,LEAN 1.7 OZ

0.96 SHRIMP, CANNED, DRAINED 3 OZ

0.93 PARMESAN CHEESE, GRATED 1 TBSP

0.79 LAMB,CHOPS,ARM,BRAISED,LEAN+FT2.2 OZ

0.78 PORK SHOULDER, BRAISD, LEAN 2.4 OZ

0.62 PORK CHOP, LOIN, BROIL, LEAN 2.5 OZ

0.61 BEEF, CKD,BTTM ROUND,LEAN ONLY2.8 OZ

0.61 BEEF, CKD,CHUCK BLADE,LEANONLY2.2 OZ

0.57 VEAL RIB, MED FAT, ROASTED 3 OZ

0.54 CHICKEN, ROASTED, DRUMSTICK 1.6 OZ

0.53 CHICKEN, FRIED, FLOUR, BREAST 3.5 OZ

0.53 BUTTERMILK, DRIED 1 CUP

0.50 YEAST, BAKERS, DRY, ACTIVE 1 PKG

0.50 TUNA, CANND, DRND,WATR, WHITE 3 OZ

0.50 PORK, CURED, BACON, REGUL,CKED3 SLICE

βj Nutritional variable

0.78 Protein Proportion

−0.78 Cholesterol Proportion x 1000

Table 4. Top 20 of 429 foods in layer 3.

µ = −0.60 Layer 3

αi Food

−0.21 COLA, DIET, ASPARTAME ONLY 12 FL OZ

−0.21 PARSLEY, FREEZE-DRIED 1 TBSP

−0.21 COLA, DIET, ASPRTAME + SACCHRN12 FL OZ

−0.21 COFFEE, BREWED 6 FL OZ

−0.21 SALT 1 TSP

−0.21 TEA, BREWED 8 FL OZ

−0.21 CLUB SODA 12 FL OZ

−0.21 COLA, DIET, SACCHARIN ONLY 12 FL OZ

−0.21 LETTUCE, BUTTERHEAD, RAW,LEAVE1 LEAF

−0.21 TEA, INSTANT,PREPRD,UNSWEETEND8 FL OZ

−0.21 COFFEE, INSTANT, PREPARED 6 FL OZ

−0.19 PICKLES, CUCUMBER, DILL 1 PICKLE

−0.18 CELERY, PASCAL TYPE, RAW,STALK1 STALK

−0.17 BEEF BROTH, BOULLN, CONSM,CNND1 CUP

−0.17 ONION SOUP, DEHYDRATD, PREPRED1 PKT

−0.17 BEER, LIGHT 12 FL OZ

−0.16 CUCUMBER, W/ PEEL 6 SLICES

−0.16 LETTUCE, CRISPHEAD, RAW,WEDGE 1 WEDGE

−0.16 LETTUCE, CRISPHEAD, RAW, HEAD 1 HEAD

−0.16 VINEGAR, CIDER 1 TBSP

βj Nutritional variable

−0.24 Calories per Gram

0.02 Protein Proportion

0.04 Carbohydrate Proportion

0.07 Fat Proportion

0.11 Saturated Fat Proportion
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Table 5. Top 20 of 270 foods in layer 4.

µ = 1.42 Layer 4

αi Food

1.63 SUGAR, POWDERED, SIFTED 1 CUP

1.63 SUGAR, WHITE, GRANULATED 1 PKT

1.63 SUGAR, WHITE, GRANULATED 1 TBSP

1.61 SUGAR, WHITE, GRANULATED 1 CUP

1.58 HARD CANDY 1 OZ

1.48 SUGAR, BROWN, PRESSED DOWN 1 CUP

1.44 ONION POWDER 1 TSP

1.44 FONDANT, UNCOATED 1 OZ

1.30 SUGAR FROSTED FLAKES, KELLOGG 1 OZ

1.30 JELLY BEANS 1 OZ

1.30 SUPER SUGAR CRISP CEREAL 1 OZ

1.25 COCA PWDR W/O NONFAT DRY MILK 3/4 OZ

1.23 CAROB FLOUR 1 CUP

1.16 FROOT LOOPS CEREAL 1 OZ

1.16 RICE KRISPIES CEREAL 1 OZ

1.16 GUM DROPS 1 OZ

1.16 SUGAR SMACKS CEREAL 1 OZ

1.16 TRIX CEREAL 1 OZ

1.11 CINNAMON 1 TSP

1.06 POPCORN, SUGAR SYRUP COATED 1 CUP

βj Nutritional variable

0.00 Carbohydrate Proportion

Table 6. Top 20 of 59 foods in layer 5.

µ = 2.39 Layer 5

αi Food

16.18 EGGS, RAW, YOLK 1 YOLK

6.13 CHICKEN LIVER, COOKED 1 LIVER

4.03 EGGS, COOKED, FRIED 1 EGG

3.72 BEEF LIVER, FRIED 3 OZ

3.54 EGGS, COOKED, HARD-COOKED 1 EGG

3.54 EGGS, RAW, WHOLE 1 EGG

3.51 EGGS, COOKED, POACHED 1 EGG

2.45 EGGS, COOKED, SCRAMBLED/OMELET1 EGG

0.51 BUTTER, UNSALTED 1 TBSP

0.51 BUTTER, SALTED 1 TBSP

0.50 POUND CAKE, COMMERCIAL 1 SLICE

0.49 BUTTER, UNSALTED 1 PAT

0.49 BUTTER, SALTED 1 PAT

0.49 POUND CAKE, COMMERCIAL 1 LOAF

0.47 BUTTER, UNSALTED 1/2 CUP

0.47 BUTTER, SALTED 1/2 CUP

0.41 SHRIMP, FRENCH FRIED 3 OZ

0.33 BRAUNSCHWEIGER 2 SLICES

-0.03 CHEESECAKE 1 CAKE

-0.03 CHEESECAKE 1 PIECE

βj Nutritional variable

0.00 Cholesterol Proportion x 1000

Layer 5, shown in Table 6, has foods that are on average 2.39 standard de-
viations above the mean in cholesterol. The cholesterol distribution is extremely
skewed.
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6. Foreign Exchange Example

The raw data for this example are monthly foreign exchange values. For
months i = 0, 1, . . . , n and currencies j = 1, . . . , p, Xi,j denotes the number
of units of that currency that one US dollar purchased in that month. The
values that we study are the monthly logarithmic returns to the currencies
Yij = − log(Xi,j/Xi−1,j), i = 1, . . . , n, j = 1, . . . , p. The raw data, obtained from
Bloomberg, covers 277 months from January 1977 to January 2000 inclusive, and
so there are n = 276 returns. There are p = 18 currencies, corresponding to Bel-
gium, Canada, Denmark, Netherlands, Finland, France, Germany, India, Japan,
Malaysia, Mexico, Norway, South Africa, Spain, Sri Lanka, Sweden, Switzerland,
and the United States.

Because all of the data are in the same units, we chose not to make the
variances equal. We also did not adjust for the mean. In this way, we have made
the background layer correspond to the US dollar.

Setting row and column release criteria to 0.51 and preferring constant sign,
the algorithm terminates after finding 3 layers. Layer one describes 71 months
when the US dollar strengthened against 11 other currencies. Layer two describes
60 months when the Mexican peso weakened against the US dollar. Layer three
describes 69 months when the US dollar weakened against the same 11 currencies
from layer 1. The sizes of the layers are σ2

1 = 1.30, σ2
2 = 1.82 and σ2

3 = 1.11.
After fitting 3 layers, the residual has sum of squares equal to 2.39. The fourth
layer, found in a greedy search, has months in which the currency of Sri Lanka
weakened against the US dollar, but one of three shuffled layers had a larger size.

The 11 currencies in layers 1 and 3 were those of Belgium, Denmark, Finland,
France, Germany, Japan, Netherlands, Norway, Spain, Sweden, and Switzerland.
When the dollar was weakening, µ took the value 0.0349, and β was in a tight
range from −0.0076 (Spain) to 0.0079 (Switzerland). The worst month for the
dollar was October 1978 with α = 0.0409. When the dollar was strengthening,
µ took the value −0.0365. Japan lost the least ground in those months (β =
0.0124) while the other currencies ranged from −0.0054 (Switzerland) to 0.0041
(Finland).

Canada does not appear in these layers. The Canadian currency is closely
tied to the US currency, which represents the background.

Layer 2 has µ = −0.1073, corresponding to a more than 10% decline in the
Mexican currency in one month. The distribution of the α values for this layer
is very skewed. The extreme months are December 1982 (α = −0.55), June 1977
(α = −0.50) and February 1982 (α = −0.40). There are 5 other months between
−0.05 and −0.35.
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7. Gene Expression Data
Figure 1 shows yeast gene expression data used by Eisen et al. (1998) The

data are available at http://rana.stanford.edu/clustering. The columns repre-
sent timepoints within each of ten experimental series. These experiments are
reported in DeRisi, Iyer and Brown (1997), Spellman, Sherlock, Zhang, Iyer,
Anders, Eisen, Brown, Botstein and Futcher (1998), and Chu, DeRisi, Eisen,
Mulholland, Botstein, Brown and Herskowitz (1998).

The columns in these data are denoted by the following prefixes: alpha (col-
umns 1-18), Elu (19-32), cdc (33-47), spo (48-53), spo5 (54-56), spo- (57-58),
heat (59-64), dtt (65-68), cold (69-72), diau (73-79). Experiments one to three
examine the mitotic cell cycle. Experiments four to six track different strains of
yeast during sporulation. Experiments seven to nine track expression following
exposure to different types of shocks. Experiment ten studies the diauxic shift.
Each of the 2467 rows represents a single probe on the microarray designed to
detect the expression level of a particular gene. The rows are ordered according
to the results of the hierarchical clustering algorithm to illustrate the relation-
ships revealed by that approach. The colors in the image (red=high, blue=low)
correspond to values of Yij = log2 Xij , where Xij is a measurement representing
the expression level of gene i obtained from a scanned image of the microarray
used to assay sample j. The original downloaded data contained values of Yij.
Values for missing data (1.9% of the data) were imputed using the sum of the
row and column means less the overall mean. Annotation of the genes in the
downloaded file was slightly edited to save space.

We used both gene and sample effects in the background and in the layers.
This choice of background layer acknowledges that genes and samples both have
different expression levels, and focuses the search for biological interpretation on
their interactions. We searched for up to 40 layers with the unisign option on,
row and column release criteria set to 0.5, and shuffling 3 times for each layer.
After the 34th layer, the algorithm was unable to find a layer that retained any
rows under the release criterion.

Overall, the 34 layers and the background contained 5568 parameters, fewer
than 3% of the number of observations. Figure 2 shows the complete fitted
model, which recovers much of the visually-apparent structure in the original
data. Layers tend to decrease both in size of effect and number of genes as the
algorithm proceeds. Toward the end, the algorithm discards large numbers of
genes due to the release criterion. Not surprisingly, the typical sample belongs to
more layers than does the typical gene. The number of columns per layer remains
more or less constant throughout the analysis. Background alone accounted for
28% of the genes and of the samples in the data (see Table 7). An additional
42% of the genes were in a single layer. Overall, 88% of the data was explained
by background alone. There was little overlap among the layers, with fewer than
1% of the data falling into more than one layer.



76 LAURA LAZZERONI AND ART OWEN
 

 

Samples

0

0 20 40 60 80

50
0

10
00

15
00

20
00

25
00

G
en

es

Figure 2. Fitted model for yeast data.

Table 7. Yeast summary showing the numbers of genes, samples and obser-
vations appearing in 0, 1 or more layers.

No. of Layers Genes Samples Observations
0 703 22 170703
1 1031 5 22872
2 579 2 1307
3 142 11 11

4-18 12 39 0
Total 2467 79 194893
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The plaid model consistently puts columns from the same experimental series
together within layers. Table 8 shows the column effects in the first six layers.
Only in layer 6 is an intermediate timepoint (column 41, cdc 170) excluded when
timepoints both before and after are included in the layer. Similar patterns were
seen in subsequent layers. The sporulation data enter into four of the first six
layers because of the greater variability in those experiments.

Table 8. Column effects for the first 6 layers of the yeast expression data.
Columns that do not appear in these layers are omitted, unless they fall
between two timepoints included in a single layer.

Sample effects (µ + βj) in first 6 layers
Sample 1 2 3 4 5 6

19 Elu 0 0.74
39 cdc 130 0.44
40 cdc 150 0.29
41 cdc 170
42 cdc 190 0.52
43 cdc 210 0.46
44 cdc 230 0.53
45 cdc 250 0.82
46 cdc 270 0.64
47 cdc 290 0.89
49 spo 2 0.72 −1.18 −0.81
50 spo 5 1.10 −1.18 −1.21
51 spo 7 1.36 −1.32 −1.12 0.93
52 spo 9 1.08 −0.75 −1.33 0.99
53 spo 11 1.06 −1.12 0.92
55 spo5 7 0.94
56 spo5 11 0.76
57 spo-early 1.19 −2.14 −1.03
58 spo-mid 1.41 −2.19 −1.43
60 heat 10 −1.19 1.57 −1.06
61 heat 20 −1.70 1.10 −1.15
62 heat 40 −1.23 0.61 −1.00
63 heat 80 −0.70 0.53 −0.55
64 heat 160 −0.80 −0.65
66 dtt 30 0.55
67 dtt 60
68 dtt 120 0.47 −0.31
71 cold 40 −0.59
72 cold 160 −0.90
77 diau e 0.55
78 diau f −1.20 1.30 −0.64
79 diau g −1.60 1.42 −0.87 0.48
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Twenty-five layers capture at least one of the 47 microarrays from the first
three experimental series, all of which were designed to track the mitotic cell
division cycle. The difference between these series is the laboratory method used
to synchronize the cell cycle at time zero. In general, synchronization effects
appear to dominate cell cycle effects in determining layer membership. No layer
contains more than one microarray from each of the three series. However, six
layers have six to twelve microarrays from one synchronization method and none
from the other two methods. Five of these six are selected from the third series,
which is the most evident of these series under the plaid model. The evidence here
suggests that cell cycle effects shared across synchronization methods are modest
relative to differences among the experimental series. Due to its overlapping
layers, the plaid model has the potential to simultaneously identify layers based
on synchronization method and layers based on aspects of the cell cycle.

Layers 1 and 3 contain the same seven samples and share no genes in com-
mon. In Figure 1, these layers correspond to the band running through columns
49–58. The timepoints are hours 2, 5, 7, 9 and 11 during sporulation in one yeast
strain, and hours 5 and 7 in a second yeast strain (these were the only times at
which the second strain was assayed). On average, the 567 genes in layer 1 are
upregulated to 219% of their background levels, whereas the 251 genes of layer
3 are downregulated to 44% of their background level.
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Sample Effects in Layers 1 and 3. Data Means in Layers 1 and 3.
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Figure 3 shows how the effects of layers 1 and 3 mirror each other across the
selected samples. Figure 4 shows the means of the data for the same genes and
samples. The mirroring effect is not visible in the original data, but is visible in
the plaid model after subtraction of the background and other layers.

Table 9 shows the 12 most affected genes under layers 1 and 3. Layer 1
includes many genes involved in the cell cycle. Layer 3 includes many genes
involved in glycolysis.

Table 9. Top 12 genes of layers 1 and 3.

µ = 1.13 Layer 1

αi Gene, known function

3.34 ECM11, cell wall biogenesis

2.77 LEU1, leucine biosynthesis, 3-isopropylmalate dehydratase

2.65 PDS1, cell cycle, anaphase inhibitor (putative)

2.35 CDC5, cell cycle, G2-M protein kinase

2.02 CIK1, cytoskeleton, spindle pole body associated protein

1.77 CLB5, cell cycle, G1-S cyclin

1.64 PCH2 meiosis, checkpoint

1.56 STU2 cytoskelton, spindle pole body component

1.56 BAT1, branched chain amino acid, transaminase

1.53 ORC3, DNA replication, origin recognition complex, ...

1.56 APC4, cell cycle, anaphase-promoting complex subunit

1.51 MIP6, MRNA export, putative, RNA-binding proteinlization

µ = −1.20 Layer 3

αi Gene, known function

−2.11 TDH1, glycolysis, glyceraldehyde-3-phosphate dehydrogenase 1

−2.02 TKL1, pentose phosphate cycle, transketolase

−1.99 PGK1, glycolysis, phosphoglycerate kinase

−1.97 ENO2, glycolysis, enolase II

−1.86 TDH2, glycolysis, glyceraldehyde-3-phosphate dehydrogenase 2

−1.79 YGP1, diauxic shift, response to nutrient limitation

−1.70 TDH3, glycolysis, glyceraldehyde-3-phosphate dehydrogenase 3

−1.68 TPI1, glycolysis, triophosphate isomerase

−1.59 FBA1, glycolysis, aldolase

−1.52 BUD7, bud site selection

−1.49 GPM1, glycolysis, phosphoglycerate mutase

−1.42 ALD6, ethanol utilization, acetaldehyde dehydrogenase

Layer 2 is dominated by genes that produce ribosomal proteins involved in
protein synthesis in which MRNA is translated. The layer contains 14 samples,
216 genes and has σ2

2 = 6437. It includes 114 of the 124 non-mitochondrial
ribosomal proteins identified in the data. Most of the ribosomal protein genes
(107) are among the 130 most affected genes in layer 2. Layer 2 includes all
five of the acidic ribosomal proteins and none of the 49 mitochondrial ribosomal
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proteins. Layer 2 contains several other genes also involved in translation and
in transcription. The genes in layer 2 are downregulated (µ = −1.29) reaching
22% to 66% of their background levels. This downregulation occurs within 14
samples from the earlier stages of sporulation, in the diauxic shift and following
cold and heat shock (see Table 8).

Table 10 lists all layers containing more than one ribosomal protein. Nine
of the ten non-mitochondrial ribosomal proteins that do not appear in layer 2
appear in layer 5. Interestingly, seven of these form a contiguous set (numbers
1510-1517) in the hierarchical-clustering order, separated in that analysis from
the main group of ribosomal proteins by four other genes. Layer 5 is less strongly
downregulated (µ = −0.76) than layer 2 and contains none of the sporulation
samples (see Table 8).

Table 10. Types of ribosomal protein within all layers containing more than
one such gene.

Types of ribosomal proteins by layer

Layer 2 3 5 6 11 12 13 14 15 24 29 31 All

Genes 216 251 87 47 98 110 111 253 54 46 39 89 2467

Acidic 5 0 0 0 0 0 0 0 0 1 0 0 5

Mito. 0 7 3 8 2 0 22 10 1 0 1 0 49

Other 109 3 9 1 0 6 1 14 3 6 3 13 119

All RPs 114 10 12 9 2 6 23 24 4 7 4 13 173

Later layers also exhibit biological patterns. For example, the 89 genes in
layer 32 include 18 of the 33 proteasome subunits. Interestingly, the most down-
regulated gene in layer 32 is FET3 (µ32 + αi,32 = −1.51), which encodes a cell
surface ferroxidase involved in transport. FET3 is also the most downregulated
non-ribosomal protein in layer 2 (µ2 + αi,2 = −1.86). Layers 2 and 32 share only
one other gene ASN2, an asparagine synthetase involved in asparagine biosyn-
thesis. Neither FET3 nor ASN2 appear in any other layers. An interpretation is
that FET3 and ASN2 behave like ribosomal proteins under the conditions rep-
resented within layer 2 and like the proteasome subunits under the conditions
represented in layer 33. These latter conditions include the mitotic cell cycle
(columns 23, 24, 33, 34, 35) and later stages of sporulation (columns 52, 53, 55,
56).

Some of the later layers are quite small. Layer 30 contains fifteen samples
and only seven genes, three of which are cytoskeleton genes. The complete layer
is shown in Table 11.
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Table 11. Layer 30 of the yeast expression data.

µ = 0.49 Layer 30

µ + αi Gene, known function

0.72 DAK1, carbohydrate metabolism, dihydroxyacetone kinase
0.72 AIP1, cytoskeleton, actin cortical patch component
0.53 CAP2, cytoskeleton, F-actin capping protein subunit
0.45 CYP5, protein folding, peptidyl-prolyl cis-trans isomerase
0.42 PUP1, protein degradation, 20s proteasome subunit (beta2)
0.29 PDX1, glycolysis, pyruvate dehydrogenase
0.27 MYO3, cytoskeleton, myosin, class I

µ + βj Column, sample

0.68 60, heat 10
0.66 61, heat 20
0.64 68, dtt 120
0.60 67, dtt 60
0.55 19, Elu 0
0.50 31, Elu 360
0.50 78, diau f
0.49 54, spo5 2
0.48 45, cdc 250
0.46 47, cdc 290
0.43 30, Elu 330
0.36 32, Elu 390
0.36 65, dtt 15
0.35 46, cdc 270
0.23 57, spo- early

8. Comparisons

This section surveys the literature and describes methods related to the plaid
model. We begin by introducing the singular value decomposition of a matrix.
It has long been known (Eckart and Young (1936)) that truncating the SVD of
a matrix Y to k terms produces the rank k matrix closest to Y as measured by
summed squared difference. The SVD structure provides a common thread that
Lee and Seung (1999) used to link a number of data analysis methods. We add
some more methods to their list, and we use this idea to compare the plaid model
to the others. Space does not permit an exhaustive discussion of the details of
all the algorithms.

8.1. Singular value decomposition

The singular value decomposition (SVD) of a matrix Y is a sum
m∑

k=1

λkukv
T
k , m = min(n, p), (16)

where u1, . . . , um are mutually orthogonal n vectors, v1, . . . , vm are mutually
orthogonal p vectors, and λk ≥ 0 are the singular values. This is similar to
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a plaid model with θijk = λk and (ρ1k, . . . , ρnk) = uk, and (κ1k, . . . , κpk) = vk.
Alter, Brown and Botstein (2000) apply the singular value decomposition directly
to microarray data.

The plaid model differs in that the vectors from different layers are not
constrained to be orthogonal. In plaid models, ρik and κjk are constrained to
take values in {0, 1}. More complicated plaid models with αik and βjk terms can
not be written as differently constrained SVDs.

8.2. Semidiscrete decomposition

The semidiscrete decomposition (SDD) takes the form (16) except that the
elements of uk and vk belong to the set {−1, 0, 1}. Kolda and O’Leary (1998)
report that the SDD provides faster and more space efficient information retrieval
(IR) than the SVD. In IR applications, row i represents a term (such as a word),
column j represents a document (such as an article or web page), and the raw
data value Xij contains the number of times that term i appears in document j.
Typically a transformation is applied to the Xij values before fitting an SVD or
an SDD. The algorithm for estimating the SDD alternates between updating λk

values and uk and vk values. That algorithm keeps λk ∈ {−1, 0, 1} at all stages.

8.3. Non-negative matrix factorization

Lee and Seung (1999) describe a non-negative matrix factorization. It can
be written as in equation (16) with all λk = 1, and with all elements of uk and vk

constrained to be non-negative. They illustrate the decomposition on images and
on information retrieval problems. Once again, an alternating iterative algorithm
is used. Their preferred algorithm is based on a Poisson likelihood, though they
also describe one based on sums of squares.

8.4. Clustering

As Lee and Seung (1999) point out, k-means style clustering of data rows (or
of columns) can be cast in the form (16). To cluster the rows of Y take λk = 1
and constrain each uk to have one element equal to 1 and all the others 0. Then
vk are the cluster centers.

Additive clustering (Shepard and Arabie (1979)) is a method for describing
similarities among a group of observations. Here n = p, the rows and columns of
Y describe the same set of objects, and the value Yij is a number describing the
similarity between objects i and j. Additive clustering fits the model (16) with
the constraints uik = vik ∈ {0, 1}.

Additive clustering and plaid models both allow clusters to overlap. Arabie
and Hubert (1996) survey the literature on overlapping clusters.
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The box clustering method is described by Mirkin (1998). Like additive
clustering, box clustering takes the form (16) with uik and vjk both in {0, 1}. But
box clustering does not require that the rows and columns correspond to the same
set of entities. Box clustering was developed for nonnegative entries interpretable
as scaled probabilities, and the algorithms for it use certain naturally arising
weighted sums of squares as criteria.

Eisen et al. (1998) cluster the rows and columns of their data using hier-
archical clustering. Tibshirani, Hastie, Eisen, Ross, Botstein and Brown (1999)
introduce gene shaving. In gene shaving a cluster is formed around the largest
principal component of the data. Structure corresponding to such a cluster is then
removed, and a new cluster forms around the principal component of the remain-
der. In gene shaving the model takes the form (16) with λk = 1, uik ∈ {−1, 0, 1}
and the principal component vector elements vjk unconstrained.

Hofmann, Puzicha and Jordan (1999) propose a two-sided clustering model
for dyadic (co-occurence) data. This data takes the form Yij ∈ {0, 1}, with
for example, a 1 representing that person i has seen movie j. They describe
clusters through unobserved latent class variables, and employ an EM algorithm
to estimate their model. Hartigan (1972) is an early reference on two-sided non-
overlapping clustering.

Getz, Levine and Domany (2000) perform a recursive partitioning of the
data matrix, iterating between one-way clustering of the samples and one-way
clustering of the genes. At each step, either genes or samples are clustered
separately within each partition defined by the current sample and gene clusters.
This leads to a rectangular representation of the data. Biologically significant
clusters are identified as a certain subset of these rectangles, by keeping track of
the parental clusters leading to them.

8.5. Further references

Here we mention additional related work that does not fit into the SVD
framework above. Banfield and Raftery (1993) introduce model-based clustering
that, like plaid, uses a global numerical goodness measure. They use Gaussian
and other likelihoods. Ben-Dor, Shamir and Yakhini (1999) propose a clustering
method for expression data based on an n by n gene similarity matrix.

Plaid is a merger of clustering and ANOVA methods. The sources mentioned
above are versions of clustering and double clustering. ANOVA has also been
applied to microarray data. Kerr and Churchill (2001) and Kerr, Martin and
Churchill (2000) fit higher-order ANOVA models to microarray expression data.
The data typically include known treatment or varietal types as variables and the
effects of interest are the gene-variety interactions. Additional higher order terms
account for array, spot and dye effects. In contrast, the plaid model attempts
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to find a clustering that can represent the gene-variety interactions by different
layer-membership patterns for the genes. The use of higher order ANOVA models
suggests natural extensions of the plaid model to the supervised context.

9. Discussion

The plaid model is a form of overlapping two-sided clustering, with an em-
bedded ANOVA in each layer.

In this article we have presented an algorithm for finding plaid models. We
have also proposed a sequential permutation strategy for protecting against the
introduction of noisy terms in greedy model search. We expect that the algorithm
could be improved. Our updating algorithms adjust each ρi and κj individually
instead of jointly. This is driven by considerations of speed: n + p ratios are
much faster to compute than is an n + p dimensional optimization. In some
cases this simultaneous adjustment gives rise to null layers with all ρi = 0. We
also acknowledge that other researchers might prefer to use a larger number of
random permutations than we do.

Plaid models are exploratory tools, like cluster analysis. Just as in cluster
analysis and many other multivariate methods, the results are sensitive to scaling
of the data. If the columns of the yeast expression data are scaled to have a
common variance, then the ribosomal protein layer is found first. Similarly when
the food variables are not scaled the first layer only involves the calories per
gram of food column, because that one has by far the largest variance. If the
foods are not normalized by weight, then the first layer is dominated by the large
foods, such as entire cakes, pies, loafs and half gallons of ice cream. These other
clusterings are as real as the ones we report. When a choice is to be made among
them, it must be based on a decision of what aspect of the data is of interest.
Scaling issues for microarray data have been discussed by Yang, Dudoit, Luu and
Speed (2001) and Tseng, Oh, Rohlin, Liao and Wong (2001).

We have also found that the results can change in response to changes in
the algorithm. The features we present are ones that have been found more than
once in repeated analyses of the data. This is consistent with advice given by
Hartigan (1975) for clustering. For the food data, the first layer is invariably
driven by lard, butter and oils, but the number of foods in this layer can depend
on options of the algorithm. For the yeast data, the mirror imaged sporulation
layers can be the first and second ones after the background, or they can be the
first and fourth, but they always seem to be in the model somewhere. Changing
parameters like the row release threshold, or making small changes in the data can
change some of the resulting binary quantities ρik and κjk in ways that are quite
different from what we see in problems without binary parameters: sometimes
no binary variables change at all; other times, a large change can appear. This
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problem could be mitigated by working with quantities in [0, 1], but elements of
{0, 1} are more interpretable.

In our examples, we have found interpretable structure in genetics data,
foreign exchange data, and nutrition data. These structures are clearly not noise
artifacts.
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