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Abstract: Covariate balance among different treatment arms is critical in clinical

trials, as confounding effects can be effectively eliminated when patients in differ-

ent arms are alike. To balance the prognostic factors across different arms, we

propose a new dynamic scheme for patient allocation. Our approach does not

require discretizing continuous covariates to multiple categories, and can handle

both continuous and discrete covariates naturally. This is achieved through devis-

ing a statistical measure to characterize the similarity between a new patient and

all the existing patients in the trial. Under the similarity weighting scheme, we

develop a covariate-adaptive biased coin design and establish its theoretical prop-

erties, thus improving the original Pocock–Simon design. We conduct extensive

simulation studies to examine the design operating characteristics and we illustrate

our method with a data example. The new approach is thereby demonstrated to

be superior to existing methods in terms of performance.
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1. Introduction

Peter Hall was one of the most influential and prolific researchers in modern

statistics. His contributions are broad and cover many important areas. From

interactions with him, the authors have been greatly influenced by his statistical

thinking, especially in how to use “smoothing” methods to increase modeling

flexibility and reduce estimation error. One of the nonparametric devices, called

kernel smoothing, is widely used in density estimation and nonparametric regres-

sion. In density estimation, Hall (1981) derived the law of the iterated logarithm

for the kernel estimator, discussed the choice of the order of kernels (Hall and

Marron (1988)), and addressed the issues on constructing confidence intervals

(Hall (1992)). In nonparametric regression, Hall (1984) investigated the asymp-

totic properties of the kernel regression estimator. A series of his follow-up works
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focused on the confidence intervals and confidence bands for kernel estimators,

which include Hall and Marron (1988), Hall (1992), Hall (1993), and Hall and

Horowitz (2013). Motivated by kernel estimation, we propose a kernel-based

covariate-adaptive randomization design. We apply the martingale convergence

theorem in Hall and Heyde (1980) extensively in deriving the asymptotic prop-

erties of the proposed design, which reinforces Peter Hall’s impact, especially in

the area of sequential analysis.

The primary goals of randomized clinical trials are to differentiate the treat-

ment effects efficiently as well as to treat patients effectively. If the treatment

effects of different drugs can be quickly discriminated, then patients outside of

the trial would benefit from the more effective therapy sooner. To achieve this

goal, allocation of patients is random to balance out both known and unknown

prognostic factors that may affect the response of interest, and the numbers of

patients should also be balanced across different treatment arms to achieve high

statistical power. For discrete covariates, various approaches have been developed

for patient allocation to achieve covariate balancing (Hu and Hu (2012)). These

include the biased coin covariate-adaptive randomization design (Wei (1978);

Antognini and Giovagnoli (2004)), which is an extension of the biased coin de-

sign (Efron (1971)) for balancing the sample size, and the Pocock–Simon design

which is based on a minimization method for sequential treatment assignment

(Taves (1974); Pocock and Simon (1975)). Despite their popularity, the main

drawbacks of the these designs are that continuous covariates must be catego-

rized into several groups, while clinical trials often collect a large number of

continuous covariates and different ways of categorization may lead to different

imbalanced structures. In addition, breaking down continuous covariates into

sub-categories often changes the nature of the covariates and makes distribu-

tional balance unattainable (Ma and Hu (2013)). If the sub-categories are not

appropriately defined, it can even lead to error and loss of efficiency in the ran-

domization procedure (Stigsby and Taves (2010)).

Such a problem has arisen in many clinical trials, which is illustrated with an

AIDS Clinical Trials Group study (Campbell et al. (2012)). To evaluate several

antiretroviral regimens in diverse populations, patients in the A5175 trial were

randomly assigned to the antiretroviral therapies with efavirenz plus lamivudine-

zidovudine (arm 1) and atazanavir, didanosine-EC plus emtricitabine (arm 2).

The study endpoint was the CD4 count at week 96. The baseline covariate CD4

cell count at screening was found to be strongly associated with the endpoint

with a p-value less than 2 × 10−16 in a simple linear regression analysis. To
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balance the CD4 cell count at screening, there was a controversy over the choice

of the cutoffs, either the clinically meaningful low CD4 count 200 or the sample

average 169. In a simulated clinical trial study, we compared the performances

of using these two cutoffs under the same covariate–adaptive procedure. The

resulting absolute mean difference between the two groups was 71.76 for the

cutoff 200, and 43.73 for the cutoff 169 with corresponding p-values of 0.002 and

0.06 for the two sample t-test of the mean differences. This suggested that a slight

variation in the cutoff can lead to substantially different allocation results. To

handle continuous covariates, Frane (1998) proposed to calculate the p-value for

the mean difference of each covariate, presuming that a new patient is assigned

to each treatment group. Using the minimal p-value as a representation of the

imbalance of assigning a new patient to a specific treatment, the new patient is

then assigned to the treatment with the largest minimal p-value. Stigsby and

Taves (2010) considered the rank-sum based covariate adaptive procedure, and

Su (2011) discussed a method using quantiles of the covariate differences. Ma

and Hu (2013) proposed a randomization procedure by defining the imbalance

of the covariates through kernel density estimators, which summarize all the

information in the covariate distributions.

To improve the overall balance among both continuous and discrete covari-

ates, we develop a kernel-based adaptive randomization framework that can si-

multaneously handle a large number of continuous covariates in a single step. In

particular, we define a similarity measure between each incoming patient and all

the existing patients, and then allocate the new patient with the largest proba-

bility to the arm that has the least overall similarity to the new patient. Through

weighing each observation by taking into account his/her similarity with the new

patient, the proposed method handles both discrete and continuous covariates in

a natural way and further broadens the traditional counting from integer values

to all nonnegative values.

The rest of the paper is organized as follows. Section describes our covariate–

adaptive randomization procedure via introducing the similarity measure and

modifying the biased coin design. In Section 3, we cast the Pocock–Simon design

in our new framework so as to accommodate continuous covariates. We carried

out simulation studies and a data example to illustrate the performance of the

new designs in Section 4. Section 5 concludes with some remarks. Theoretical

results are delineated in the Appendix and the corresponding proofs are presented

in the Supplementary Materials.
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2. Similarity Weighted Biased Coin Design

In a randomized clinical trial with m treatments, suppose that we have al-

ready assigned n patients to different arms, and a new patient arrives and is ready

for treatment assignment. Let Xi be the p-dimensional covariate vector for the

ith patient, and Iiu be the indicator of assigning the ith patient to treatment

arm u, u = 1, . . . ,m.

We define a similarity measure wi between the ith existing patient and the

incoming (n+1)th patient, whose covariate vector is Xn+1 with X(n+1)k denoting

their kth component. For ease of exposition, we standardize all the covariate

values to be within the range of [−1, 1]. The similarity measure between the new

patient and the ith patient in the trial is defined as

wi =

p∏
k=1

wik, i = 1, . . . , n, (2.1)

where

wik = Khn
(Xik −X(n+1)k), (2.2)

Khn
(x) = K(x/hn)/hn, and K(·) is a kernel function satisfying K(·) ≥ 0, and

K(0) = 1, and hn > 0 is a bandwidth. There are standard kernel functions, and,

although the selection of kernels does not affect the large sample properties of

our allocation procedure, we recommend use of the Epanechnikov kernel for the

bounded covariates, which is the most efficient one in minimizing the averaged

mean squared error (Epanechnikov (1969)). The similarity measure wik indicates

a higher level of similarity for patients whose kth covariate values are closer to

X(n+1)k, and the similarity decreases to zero as the difference between Xik and

X(n+1)k reaches the bandwidth hn, for k = 1, . . . , p. By raising the value of hn,

the kernel takes into account more Xik’s with larger distances from X(n+1)k.

We propose the similarity weighted biased coin design for balancing covari-

ates, described as follows.

1. Calculate the similarity measure of the new patient with each of the existing

n patients in the trial to obtain w1, . . . , wn using (2.1).

2. For u = 1, . . . ,m, calculate the weighted total number of patients in treat-

ment arm u,

nu =

n∑
i=1

wiIiu, (2.3)

and obtain the imbalance measure of arm u as gnu = nu/(
∑m

u=1 nu).
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3. Define the allocation probability πu to be a function of gn = (gn1, . . . ,

gn(m−1))
T that is decreasing with respect to each component gnu. We assign

the new patient to treatment arm u with probability πu(gn), u = 1, . . . ,m.

In the construction of the similarity weighted biased coin design, a patient who

is more similar to the new patient receives a larger weight, and is counted more

towards the total number of patients in a specific arm. Compared with the bi-

ased coin design where nu =
∑n

i=1 Iiu, our definition of nu in (2.3) is a weighted

sum of the treatment indicators Iiu. If the covariate vector Xi contains only dis-

crete variables, our method reduces to the existing discrete covariate–adaptive

randomization by choosing hn to be smaller than the smallest difference in dif-

ferent categories, hn < minXik 6=Xi′k |Xik − Xi′k|. Such a construction leads to

wi = 0 whenever Xik 6= X(n+1)k for at least one k, and wi reaches its maximum

if Xi = Xn+1. As a result, our method reduces to the biased coin randomization

procedure within each stratum defined by the discrete covariates.

We highlight several advantages of the proposed similarity weighting scheme.

First, it overcomes the difficulties caused by the high dimensionality of the covari-

ates. To accommodate high-dimensional covariates, Yuan, Huang and Liu (2011)

resorted to a linear model structure. But it is subject to model misspecification.

Second, even when all the covariates are discrete, we can choose the bandwidth

hn sufficiently large to avoid the situation of too many strata and too few or even

zero observations within some strata. Finally, the procedure is automatic and

flexible as reflected in the various ways of constructing the similarity measure.

To study the asymptotic properties of the imbalance measure Dnu =
∑n

i=1

(Iiu − κu)Xi, we explore the properties of DT
nuz =

∑n
i=1(Iiu − κu)XT

i z, u =

1, . . . ,m − 1, where z is an arbitrary p dimensional vector. We show that the

allocation achieves the target ratio in the long run, as follows.

Theorem 1. Assume that Conditions (C1) – (C6) hold and let Qz = E(zTXiX
T
i

z). Then the similarity weighted biased coin design with an allocation probabil-

ity πu{Un(Xn+1)}, n−1/2(DT
n1z, . . . ,D

T
n(m−1)z)T converges to a zero-mean multi-

variate Gaussian distribution, with the variance–covariance matrix having the uth

diagonal element (1+2ρ)−1(1−κu)κuQz and the (u, v) entry −(1+2ρ)−1κuκvQz,

for u, v = 1, . . . ,m− 1, u 6= v.

Due to the arbitrariness of z, we readily obtain the asymptotic normality of

Dn. The proof relies heavily on the martingale convergence theorem (Hall and

Heyde (1980)), which is provided in the Supplementary Material.
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3. Similarity Weighted Pocock–Simon Design

The proposed similarity measure can also be incorporated into the Pocock–

Simon design (Pocock and Simon (1975)), namely the similarity weighted Pocock–

Simon design, so that continuous covariates no longer need to be discretized. For

a situation in which we assign the new patient to treatment 1, the similarity

weighted Pocock–Simon design can be implemented as follows.

1. For the kth covariate, let nku =
∑n

i=1wikIiu be the weighted total number

of subjects assigned to treatment arm u, where wik is defined in (2.2).

2. Calculate the aggregated variation in the form of

dk =
1

2
∑

u,v∈1,...,m(nku − nkv)2

for the kth covariate.

3. Sum the dk’s across all the covariates, leading to the imbalance measure

gn1 =
∑p

k=1 dk.

4. Calculate gn2, . . . , gnm by presuming that the new patient is assigned to

treatment arms 2, . . . ,m, respectively.

5. Order the gnu’s as gn1 ≤ · · · ≤ gnm, create the randomization probabilities

satisfying π(n+1)1 ≥ · · · ≥ π(n+1)m, and assign the new patient to the m

treatment arms with probabilities π(n+1)1, . . . , π(n+1)m.

The selection of dk is not unique. For example, the sum of absolute differences,

dk = 1/2
∑

u,v∈1,...,m |nku−nkv|, can also be used to measure the total imbalance

among the treatment arms for the kth covariate. Our modified procedure can be

viewed as a generalized version of the original Pocock–Simon design procedure:

the former calculates the nku’s using a similarity weight wik, while the latter

sets the weight wik = 1 if the ith patient has the same kth covariate value as the

new patient, and wik = 0 otherwise. Our approach handles continuous covariates

through a similarity-based weighting scheme and does not require discretization.

4. Numerical Studies

4.1. Simulation study

To evaluate the finite sample properties of the proposed similarity weighted

biased coin design and the similarity weighted Pocock–Simon design, we simu-

lated 1,000 two-arm clinical trials, each containing n = 50 subjects. We generated

covariates in the form of
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Table 1. Comparison of the sample size imbalance, |n1 − n2|, among the similarity
weighted biased coin design, biased coin design, similarity weighted Pocock–Simon design
and Pocock–Simon design for different dimensions (p) of covariates.

Dimension of covariates p
Design 1 2 3 4 5 6 7 8
Weighted biased coin 1.277 1.289 1.265 1.219 1.325 1.343 1.286 1.411
Biased coin 1.279 1.276 1.334 1.687 2.047 2.247 2.456 2.605
Weighted Pocock–Simon 0.122 0.159 0.159 0.183 0.199 0.211 0.233 0.246
Pocock–Simon 0.387 0.241 0.221 0.262 0.288 0.294 0.354 0.351

Table 2. Comparison of the covariate imbalance using the F statistics, among the simi-
larity weighted biased coin design, biased coin design, similarity weighted Pocock–Simon
design and Pocock–Simon design for different dimensions (p) of covariates.

Dimension of covariates p
Design 1 2 3 4 5 6 7 8
Weighted biased coin 0.278 0.297 0.299 0.311 0.326 0.345 0.373 0.389
Biased coin 0.280 0.299 0.312 0.402 0.525 0.663 0.809 0.872
Weighted Pocock–Simon 0.028 0.053 0.085 0.128 0.166 0.207 0.256 0.308
Pocock–Simon 0.149 0.145 0.162 0.193 0.225 0.271 0.322 0.358

Xik =
2 exp(ξik)

1 + exp(ξik)
− 1, k = 1, . . . , p, (4.1)

where the dimension p of covariates ranged from 1 to 8, and ξik was a normal

random variable with mean k/2 and standard deviation 5. To implement the

biased coin design and the Pocock–Simon design, we discretized the Xik’s to be

0 or 1 according to the negative or positive signs of the covariates. We used the

allocation probability function φu(y) = (y−1u − 1)/
∑m

u=1(y
−1
u − 1) in Atkinson

(1982), which satisfies Conditions (C1) and (C2) as shown in Smith (1984). In

all the numerical studies, we took the bandwidth to be 2.1, so that the support

of the kernel would completely cover all the covariates. We experimented with

other bandwidths between 2 and 2.5, and the results turned out to be similar as

long as the bandwidth was chosen to be slightly larger than the covariate range.

We first make comparisons from two aspects: the imbalance of the sample

sizes and the imbalance of the covariates between the two arms. To quantify the

former, with nu the sample size in arm u, u = 1, 2, we obtained |n1−n2| averaged

over the 1,000 simulated trials for all four methods: similarity weighted biased

coin design, biased coin design, similarity weighted Pocock–Simon design and

Pocock–Simon design. Table 1 summarizes the imbalance measure on sample

sizes, that demonstrates their similarity weighted designs tend to induce more
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Figure 1. Survival functions of sample size imbalance for the similarity weighted bi-
ased coin design (dotted line), biased coin design (dot-dashed line), similarity weighted
Pocock–Simon design (solid line), and Pocock–Simon design (dashed line).

balanced numbers of subjects between the two arms. Figure 1 shows the survival

function, one minus the empirical cumulative distribution function (CDF), of

|n1 − n2| over the 1,000 replicated data sets. Clearly the similarity weighted

designs outperform their counterparts. To compare the covariate imbalance, we

borrow the idea from the analysis of variance to construct an F test statistic for

each covariate,

Fk =
SSBk/(m− 1)

(SSTk − SSBk)/(n−m)
, k = 1, . . . , p, (4.2)

where the between-arm sum of squared errors (SSBk) is

SSBk =n1

(
n−11

n∑
i=1

Ii1Xik−n−1
n∑

i=1

Xik

)2

+n2

(
n−12

n∑
i=1

Ii2Xik−n−1
n∑

i=1

Xik

)2

,
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Figure 2. Survival functions of sample size imbalance for the similarity weighted bi-
ased coin design (dotted line), biased coin design (dot-dashed line), similarity weighted
Pocock–Simon design (solid line), and Pocock–Simon design (dashed line).

and the total sum of squared errors (SSTk) is given by

SSTk ≡
n∑

i=1

(
Xik − n−1

n∑
i=1

Xik

)2

.

As the F statistic has the same distribution across all the covariates, we sum-

marize the overall mean of the F statistics for all the covariates in Table 2, and

plot the survival functions of the F statistics in Figure 2. Both the similarity

weighted biased coin design and similarity weighted Pocock–Simon design out-

perform their counterparts in terms of balancing the covariates. For the biased

coin designs, the improvement by using similarity weights enhances as the dimen-

sion p increases, while the opposite is true for the Pocock–Simon designs. Figure
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Table 3. Comparison of the estimated treatment effect under the similarity weighted
biased coin design, biased coin design, similarity weighted Pocock–Simon design and
Pocock–Simon design, where µ̂ is the estimate of µ = −5, and SD and MSE are the
corresponding empirical standard deviation and mean squared error, respectively.

p µ̂ SD MSE µ̂ SD MSE
Weighted biased coin Weighted Pocock–Simon

1 −4.983 0.314 0.332 −4.992 0.134 0.141
2 −5.030 0.830 0.860 −4.999 0.686 0.687
3 −5.022 1.723 1.745 −4.949 1.698 1.749
4 −4.864 3.050 3.186 −5.058 3.164 3.223
5 −4.924 4.776 4.852 −4.726 5.169 5.442
6 −5.130 6.778 6.909 −4.573 7.328 7.755
7 −4.997 8.224 8.227 −4.959 9.401 9.442
8 −5.153 9.482 9.636 −5.016 10.582 10.598

Biased coin Pocock–Simon
1 −4.996 0.332 0.335 −4.996 0.268 0.272
2 −5.028 0.822 0.850 −4.994 0.865 0.871
3 −4.989 1.783 1.794 −5.039 1.899 1.938
4 −5.025 3.201 3.225 −5.063 3.660 3.723
5 −5.015 5.328 5.343 −4.956 5.821 5.865
6 −5.167 7.930 8.098 −5.239 7.921 8.161
7 −5.353 9.787 10.140 −5.372 10.015 10.387
8 −5.253 11.797 12.050 −5.169 12.011 12.181

2 further demonstrates the advantages of the proposed methods, and particularly

the similarity weighted Pocock–Simon design that performs the best in terms of

reducing the imbalance in both the sample size and covariates.

To explore the estimation of the treatment effect under the four designs, we

considered a two-arm trial, where Ii = 1 indicates that the ith patient is allocated

to arm 1, and Ii = 0 otherwise. We simulated 1,000 clinical trials with response

Yi generated as

Yi = µIi + exp

(
βTXi

2

)
+ εi,

where the true parameter values were µ = −5 and β = (p/3, . . . , p/3)T, εi was

a zero-mean normal random error with standard deviation 0.1, and Xi was gen-

erated as before. We chose p = 1, . . . , 8 and sample size n = 30. We allocated

the first patient with equal probability to each arm, and started the adaptive

allocation from the second patient.

Table 3 shows the estimated treatment effect µ̂ =
∑n

i=1 IiYi/n1 −
∑n

i=1(1−
Ii)Yi/n2, and its empirical standard deviation and mean squared error for p =
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1, . . . , 8. Here µ̂ is a consistent estimator of µ regardless of the regression form

(Shao, Yu and Zhong (2010)). The biases of the estimates of µ are negligible

under all four designs, while the empirical standard deviations and mean squared

errors deteriorate as p grows. Again, the similarity weighted biased coin design

and the similarity weighted Pocock–Simon design outperform the unweighted

counterparts, in terms of the mean squared errors.

4.2. Data example

We applied the biased coin design, the Pocock–Simon design, and the cor-

responding similarity weighted versions, to the data from the AIDS trial A5175.

To study the treatment effect, seven covariates were considered important, which

should be balanced between the two arms at randomization: CD4 cell count and

percentage (at screening), Karnofsky score, Hepatitis-B surface antigen reactiv-

ity, the laboratory test values including platelets, white blood cell count, absolute

neutrophil count, and albumin. In the original trial, there were n = 370 patients

with complete observations, and they were allocated to the two arms with equal

probability. We took the standardized CD4 count at week 96 as the outcome,

and transformed the standardized covariates via 2 exp(x)/{1 + exp(x)} − 1 to

ensure that all the covariate values were within [−1, 1]. Let Xiu and Yiu denote

the covariates and response, respectively, for the ith patient in arm u, u = 1, 2.

We built separate models for each arm,

Yiu = β0u + βT
uXiu + eiu, u = 1, 2,

with eiu ∼ N(0, σ2u). We obtained the least squared estimators (β̂0u, β̂
T

u ) for

each arm, and used these parameter estimates as the true values to generate the

outcomes in different randomization procedures.

For illustration, we selected the first 50 samples to evaluate and compare the

four designs. The observed difference of the mean outcomes between the two arms

over these 50 samples is 0.39, which is substantially different from that using the

full 370 samples, 0.22. Since the trial data are balanced in covariates for n = 370,

we used 0.22 as a benchmark to approximate the true underlying mean difference

between the two arms. Using each of the four randomization procedures, we

re-randomized the 50 patients and each procedure is replicated 1,000 times to

obtain the average effect. The means of |n1 − n2| under the similarity weighted

biased coin design, biased coin design, similarity weighted Pocock–Simon design

and Pocock–Simon design were 1.30, 1.49, 0.17 and 0.32, respectively, and the

corresponding means of the F statistics in (4.2), summing over all the covariates,

were 3.24, 5.41, 2.29 and 2.56. The results show that the similarity weighted
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procedures outperform the original counterparts in reducing both the sample

size and covariate imbalance and, overall, the similarity weighted Pocock–Simon

design performs the best among the four designs. In addition, the estimates of

the difference of the mean responses were 0.306, 0.306, 0.306 and 0.313 using the

similarity weighted biased coin design, biased coin design, similarity weighted

Pocock–Simon design and Pocock–Simon design, respectively. Compared with

the observed mean difference in the first 50 samples, the estimates from the four

covariate–adaptive designs were closer to the benchmark value 0.22, indicating

that covariates adaptation helps to improve the balance.

5. Discussion

To accommodate continuous covariates in the biased coin design and Pocock–

Simon design, we develop a kernel-based similarity measure and its associated

imbalance assessment criterion. We define the allocation probability function

based on the new imbalance measure and show that the covariate equilibrium

measure Dnu of the proposed similarity weighted biased coin design asymptoti-

cally follows a normal distribution. We choose the continuous allocation function

π instead of a discrete one, because discrete allocation functions can neither dis-

criminate between large versus small values of |gn1−gn2| nor discriminate between

large versus small numbers of subjects, hence typically yield designs with poor

small sample properties (Wei (1978); Smith (1984); Hu and Zhang (2004)). In

terms of the bandwidth requirement, we find that as long as the bandwidth is

chosen to be slightly larger than the covariate range, the results are not sen-

sitive to the bandwidth choice. Not only does the asymptotic property of the

covariate equilibrium Dnu explain the covariate discrepancy between the arms,

but it is also an essential component for analyzing the hypothesis testing proce-

dures in the linear regression problem (Shao, Yu and Zhong (2010); Ma, Hu and

Zhang (2015)). Our theoretical results are essential for constructing inference

procedures under the similarity weighted biased coin design.

Supplementary Materials

The proof of Theorem 1 and several related lemmas and their proofs are

presented in the online Supplementary Materials.
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Appendix

A.1 Allocation probability function

Suppose that n samples have been enrolled in the trial. The allocation prob-

ability πu is a function of the imbalance measure vector gn = (gn1, . . . , gn(m−1))
T.

Let π = (π1, . . . , πm−1)
T. Furthermore, let κ = (κ1, . . . , κm−1)

T. We show that

π drives gn towards κ under the following conditions. For notational simplicity,

we surpress the subindex n in these conditions.

(C1) πu(g) is a nonnegative and monotonically decreasing function with respect

to the uth element gu. Let | · | be the L1 norm of a vector, the vector π(g)

satisfies |π(g)| ≤ 1 for any component-wise nonnegative m− 1 dimensional

vector g with |g| ≤ 1. Moreover, πm(g) = 1 − |π(g)|, gm = 1 − |g|,
κm = 1−|κ|. If gu ≥ κu, then πu(g) ≤ κu, and if gu < κu, then πu(g) > κu,

u = 1, . . . ,m.

(C2) πu(g) is a twice continuously differentiable function of g with a uniformly

bounded Hessian matrix.

Let π′u(g) = ∂πu(g)/∂g, π′ur(g) be the partial derivative of πu(g) with respect

to its rth argument, and π′′u be the (m− 1)× (m− 1) Hessian matrix.

Remark A1. Conditions (C1) and (C2) were used in Smith (1984) to establish

the properties of the biased coin design. Condition (C1) implies πu(κ) ≤ κu. If

the inequality is strict for any u, summing both sides over u = 1, . . . ,m, we obtain

1 < 1, which is a contradiction. Therefore, we have πu(κ) = κu for u = 1, . . . ,m.

Remark A2. For an arbitrary δ,

πm(κ1 + δ, κ2 − δ, κ3, . . . , κm−1) = κm + δ{π′m1(κ)− π′m2(κ)}+O(δ2).

Here πm(κ1 + δ, κ2 − δ, κ3, . . . , κm−1) is at most κm regardless of the sign of δ.

As δ → 0, O(δ2) goes to 0 faster than the leading terms. This gives δ{π′m1(κ)−
π′m2(κ)} ≤ 0 and −δ{π′m1(κ) − π′m2(κ)} ≤ 0. Therefore, π′m1(κ) = π′m2(κ).

Similarly, for each u = 1, . . . ,m − 1, π′mu(κ) = ρ, a constant that does not



2854 JIANG, MA AND YIN

depend on u. Following the same argument, for any u < m, u 6= 1,

πu(κ1 + δ, κ2, . . . , κm−1) = κu + δπ′u1(κ) +O(δ2) ≤ κu
for all δ, which implies π′u1(κ) = 0 and in turn π′ur(κ) = 0 for r < m, r 6= u.

Remark A3. Because
∑m

u=1 πu(g) = 1 for all g,
∑m

u=1 π
′
ur(g) = 0 for any

r = 1, . . . ,m− 1, we have
m∑

u=1

π′ur(g) = π′rr(g) +

m∑
u=1,u6=r

π′ur(g) = π′rr(g) + π′mr(g) = 0,

which implies

π′rr(κ) = −π′mr(g) = −ρ ≤ 0,

for r = 1, . . . ,m − 1. The last inequality holds since πr(g) is non-increasing at

gr = κr.

Remark A4. Combining the results in Remarks 1 to 3, we have πu(κ) = κu for

all u = 1, . . . ,m; π′ur(κ) = 0 for u, r = 1, . . . ,m − 1 and u 6= r; and π′mr(κ) =

−π′rr(κ) = ρ ≥ 0 for r = 1, . . . ,m− 1.

With the imbalance measure

gnu = Unu(X(n+1)) =

∑n
i=1

∏p
k=1Khn

(Xik −X(n+1)k)Iiu∑n
i=1

∏p
k=1Khn

(Xik −X(n+1)k)
, (A.1)

if Un = (Un1, . . . , Un(m−1))
T, the allocation probability is πu(gn) =

πu{Un(X(n+1))}, where πu satisfies Conditions (C1) and (C2).

A.2. Asymptotic properties

We need additional conditions for the theoretical development.

(C3) In the kernel function Khn
(t) = K(t/hn)/hn, K is a second order sym-

metric kernel function that satisfies
∫
K(t)dt = 1,

∫
K(t)2dt < ∞, and∫

t2K(t)2dt <∞. hn satisfies nh2n →∞, and nh4n → 0.

(C4) The density function fk(Xk) is bounded away from zero and infinity almost

surely on its support for all k.

(C5) X2
k is a uniformly integrable random variable.

(C6) Let n0 > ρ ≥ 0. If the first n0 patients are randomized to arms 1, . . . ,m

with probabilities κ1, . . . , κm, respectively, the adaptive allocation process

starts from the (n0 + 1)th patient.

Let I0u = 0. When the desired allocation ratio in the long run is κu,

u = 1, . . . ,m, we show that the covariate equilibrium of the similarity weighted



BALANCED RANDOMIZATION VIA KERNEL SMOOTHING 2855

biased coin design, Dnu ≡
∑n

i=1(Iiu − κu)Xi, has mean zero and is asymptoti-

cally normally distributed. We first state the asymptotic property for similarity

weighted biased coin design with one covariate.

Lemma A1. Assume that Conditions (C1) – (C6) hold. Let Q = E(X2
i ), Dnu =∑n

i=1(Iiu − κu)Xi,

Ω =

(1 + 2ρ)−1(1− κ1)κ1 . . . −(1 + 2ρ)−1κ1κm−1
...

. . .
...

−(1 + 2ρ)−1κ1κm−1 . . . (1 + 2ρ)−1(1− κm−1)κm−1

Q

and Dn = (Dn1, . . . , Dn(m−1))
T. Then the similarity weighted biased coin de-

sign with the allocation probability πu{Un(Xn+1)}, n−1/2Ω−1/2Dn converges to

a standard multivariate normal distribution.

The proof of Lemma 1 is given in the Supplementary Material.
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