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Abstract: A major problem in the analysis of clinical trials is missing data from pa-

tients who drop out of the study before the predetermined schedule. Shih and Quan

(1997) proposed a “composite” (or “pattern but not mix”) approach to the problem,

which makes simultaneous inference on the conditional mean of the completers and

the probability of completion or dropping out of the trial. Their method involves

the combination of test statistics for the conditional mean and dropout probability.

In this paper, we justify the asymptotic independence of the test statistics used in

Shih and Quan.
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1. Introduction

Consider a randomized clinical trial that compares two treatment groups
with respect to a continuous outcome, y, such as blood pressure, cholesterol level,
CD4 counts, or bone mineral density. Repeated measurements are often taken
during the study, but the outcome at the end of the study (as opposed to, say, the
rate of change) is the main interest here. A well-known problem in the analysis
of such experiments is the data missing from subjects who drop out before the
pre-determined study termination. Ethically, the design of a clinical trial has
to permit patients to withdraw for unfavorable reasons such as death, adverse
reactions, intolerable treatment or procedure, lack of improvement, etc. But the
design and conduct of every clinical trial can and should encourage patients with
favorable outcomes (such as early recovery) to remain in the study to achieve the
full benefit of treatment. Hence, the great majority of patients in a well-designed
and conducted study can usually be classified as “completers” or “dropouts for
unfavorable reasons”. See Shih and Quan (1997) - or SQ henceforth.

Let Y ∼ fθ(Y ) be the complete-data of the outcome measure. When Y is
incompletely observed, we write Y = (Yo, Ym), where Yo is observed and Ym is
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missing. Further, let M denote the missing-data indicator that corresponds to
Y . We may factor the joint distribution of Y and M , f(Y,M), as

f(Y,M) = fΨ(Y |M)fπ(M). (1)

The first factor in (1) says that the data are stratified by the missing data
pattern. The so-called “pattern-mixture” approach (Glynn, Laird and Rubin
(1986), Little and Rubin (1987) and Little (1993)) is to integrate estimates of Ψ
and π to make inference on θ, i.e., the over-pattern, hypothetical data parameter.

SQ argued in the context of clinical trials that when the over-pattern and
pattern-specific parameters differ, the conditional parameter in Ψ, together with
the marginal missing indicator parameter π, are of substantive interest to the
medical investigation in their own right. It makes clinical sense to regard the
patients who completed the trial and those who dropped out (for unfavorable
reasons) as different populations. SQ advocated a composite analysis that con-
siders the chance of dropping out as an important outcome, together with the
expected final response for patients who remain through the prescribed treatment
course. Since SQ’s approach does not “mix” the estimate of (Ψ, π) to obtain that
of θ, rather focuses on (Ψ, π), the method may be called the “Pattern but not
mix” approach.

In comparing treatment groups, SQ proposed the use of regression or, in large
data base cases, matching by propensity scores, to adjust for the possible baseline
differences in the completers, and multiple-test procedures for the composite of
joint and individual hypotheses pertaining to the parameters in (Ψ, π). It is
important to incorporate necessary covariates, such as the initial severity of the
disease, the baseline value of y, and more, to make the treatment groups as
comparable as possible for the completers. Hence, the method extends to models
with covariates W = (X,Γ) that include treatment groups (X), the baseline
measure of the outcome and other characteristics of the patient (Γ):

f(Y,M |W ) = fψ(Y |M,W )fπ(M |W ). (2)

For simplicity, and without confusion, we use the same notation for parame-
ters in (1) and (2). Notice that in (1) or (2), the marginal distribution of the
missing indicator M may depend on covariates W , but does not depend on the re-
sponse variable Y . This makes the modeling of M much easier than the so-called
selection-model approach, which factors f(Y,M |W ) as f(M |Y,W ) f(Y |W ). In
the selection model, the conditional distribution of M depends on Y , which could
involve the unobserved part of Y .

A potential difficulty in making simultaneous inference on (Ψ, π) is to estab-
lish the asymptotic normality and independence of the estimates of the compo-
nent parameters. We specify the model and derive the estimates of the compo-
nent parameters in Section 2. The main result is in Section 3: the proof of a
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theorem with regularity conditions under which the asymptotic normality and
independence of the estimates hold. Justification of the regularity conditions in
the context of clinical trials is also given. In Section 4, we apply the theorem to
form a joint test for parameters in (Ψ, π).

2. “Pattern But Not Mix” Approach

Let mi be 1 if the ith patient is a completer, and 0 if a dropout, i = 1, . . . , n.
Of course the final response measurement yi (for the ith patient) exists only if
mi = 1. Let xi be the indicator for treatment groups, xi = 0 or 1, and let
Γi denote the vector of covariates (other than the treatment group xi) for the
ith patient. Consider the following general linear regression models for dropout
probability and conditional mean of completers:

P (mi = 0|Γi, xi) = g(β0 + η′Γi + βxi), (3a)

yi|(mi = 1,Γi, xi) = λ0 + γ′Γi + λxi + εi, (3b)

where, corresponding to (2), π = (β0, η
′, β)′ and Ψ1 = (λ0, γ

′, λ)′, a subset of
Ψ, are unknown regression coefficients. We assume that the errors εi in (3b)
are i.i.d. with mean 0 and constant variance σ2. Possible choices of g(u) are
the logistic, standard normal (probit), and extreme-value c.d.f’s (Cox and Snell
(1989)). It is also possible to measure time to dropout and to employ survival
models for (3a). We assume that for the completers, the treatment groups are
comparable with respect to their baseline characteristics after adjusting for the
covariates.

Unlike the pattern-mixture model (for sampling surveys), the y value given
m = 0 part is not well-defined in clinical trials because, for example, the measures
of a patient’s cholesterol level or symptom score after death, or the glomerular fil-
tration rate (GFR) after kidney dialysis are no longer meaningful for the therapy
under study.

We are mainly interested in testing the treatment difference with regard to
the dropout rate and the conditional mean, that is, (β, λ); others are nuisance
parameters. For example, if x = 0 denotes the control group, λ > 0 means that
the measurement for the completers tends to be greater in the test group than in
the control group, and in the case of g(u) = 1/(1 + eu), β > 0 means less chance
of drop out due to unfavorable events for the test group than for the control
group.

Since the inference on β only involves (mi, xi,Γi), i = 1, . . . , n, we can obtain
the MLE β̂ of β by a usual regression for binary outcomes, such as logistic or
probit (see, e.g., Cox and Snell (1989), Agresti (1984)). Let ˆ̄ω2

/n be the estimate
of the asymptotic variance of β̂ such that

√
n (β̂ − β)/ˆ̄ω has asymptotically a
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standard normal distribution. For λ, we obtain the least-squares estimate λ̂,
conditioning on mi, i = 1, . . . , n, and its conditional variance σ2/bn, where bn =
(
∑n
i=1 mix

2
i )−(

∑n
i=1 miΓ∗′

i xi)(
∑n
i=1 miΓ∗

iΓ
∗′
i )−1(

∑n
u=1 mixiΓ∗

i ) and Γ∗
i = (1,Γ′

i)
′;

see Section 3. As usual, a consistent estimate of the error variance σ2 is the
residual mean squares, σ̂2.

In general, since the mi’s in bn are random, we need special care when using
(β̂, λ̂) to make simultaneous inference on β and λ. When εi are i.i.d. N(0, σ2),
we know that [(λ̂ − λ)|mi, i = 1, . . . , n] is distributed as N(0, σ2/bn). Thus
(λ̂−λ)
σ b

1/2
n |mi ∼ N(0, 1) independently of the mi, i = 1, . . . , n, and λ̂−λ

σ b
1/2
n ∼

N(0, 1), unconditionally on mi. For general error structures, we show in the
following section that, under some appropriate regularity conditions, λ̂−λ

σ b
1/2
n is

asymptotically distributed N(0, 1), unconditionally on mi , as n becomes large.

3. Asymptotic Independence of β̂ and λ̂

Referring to (3b), let Γ∗
i = (1,Γ′

i)
′ and φ∗ = (λ0, γ

′)′. Furthermore, let
y∗i = yi if mi = 1 and y∗i = missing value if mi = 0. Let

X∗
n =




m1Γ∗′
1 m1x1

· ·
· ·

mnΓ∗′
n mnxn



n×p

, Y ∗
n




y∗1
·
·

y∗n



n×1

and Ψ =

[
φ∗

λ

]
p×1

. (4)

The least-squares estimate Ψ̂1 of Ψ1 (conditioning on X∗
n, hence mi, i =

1 . . . , n) is Ψ̂1 = (X∗′
n X∗

n)
−1X∗′

n Y ∗
n , where zero times anything (including the

missing value) is defined as zero. Let

Sn = X∗′
n X∗

n =

[∑n
i=1 miΓ∗

iΓ
∗′
i

∑n
i=1 miΓ∗

ixi∑n
i=1 miΓ∗′

i xi
∑n
i=1 mix

2
i

]
p×p

(5)

and (un1, . . . , unn) be the last row of S−1
n X∗′

n . The (p, p)-th element of S−1
n is

b−1
n , where bn = (

∑n
i=1 mix

2
i ) − (

∑n
i=1 miΓ∗′

i xi)(
∑n
i=1 miΓ∗

iΓ
∗′
i )−1(

∑n
i=1 mixiΓ∗

i ).

Lemma. If (c.1) Ey|m(ε2+δ
i ) < ∞ for some δ in (0, 1], then

|Pr(
λ̂ − λ

σ
b1/2
n < t) − Φ(t) ≤ CEm(

n∑
i=1

|uni|2+δ)b(2+δ)/2
n (6)

for some constant C, where Φ(t) is the c.d.f. of the standard normal distribution.

Proof. It can be seen that the least-square estimate λ̂ of λ is λ̂ =
∑n
i=1 uniy

∗
imi

and its (conditional) variance is σ2 ∑n
i=1 u2

ni = σ2/bn. Note that uni = 0 when
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mi = 0. Note that λ̂ − λ =
∑n
i=1 uniεimi and that εi are i.i.d. for those with

mi = 1. If Ey|m(ε2+δ
i ) < ∞ for some δ in (0, 1], then by the Berry-Essen Theorem

(Chow and Teicher (1978)) there is a constant C such that

sup
t

|Pr(
λ̂−λ

σ
b1/2
n <t|mi, i=1, . . . , n)−Φ(t)|≤C(

n∑
i=1

|uni|2+δ)b(2+δ)/2
n , −∞<t<∞

where Φ(t) is the c.d.f. of the standard normal distribution. Thus

|Pr(
λ̂ − λ

σ
b1/2
n < t) − Φ(t)|

= |Em[Pr(
λ̂ − λ

σ
b1/2
n < t|mi, i = 1, . . . , n) − Φ(t)]|

≤ Em|Pr(
λ̂ − λ

σ
b1/2
n < t|mi, i = 1, . . . , n) − Φ(t)|

≤ CEm(
n∑
i=1

|uni|2+δ)b(2+δ)/2
n .

Theorem. Given (c.1) and (c.2) Sn/n converges almost surely (a.s.) to a positive
definite matrix

∑
, (c.3) All covariates are bounded by a constant B, λ̂−λ

σ b
1/2
n →

N(0, 1) in distribution, unconditionally on mi, i = 1, . . . , n.

Proof. We first show that (
∑n
i=1 |uni|2+δ)b(2+δ)/2

n → 0 a.s. as n → ∞. Let
a′n = {anj ; j = 1, . . . , p} be the last row of S−1

n , a′ be the last row of
∑−1.

From condition (c.2), na′n → a′ almost surely. Then bn = (
∑n
i=1 mix

2
i ) −

(
∑n
i=1 miΓ∗′

i xi) (
∑n
i=1 miΓ∗

iΓ
∗′
i )−1 (

∑n
i=1 mixiΓ∗

i ) ≤ ∑n
i=1 x2

i ≤ n. Therefore,

(
n∑
i=1

|uni|2+δ)b(2+δ)/2
n = O[n(2+δ)/2(

n∑
i=1

|uni|2+δ)] = O[n(2+δ)/2(
n∑
i=1

|a′nzi|2+δ)]

= O[n(2+δ)/2(1/n)2+δ(
n∑
i=1

|a′zi|2+δ)] = O[n−δ/2(
1
n

n∑
i=1

|a′zi|2+δ)], (7)

where zi = mi(Γ∗′
i , xi)′. Following (c.3) and (7), (

∑n
i=1 |uni|2+δ)b(2+δ)/2

n → 0 a.s.
as n → ∞.

We next show that Em supn(
∑n
i=1 |uni|2+δ)b(2+δ)/2

n is bounded above:

(
n∑
i=1

|uni|2+δ)b(2+δ)/2
n ≤ n(2+δ)/2(

n∑
i=1

(uni|2+δ) = n(2+δ)/2(
n∑
i=1

|a′nzi|2+δ)

≤ n(2+δ)/2B2+δ
n∑
i=1

(p × sup
j

|anj|2+δ)

= n(2+δ)/2B2+δn(p × sup
j

|anj |)2+δ .
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Since S−1
n is of the order of 1/n from (c.2), a′n is also of the order of 1/n. Thus,

n2+δ/2(|anj |2+δ) is of the order of n−δ/2 for all j and n. It follows that

Emsupn(
n∑
i=1

|uni|2+δ)b(2+δ)/2
n ≤ B2+δp2+δEmsupn(n

2+δ/2supj|anj |2+δ) ≤ ∞.

Thus, by the Lebesgue Dominated Convergence Theorem,

Em(
n∑
i=1

|uni|2+δ)b(2+δ)/2
n → 0 as n → ∞. (8)

The theorem is proved following (6).

Remark. Adjusting the baseline covariates is an essential consideration in the
analysis of the completers to reduce the potential impact of possible differential
patient characteristics between the treatment groups. Therefore, it is perhaps
not surprising to see that the above regularity conditions all involve baseline co-
variates. Justifications of these conditions in the context of clinical trials can be
made as follows. First, it is easy to see that condition (c.3) holds since baseline
covariates, such as age, sex, initial severity scores or clinical/physiologic mea-
surements are always bounded. Second, for (c.2), since patients in a clinical
trial are supposed to be random samples of a patient population, we can re-
gard covariates Γi as i.i.d. random variables. The xi is a random indicator for
treatment assignment by the study design. Hence the components of the Sn/n

matrix are essentially sample means of the corresponding quantities in (5), thus
will converge. Furthermore, in most clinical trials the dropouts would not be a
major portion of the whole patient sample and the proportion should be roughly
constant as the sample size gets larger (otherwise the usefulness of the study is
questionable). Consequently it is conceivable that the covergence of Sn/n is to
a positive definite matrix, and the convergence rate of λ̂−λ

σ b
1/2
n to N(0, 1) should

be similar to that when there is no dropout, i.e., at the rate of n−δ/2.

Corollary. Under (c.1)-(c.3) and the regularity conditions that
√

n(β̂ − β)/ˆ̄ω
has asymptotically a standard normal distribution, β̂ and λ̂ are asymptotically
independent.

Proof.

Pr[
√

n(β̂ − β)/ˆ̄ω < u, (λ̂ − λ)b1/2
n /σ < v] − Φ(u)Φ(v)

= EI[
√

n(β̂ − β)/ˆ̄ω < u]I[λ̂ − λ)b1/2
n /σ < v] − Φ(u)Φ(v)

= EI[
√

n(β̂ − β)/ˆ̄ω < u]{I[(λ̂ − λ)b1/2
n /σ < v] − Φ(v)}

+E{I[
√

n(β̂ − β)/ˆ̄ω < u] − Φ(u)}Φ(v).
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The second term converges to zero, and

EI[
√

n(β̂ − β)/ˆ̄ω < u]{I[λ̂ − λ)b1/2
n /σ < v] − Φ(v)}

= EI[
√

n(β̂ − β)/ˆ̄ω < u]{Pr[λ̂ − λ)b1/2
n /σ < v|mi] − Φ(v)}

≤ CEm(
n∑
i=1

|uni|2+δ)b(2+δ)/2
n → 0

by (6) and (8).

4. Application for Analysis and Study Design

As noted previously, we have essentially a “two endpoints” problem that
needs to be addressed simultaneously: parameter λ represents the treatment
effect for completers and β compares the dropout rates between treatment groups.
After showing that β̂ and λ̂ are asymptotically independent, the task of combining
becomes easy. Several simultaneous tests that combine β̂ and λ̂ were given in SQ,
including the generalized, large sample version of Weiler’s test (1964), Bonferroni-
type adjustment of p-values, and the weighted test. The purpose of having a
combined test is mainly to increase power and, at the same time, control the
overall type-I error rate. See examples in SQ. The sample size calculation at the
design stage can also be considered using the weighted test by specifying (β, λ)
and their assumed variances in the alternative hypothesis (see SQ page 1231).

5. Discussion

This paper provides the theoretical justification for the previous paper of
Shih and Quan (1997), in which the spirit of the “composite” or “pattern but
not mix” approach to dropouts problem in clinical trials is discussed in detail.
The importance of the results established in this paper, namely the asymptotic
normality and independence of the test statistics without assuming the normal-
ity of the random error, goes beyond the several combined tests given in SQ.
For example, as was suggested in SQ, the dropout probability can be extended
to “time to dropout”, and the “conditional mean” at the last time-point of the
completers can be extended to “slope type” parameters for repeated measures.
The extension of the models (3a and 3b) in Section 2 to a survival model and
a mixed effects model, or even to a generalized linear model, is future work.
The key is to show, with proper conditions, that the estimate of λ is asymptotic
normal unconditionally on the missing data pattern. Hogan and Laird (1997) re-
cently considered this kind of extension in their approach to the dropout problem.
However, in their paper (p.244), even under a mixed effect model for a normally
distributed response variable, the asymptotic independence of the estimates had
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to be assumed. Our results in Section 3 might provide a framework to prove the
asymptotic independence for this extended problem.

As a methodology useful for dealing with incomplete data from clinical trials
(see Myers (1999)), we would like to comment on the term “bias”, which is often
ambiguously applied to “completers only” analysis. First of all, the composite
(or pattern but not mix) approach proposed is not “completers only” analysis
since, as argued in SQ and here, the dropout probability is an important outcome
to be included in the comparison between treatment groups. This is the spirit
of the “composite” approach. Second, the completers are a subgroup and, as
others have pointed out, would provide a biased estimate of the treatment effect
for the whole patient group. However, it would not be biased for the completers
subgroup itself, and is what the conditional parameter λ is all about. Simply
put, λ̂ may be biased for θ, but is unbiased for λ.

The main idea of the SQ paper was to argue that the conditional treatment
effect for the completers (λ) is more clinically relevant than the marginal treat-
ment effect for the hypothetical average of “completers plus dropouts” (θ) when
dropouts are present. Consider the case of hypertension, for example. When a
clinician prescribes a anti-hypertensive treatment to a patient based on a study
result where early dropout is a problem, he or she would advise the patient as
follows: “Here is a treatment for your hypertension. You need to take the drug
for 6 months according to the prescription. If you complete the treatment course
for 6 months, I expect your blood pressure to be lowered by 15%. But, according
to the clinical study, there is 10% chance that you may not complete the pre-
scribed course because of the side effects associated with the drug. . . ..” This
and the paper of SQ aim to support this kind of statement for clinicians.

We recognize that in the literature, many people have discussed making in-
ference of the hypothetical complete data parameter θ, in relation to the so-called
“intention to treat” (ITT) principle. However, it is also recognized that when
dropouts occur in a study, the ITT principle is difficult to achieve since no mea-
surement data will be available (unlike the mortality study where ITT originated,
since each patient’s survival endpoint is always known); see, for example, Lewis
and Machin (1993). This and the SQ paper, on the other hand, emphasize test-
ing for the pragmatic incomplete data parameters λ (for completers) and β (for
dropouts). The ITT intends to answer the question: “What would be the treat-
ment effect if patients would not dropout?” The latter addresses the question:
“What is the treatment comparison in the presence of dropouts?” We believe
the latter is also, if not more so, a pertinent question for clinical trials.

Other bias is subtler. That is, the completers form a post-randomization
subgroup, as addressed in Shih and Quan (1998), hence may not be balanced with
respect to the baseline characteristics between the treatment groups. Essentially,
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the incomplete data is semi-observational and needs to be treated as such. We
addressed this issue by using baseline covariates in (3b), and assumed that the
treatment groups are comparable for the completers with respect to their baseline
characteristics after adjusting for the covariates. In SQ, we also suggest using
matching by propensity scores, but this requires a very large data set.
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