Supplementary Material: Proofs

The following lemmas prepare for the proof of concentration properties on prior density
mo(B;/0) for j =1,...,p, on m,-dimensional vector 3;/c. As introduced earlier, we con-

sider the shrinkage prior
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For j =1,...,pn, we let p(\;]|¢;) denote the prior density for A; given 1; and p, (1) denote
the prior density for 1, given the hyper-parameter «. In the following lemmas on the
multivariate Dirichlet-Laplace (DL) prior, we want to show that it concentrates within a
small neighborhood around zero with a dominated and steep peak, while retaining heavy

tails away from zero.

Lemma 1 For any positive constant > 0 and thresholding value a,, < V:Téfn /P

if the Dirichlet parameter satisfies a < py, ) for v > I

Lemma 2 For a small constant 77 > 0 and E defined in assumption A(2),
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Lemma 3 The prior density m,(3,/0) satisfies

max sup Ta(®1) < p, (6)
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for a constant C’ and slogl, < logp,,

The three lemmas above specify the conditions on prior concentration. Lemma 1 and
Lemma 2 establish that the prior probability that the Ls-norm of each basis coefficient
larger than a, is arbitrarily small with the constraint: a, < \/W% /Dn. Therefore, the
shrinkage prior on 3, /o has a dominated and steep peak around zero. Moreover, Lemma
3 controls the variation in the prior density of basis coefficients at points not too close to
zero. The shrinkage prior density concentrates in a very small area around zero but also
has heavy and sufficiently flat tails. Thus the prior mimics the composition of a continuous

distribution and a point mass at zero. The proof of these lemmas follows.

Proof of Lemma 1

For a vector & of dimension m,,, the prior density is defined in and . When A\ is given,

T z|2/A ~ X2, . Next, we have
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For any constant p > 0, we can conclude that
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where the last inequality is obtained from the tail property of y2-distribution.



Next, from Lemma 3.3 in Bhattacharya et al. (2015), it follows that
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for a constant C; > 0. Combining the inequalities in , and @, we have
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for a < pn, where v > p.

Proof of Lemma 2

When \; is given, the m,-dimensional vector x; satisfies that ||z;||/1/A; s Xm,, for j =
1,...,pn. Therefore, for the prior of \; defined in ,

E(lz;1) = B[E(lz;1|\)] = B[VAB(l2]l/v/A]2)] = ﬁ((gﬁfgi)/”E(ﬂ)’ (10)

and then E(y/X;) = E[E(\/Aj|¥;)] = T(3/2)E(\/¥;) = F(S/Q)%. Then for a con-
stant Cy > 0 free of a, E(||z;||) = C2y/mpa. By the Central Limit Theorem,

if a < %, which can be verified since a < p,, ) for v > 0. Therefore, we show that
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Next, we need to prove that — log (inf)z< mre Ta(®)) < ne2/s. For s1/ss close to zero,
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As )\ follows prior distribution in for a given hyper-parameter «, we have
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for a constant Cy > 0. Therefore, when we have m,,/s; < ne2/s and sy < ne2 /s, we have

E2
a(w)) < % log(27mss) + TnZ (14 v)logpn + 52/2 < ne /s, (14)
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Proof of Lemma 3

By assumption, min;ce- % > €y, MaX;cex ”%” < F and
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where the function of A in the integrand f*(\) % (2w\)~™n/2e=I=I°/2\ s concave and it

is increasing on (0, ||z||*/m,] and decreasing on (||x||?/m,,,00). Then we can separate the



integral by ||z||*/m, logp, so that f*()\) is increasing until the point ||z||*/m,,. Since
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for C5 > 0 a constant free of n. The inquality in is obtained from the conlcusion in the

proof of Lemma 2. Then for m,, > ne?, we can prove that
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for a constant Cf > 0. The inequality on the ratio implies that, for a given @ such that

llz||?/ /M € (€n, E), the prior density of & has the dominated mass on A € (||z||?/m,, log p,, 0):
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From ([17), we have the following results. For any ||| and ||z2| such that ||z1] < ||z2,

contributions of A to m,(x1) and 7, (x2) outside of the interval A € (s3,00) are negligible,



where s; % min (ll1][2/mn log pp, [|@2]|? /M log p,). Then we have
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Hence slogl, < Cgsm,Ee,/ss for constant Cs > 0. In view of smye, < logp,, it follows

that slogl, < logp,.

Proof of Theorem 4.1

The proof of Theorem 4.1 follows the results of Theorem A.1 and Theorem A.2 in Song and

Liang (2016), but the difference is that we have additional bias in the true model,

Y = Zf] ) +o0e=B(X)B+ 0d + o€, (18)

where each additive function is estimated by m,-dimensional basis expansion. Therefore, Y
includes both bias term and linear regression part analogous to the model in Song and Liang
(2016). The linear coefficient 3 = (34, . .. ﬁpn)T is a p, X m,-dimensional basis coefficient
vector where a multivariate DL prior will be imposed for each covariate. The true model is
the additive non-parametric model » 37_, f(X;)+o%e, where f} # 0 are k-smooth functions
for j € £ and f; = 0 are zero effects for j ¢ £*. In our proposed model, we estimate each
function by basis expansion B(X})8;, which imposes an extra bias term & in (21) due to

approximation error. The magnitude of § is bounded by a multiplier of m_*



For B, = {At least p of ||3;/c|| is larger than a,} with m,p = ne./logp, and m,p, <
ne,, Cn = {|B(X)B = X5, f[(X))] = o7&} U{o?/0™* > (1 + &) /(1 — en)} U{0?/0™ <
(1—¢€,)/(1+¢€,)} and A, = B, UC,, we first consider test function ¢,, = max{¢/,, gzgn},

g— 1{‘YT(I—H5)Y_1‘266%} (19)
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for sufficiently large constants ¢ and ¢, where He = B(X) (B(XE)TB()Q))_1 B(X¢)T is
the hat matrix corresponding to the subgroup &, and ) jee f;‘(X ;) is the summation of true
non-parametric functions for covariates X; within subgroup £. For any £ that satisfies £ D £*,

Mal&] < mn(p + 5) < nep,
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Since the magnitude of basis expansion bias is in the order of m, ", we have

87 (1 — He)d <[|0]|* = nmy* < (n—ma|€]Jea,
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For normally distributed error €, given the property of chi-square distribution, we have

P (2|e” (I — He)8| > (n — ma|€])chen) < P (||| > chnm?Fe?) < exp{—c)'ne?}.
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Combining with the conclusion in (A.3) of Song and Liang (2016), we can prove that
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Next, f7(X;) can be approximated by B-spline basis expansion B(X;)3; with bias term

0, where 3 is the B-spline basis coefficients for the true non-parametric function. We have
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By the condition that m,(p + s) < ne2, we have, for some constant ¢},
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where the inequality is given by (A.4) of Song and Liang (2016) and the fact that [|d]] =<
v/nm; . Therefore, combining and , we can prove that E(p- 5«2)¢, < exp(—ésnes)
for some fixed ¢3, according to (A.5) in Song and Liang (2016).

For the additive model, the process to prove that sup(g ,2)ec, Eg(1 — ¢n) is similar to the

proof of Theorem A.1 in Song and Liang (2016), by replacing their covariate matrix X with



B(X). Therefore, we have inequalities

E(f+ ox2)0n < exp(—cne?), (23)
sSup E(ﬁ,UQ)(l - ¢n) < eXp(_C/nei)' (24)
(B,02)eCy,
The next step is to show that
D,
liT{n P{ ﬁiDné > exp(—cyzei)} > 1 — exp{—csne’}, (25)

for any positive ¢4, where m(D,,) is the marginal likelihood of the data after integrating out

the parameters on their priors and L*(D,,) is the likelihood under the truth so that

(B, 0?)dBdo>.

m(Dy) :/ (0")"exp{—[Y — B(X)B|*/20%}
orexp{—[lY" = 37", f7 (X)) /0?}

From the proof of Theorem A.l in Song and Liang (2016), we only need to show that,

conditional on 0 < 02 — 0*2 < ny/é?, for some constants c5 and cg,
Pn ) 2 2
P <W(HY — B(X)BIP/20° < Y =Y f;(X)|[ /o™ + c5neg> > en> S _ et
j=1

For our proposed model, each element in B(X) is smaller than 1 and ||| < nm_ 2 < ne2.
By the property of chi-square distribution and normal distribution, with probability larger

than 1 —exp{—csne2}, we have |[e]|? < n(1+d), |[e? B(X)]||o < cine, for constant ¢. Then



for model parameters (3, 0?), we have

Y = BEOBIF/20 < IV = (Fi(X0) + .+ f,(X,,)) /0" + csnel}
~{llec” /o + BIX)(B" — B)/7 + 80" [o|[* < |le][* + 2csne2}
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for some constant 1. The second subset relation is given by Assumption A;(3) such that the

eigenvalues of B(X)TB(X) are in the same order as n/m,. By Lemma 1 and Lemma 2,

W“(Z Hﬁj/UH < m/mnen‘() <ol—o?< nfei)
JgE
Pn—S

m(x;)dx, ... dx,, _, > exp{—cine>}

/Zﬁ?ﬁls ;]| <nvmnen ;21
. (uﬁj/on & [18: /ol = n/Fimens, |B/0 ]+ ny/iments] {0 < 0 — % < /& )

/"

>ne,, - inf w,(x)/s>ex —cnei.
S, it o(@)/s > expl—cjne)

These verify the inequality in .

Finally, from the proof of Theorem A.1 in Song and Liang (2016), for B, defined above,

we have P(B,,) < e~ for some constants ¢z, given that me|\>an To(x)dx < o ).

Therefore, combining the results of Pr(B,) < e~ with , and , we have

Pn 5 )

p* (W(HB(X)ﬁ - ny*<XJ>H > 0"/, or |07 — 0| > cuen| X, Y) > e‘cmen> < e @,
j=1

In conclusion, the results in Theorem 4,1 is proved.
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Proof of Theorem 4.2

The proof of Theorem 4.2 follows the proof of Theorem A.3 in Song and Liang (2016).
Note that in our proposed model, we have basis expansion matrix B(X) instead of covariate
matrix X, the coefficients vector 8 = (87, ... ,,6 ) are shrunk within blocks 8,,...,8, .
Furthermore, our model has an additional bias term & due to B-spline basis expansion.

We first define the set S; = {||B — B*|| < ci€n, |0? — 0" < ca6,}, and 7(B|o?) =
inf(g,52)es, 7(B,0%)/m(0?), T(Blo?) = supg, ,2)es, 7(B,0%)/7(6?). The maximum of Lo-
norm for each group within coefficient vector is defined as ||3||max 2 max 18;]l. We can

conclude by proof of Theorem A.3 in Song and Liang (2016),

max

P(¢=€|X,Y) (Hﬂ“*)c < an) 7(Be- o)y det(B(Xe )T B(Xe)) ™ (Var )

['(ag + (n —s)/2)
x lgf « ao+(n—s)/2’
el S 052) (SSE(B)/2 + )

(26)

where SSE(B¢+).) is the SSE when B .. is given and fixed.
Next, we let || BHmm = min ||3,|| be the minimum of £y-norms for each predictor within

coefficient vector. Similarly, we can show that

Ber)e

g

> Ay,

min

e - ¢px.y) s = (|| 2 o S0 ) Tl det(B (X B (X))
" <m> sup I'(ag + (n —s)/2)

18 ¢ryellmax<an (o*+caen) (SSE( (€ )/2 +b )a0+(n 5)/27

where SSE(B(¢/)c) is the SSE when B,/ is given and fixed.
Using the fact that the basis expansion bias is § such that [|§]|> < nm,_ ", we can follow

the derivation of (A.13) and (A.14) of Song and Liang (2016). With probability larger than
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1_4p’n Pn -,

SSE(B(eeye) =(Y — B(X(g+)e)Berye) (I = He)(Y — B(X(g+)e) Berye)
<o*2eT(I — He-Je + 0*287 (I — He-)d + || B(X(e)) Bier
207 /2mTogmn 3 18,1 (21)
JE(E)©

SSE(Bee) >0"%€" (I — He)e + 0*28" (I — He)d — 207\/2¢pnlogp, Y 18,1, (28)

JEE)°

2

and with probability 1 — p, “ for any constant cg, we have
eT(I — He)e — " (I — He)e < chmy|€\ €] log p,.

Since 67 (I — He )8 — 8" (I — He)d < cimy,|€\ € |nm;; %", we can conclude that

Sup“ﬁ(&*)cHmaxﬁan(o'*-i-QGn)(SSE<’8(§*)C)/2 + bo)a0+(N—S)/2
inf“g(é,)cHmaxgan(g*_FQEH)(SSE(,@(S/)C)/2 + bo)ao+(n—8)/2

<exp{cgmy[¢'\ € [log p, + cgmy[€'\ € [nm >} (29)

If m, = (=2-)Y2% we have nm,, 2" < log p,,, so that the right hand side of is bounded by

log pn
UQ)/E(Bg* o?

csmy,|§'\&*| log py, for some constant cg > 0. Given @ in Lemma 3, 7(B¢- ) <12

We can proceed with
P =¢1X,Y) 0" + co€y B e
’ <[® P =) /(1 — = ()€ AVl
P(¢ =&X,Y) ~ "o* — a6 [pn /( Dy )] exp{csma|§' \ £*[log pn }

smp—um el
o* — Co€p,

<l

with proper choice of the constants.

Therefore, with minjee- |3,/ = \/Mnén, following the proof of Theorem A.2 in Song and
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Liang (2016), we can prove that

18]|| — ano

S re-eper) <z (16-51 > min
§2¢*

)(7 Y) < e—cne%

In conclusion, we have P{W(f(an) =XY) > 1 —p;“”} > 1—p* for some constants

wip" > 0.
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