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S.1 Necessary results for Lemma 1

For a new data point X,,.1, (A.1) reduces to

PKy (X — X))
Unu(Xn—H) - Zz:nl hn( +1) )
ZiZI Khn(‘Xi - Xn+1>

and U, (Xp11) = {Un1 (Xns1), -« s Unpm—1)(Xog1) } 1. Weset m,{U,,(Xn11)}
to be the probability of assigning the new observation to arm u. To
derive the asymptotic property of Dy, = > i (Li — £4)Xi, we first

state useful lemmas that support Lemma 1.

Lemma 1. Suppose that n subjects have been enrolled in a clinical



Fei Jiang, Yanyuan Ma and Guosheng Yin

trial. For a new data point X, and arms v and v, we have

=1

and

| Z K, (Xi — Xog1) (Lo — fiu)Xn+1| =

i=1

E {zn: K, (Xi — Xpo1) (L — ﬁu)} = O(Tlhﬁl)

Oy(nt21;12).

Proof: Let F; be a sigma field generated by all the event history up

to stage j. Suppose that a new participant with covariate X, 1 = xq

is to be allocated. We define a function n(z,y) = I(z # y)(x —y) +

I(x = y)z, then

12

Fjl
E Z K, An(Xs, w0) } (Liw — Ku) | | Fjs Xjr1 = 2o
= ]
o -2
= E( Z Khn{n(XZJ xO)}(Im - ’iu) ~Fj,Xj+1 = ZE0>
L i=1 _
j
#2) 32 K (10X )} F = )
=1
< B | K, (050, 20) T — )|y X = x}
+E [{Kn, (20) Ty — k) ¥ | Fjy X1 = xo}
- ,
< E( ZKhn{ﬂ(Xu 20) }(Liw — Klu)] Fiy Xjp1 = iBo)
L =1
+E {Khn ($0)<I(]‘+1)u — Iiu)}Q E,XjJrl = $0] a.sS. (Sl)

The last equality holds almost surely, because for any fixed value
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xo,Xi%.fC()(’L':l,...,

Further, with probability one,

{iKhn{ﬁ(Xia 20) }(Liw — fiu)] E [Khn{ﬁ(mo,xo)}([(j+1)u —

<

by the fact that U, —

according to Condition (C1).

sides of (S.1), we have

[7+1

E ZK;M{MX

[
< E ZKhn{n(X Xjt
Li=1

Summing over j from 1 to n,

>
j=1

< yr
j=1

[j+1

> Ky {n(X
L =1

i

ZKhn{U(X Xjn
| i=1

X +1>}(Iiu

— Hu)

)} (L

— K/u)

J) a.s., which implies n(X;, zo)

12

42

X +1)}(Iiu

+ 3 E{Ku, (X)L sy —

)} Liu

+ E{Kp,(

- ’{u)XJ’

- Kvu)Xj

Z K, (X; — x0) (L — mu)} E {Khn (0) (I 41y — Fu)

= {Z Kh — Xy } {U}(.’Bo) - /fu}[ﬂ—u{U](wO)} - K'u]Khn<x0)
0

X)) Genyu — Ku)} -

+1

+1

"’iu)Xj+1 }2 5

= XZ — Xp a.s.

Ku)

Fj Xjm = 9501

Fj Xjm 2950}

Ky and 7,{U, (Xo)} — k., have opposite signs

By taking the expectation on both

2

and it is readily seen that the (j — 1)th summand on the left-hand
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side agrees with the jth summand in the first term on the right-hand
side. Further, X, 1 # X; a.s., so K, {n(X;, Xy11)} = Kj, (X; —

Xpi1),(i=1,...,n),a.s. As a result, we obtain

=1
n+1

DB [{K, (X))

IN

n+1

- / {K (1)) dtsup| f ()]

= n0,(h,").

Also by the Minkowski triangle inequality on the L, space, we have

. Z9\ 1/2
E| D K n(Xi, X)) T — £u)
L i=1 1
Ft _9\ 1/2
< B D En{n(Xs, Xoi) T — ) + B [{Kn, (Xni1)(Tiu —
Li=1 1
= n1/20p(h;1/2)>

which implies

E {ZK}L"<X¢ — X)L —“u)} = n0,(h,"),

i=1

and as a result, by Condition (A6), we have

{Z Khn (Xz — XnJrl)([ZU — K’u)} Xn+1 — Op(n1/2h;1/2).

i=1

This proves the result. O

E | Kn{n(Xi, Xp1) Mo — /iu)] < Z E [{Kn, (X)) ju — £u)}’]

’QU)}Q}

1/2
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Corollary 1. > (I, — £4,)X; = Op(nhZ + n1/2h,§1/2),

Proof: First we can write

n

1=1

Zz{nf D} K (X = X5) (I — 5) X

7=1 =1
S (i — 1) S ) K (X, — X)) (T — )X
i=1 7j=1 =1
Note that
E > {nf(X)} T Kn, (X — X)) (T —nu)Xj]
7j=1 =1
. o 1/2
< 7ty E{ )UK, (X — X;) (T —nu)} {B(X7)}/?
j=1
= O,
by Lemma 1.

As a result, we have

Z{nf D} K, (X = X5) (T — ) Xj| = Op(n' 1, ?)(S.2)

7j=1 =1
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Also note that

D (= ) Xs| = | 330 () K (X5 = X) o = ) X;
< 3| —x [Xl D {nf 06} K (Xi - X)X]

< ZX Z{nf D} K (X = X5) X,
The last equation is of order O,(nh2 + n'/?h, Y %), because
Z{nf )} K, (X0 = X)X,

= Zf Hnf (X))} K, (X — X)X
= f(X)E [{f( DX X = Xi] 4+ OB + (nhy,) %)

= Xi + O, {h% + (nh,)V/?}.

The second to the last equality holds because Y ", f(X;) ™" {nf(X YK, (X—
X;)X; is a fixed design kernel estimator of X; f(X;) ™' = E [{f(X DX X =X, i])
while its mean squared error is of order O{h% + (nh,)~'} (Hardle,

2004).

In conjunction with (S.2), we have

n

=1

= 0,(nh? +n*?n=1/2).

This proves the result. O
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Remark 1. In the above derivations, X; in Y " | (I;;, — ky)X; does
not affect the convergence rates. Therefore, the convergence rates
are the same when considering Z?:l(_fw — Ky)Z; for any other inte-

grable random variable Z;.

Lemma 2. Let f(-) be the density of X, then we have

‘/Zz y K, (Xi — Xpi1) (Lo — Ku)
Zz lKhn(X Xn-i-l)

X1 f(Xng1)d X1

- [ Bl et S )Rt x| = 0, () )
nf( n+1)
Proof: We have that
> it Kn (Xi = Xo1) (L — K)
TR v ons s e S
Yoo K (X — Xog1) (L — Ku)
/ ! (Xn—i-l) f(Xn+1)an+1
) 1/2
< { Z K, (Xi = Xog1) (Liw — Fu) f(XnJrl)anJrl}

1/2
f(Xon) =n ' 300 K, (X — Xoga)
{/ ‘ 2 it K, (X = ‘1)(n+1)f(Xn+1) f(X”HMXnﬂ}
1/2
oy ] [ [ ) =T P K (X~ )
= O,(n2h;1?) {/ S K, (X — ;(nﬂ)f(Xnﬂ) F(Xni1)dX i1

= Op(n'2h; )0y (R} + 0720, (n7)
= O,(n Y?h, +n"'h")

= Op(n~'hy").

The first equality is a result from Lemma 1. The second equality
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holds because for each X;,7i=1,...,n,

> K, (Xi = Xpi1)| = Op(n)
=1

and

‘f<Xn+1) — Y K (Xi = Xop1)| = Op{h2 + (nhn) ™7},

i=1

which follows the uniform convergence of the kernel density estima-
tor (Silverman, 1978). With Condition (A6), we obtain the desired

result. O

Lemma 3. For a constant py and n > ng > pg, we define A, =

[T, (1 = po/l)~", then we have lim n="A, = Ay, where Ay =

n—oo

ny .

Proof: The limiting result shown below follows the convergence of

the product integral. We define t; = I/n,l =ny—1,...,n, n(t) =

[, fort; <t < tyy1. For t > t,, let P(t) = > 1/n(t;) =
tnostlgt

fse[tno,t] n(s)~tdn(s). For t < t,,, define P(t) = 0. Note that n(s)

changes its values only when s = ¢;, so dn(s) is nonzero only at
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s =t;,l =ng,...,n. Therefore, we can write
. -1 . -1
lim A" = lim Al
n—00 SUPp,<i<n [t;—t;—1|—0 n

tn
= lim H {1 — poP,<tl)dtl}

SUP,<i<n [t;—t;—1|—0 4=
=tn,

P'(t)dt}.

t
-1

= lim ﬁ{1—p0/

su t1—t;—1]|—0
Png<i<n lti—ti-1l b=ty t

As n — 00, or sup,, <;<, [ti —ti—1| — 0, the above form is a product
limit in Definition 1 in Gill and Johansen (1990). Similar to Example
2.5.6 in Slavik and Karlova (2007), this product limit can be written

as

exp (—po / dP(t))
t€[tng tn]

= oo ([ ) dnte)
5€[tng tn]

— exp (—pollog{n(tn)} — log{n(tn,)}])
= exp|—po{log(n) — log(no)}]

_ PO —p0
= ngn .

Therefore, lim,,_,oo n~"°A,, = Ap. This proves the result. O
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S.2 Proof of Lemma 1

To assess the properties of D,,, we first note that for n > ny and
u<m,
E(](n+1)u|-7:m Xnt1) — b
= mu{Un(Xn41)} — fu
= m(k) + 7, (K){Un(Xos1) — K} + 1/2{U(X11) — £} 77, (%)
X{Un(Xns1) = £}({1 4 0p(1)} — ku

m—1

= T Unu(Xn1) = w} + Y 7 (R){Unr(Xni1) = 5y}
ru,r=1
+1/2{Un(Xoi1) = 6} 7, (K){Un(X1) — RHL + 0,(1)}

= —p{Un(Xnt1) = K} + 1/2{Un(Xo1) = £}, (K){Un(X1) — 6H1 +0,(1)}-
The third equality holds by Remark 1 that m,(k) = k,. The
last equality holds because by Remark 2, 7/ (k) = 0 when r =
1,...,m—1,r # u, and by Remark 3, 7/, = —p.

Multiplying the above equation by X, .; and taking expectation

with respect to X,,11, we have

E{(I(n—l—l)u - Ku>Xn+1|]:n} - _pE[{Unu(Xn+1> - "iu}Xn+l|~/—:n] + Y1inus

where

Yina = B |1/2{Un(Xu1) = £} 7, () {Un(Xit1) = £} X

]-"n] {1+ 0,(1)}.
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Also, foru=1,...,m — 1, we have

E{Unu(Xnt1) = Ku} Xns1| Fal

= /{Unu(XnJrl) - HU}X”+1f<Xn+1)dX”+1

-y / K (X — Xoe) (T — ) Xooi1d X1 + Yo

= n_l (Izu - K'u)Xz + Yonus

X1 f (Xng1)d X

f(Xn+1)an+1-

=1

where
) S0 Ky (X = X)) e — )
2nu

Zz 1 K, (X — Xa)

_ / Zizl Khn<Xz XnJrl)([w - '%u)XnJrl
nf(Xn+1>

This gives

E{<I(n+1)u u) n+1|f}—_pn Z w — R

foru=1,...,m—1.

X + Yinu — PV2nu,

Define a,, = 1 — p/n for n > ng, and ay, = 1 otherwise, and

let 5nu = Ynu — P7V2nu for n > no, and Bnu =

u=1,...,m—1. We have

Combining the results of D41y, u=1,...,m

ED,1|F) = a,, D, + 3,,,

0 otherwise, for

— 1, we have
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where a,, = diag{an1,...,m-1} and B, = (But,. .-, Bum-1))" -
Let Anu Hl 1 O‘zu - 7:_1110 1;17 B = ?:_11 A(l—&—l)uﬁlu - l no A(H—l uﬂluv
and define M,,, = A,,Dyy— Bpy. It is easy to verify that M;, = D,

for © < ng. For n > ny, we have

E(M(n+1)u|]:n) = A(n+1)u(ananu + Bnu) - Z A(lJrl)uﬁlu

l=ng
n—1
= Ananu - Z A(l—l—l)uﬁlu
l=ng
= M,,.
Further, X; and I;,7 = 1,...,n, and their continuous functions, D,

and B,,,, have finite second moments by Condition (A6). Therefore,
E(|M,.]) < oo, which implies M,,, is a martingale. We further de-
fine AM,,, = My, — M(,,—1), to be a martingale difference. Combin-
ing the results for arm wu, the vector M,, = (M1, .. ., Mn(m_l))T is a
martingale vector, and AM,, = (AM,1, ..., AMn(m_l))T is a vector
of martingale differences. We further define A,, = diag(An1, ..., Anm-1)),
and B,, = (Bu1, ..., Bagn-1))".

Now we assess the asymptotic properties of D,, through M,, by
utilizing martingale techniques. We first derive the asymptotic prop-
erties of z'M,,, where z is an arbitrary m — 1 dimensional vector,

and then we show that the term B, is ignorable because it converges
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faster to 0 than M,,. Note that z'M,, is a martingale while z' AM,,
is a martingale difference, because the linear function does not alter
the expectation and boundedness properties.

Let s, = E(M,M}), according to the martingale invariance prin-

ciple introduced on page 99 in Hall and Heyde (1980), if we have
(zs,z)™" Z 2z AM, (AM;) Tz 5 1 (S.3)

i=1

(z's,z) " Z E[z" AM,;(AM,) Tz I{|z"AM;| > e(z%s,2)"?}]
i=1

— 0,Ve >0 (S.4)

as n — oo, then (z's,z)~/?2TM,, converges weakly to a standard

normal random variable, and in turn s, Y °M,, converges to a multi-
variate standard normal vector. Thus, (S.3) readily holds by Cheby-

shev’s inequality for the uncorrelated random variables and

z's,z
= E(z"M,M.z)
[ SLaM L SL(AMaAM )
= E |z"
|| DL AMaAM ) - 3 (AMgn-1)?
= iE{zTAMi(AMi)Tz}.

=1

\ -

J
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The second equality holds because for ¢ < j and arms v and v,
E(AM;,AM;,) = E{AM,;,E(AM;,|F;_1)} = 0.

If (S.4) holds, then the martingale invariance principle allows us
to show the asymptotic properties of z"M,, through accessing the
convergence of s,. Therefore, in the following, we proceed to find
the exact form of s, and verify (S.4).

Let Spuu = Y iy E{(AM;,)?} and spup = Y1y E(AM;,AM )
we examine the convergence of each term s,,,, in the matrix AM;(AM;)T.

Note that for n > ny,
Ay DMy = (I = K0) X + pDinvya/(n = 1) = Bn-1yu-  (S.5)
By Corollary 1 and Condition (A4) that nh? — oo, we have
pDi 1y (1 — 1) = O (2 + V20 1) = 0,(1).
Next, Yonu = Op{(nh,) ™'} = 0,(1) by Lemma 2. In addition, from

%m:EPﬂﬂh@uﬂ—@%ﬁﬂﬂhQMO—%Xm

7] o)

by the boundedness of 7'(':, Yinu has the same order as

E {ZH:KM(XZ-—XM)}_ {Xn:Khn(Xi—XnH)(IZ- —ﬁu)} X1

i=1 =1

Fa

= 0,(n"*)0y(nh,")

= Op{(nhn)""}
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by Lemma 1, and the fact that Y1 | K, (X; — X,1) = O,p(n).

These together with Lemma 2 imply |5,.,| = 0,(1). Therefore,

AVAM,,, = (L, — Ku) X + 0p(1). (S.6)

Further note that

The

n

no ;(AMZ-U)Q
= n - 2pZA A AM;)?
= n 2; AT = k) Xi + 0p(1)}?
_ [n—1—2p Z A2, {(1 = k)mu X2}
+n” Z A1) { (L, — k) (1 — 2@){2}] {1+0,(1)}
_ { 21 g, RUZAQ X2 + oy )}{1 Fo, ()} (87)

second equality holds by directly plugging in (S.6). Strictly

speaking, (S.6) can be used only when i is large. However, since

the value on the first finitely many terms do not affect the final

asymptotic results, we do not make distinction here. This practice

also applies similarly in the remaining text. The last equality follows

Remark 1 and the fact that A;,/n” is bounded due to Lemma 3. For
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a given £ > 0
lim Pr [n~'7% ZA2 X7 — (XE)ZA; >§]
n—oo
i=1 i=1
< 2—4p s —2 4 2 ‘
< nh_g)lon £ ZA Lvar(X?). (S.8)

=1

To inspect the right-hand side of (S.8), using Lemma 3 and following
the same argument to that in the proof of Theorem 1 in Smith
(1984), we have

n vy A
n—2- 4,02 A4 Z4p

—1 (S.9)

in probability, as n — oo. Further,

n 1
n=? Z(i/n)4” —n ! / w*dr =n"H 1+ 4p) !
i=1 0

Thus, the right-hand side of (S.8) goes to 0. This shows that

> A - B0 YA,
i=1

converges to 0 in probability.

,1 2p

n
Now, we assess the limit of n™'"2? F(X?) >~ A2 . Similar to the
i=1
previous argument, as n — oo,

—1-2p 1 2

n Zi:l A
—1-2p A2 n o

n pAOu Z'— (e

=1

51,

and

n

n 12 /nzp—>/ 2*dx = (1+2p)~"
i=1
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Therefore,

nTUE(X2) YT A2 < (14 2p) A2, B(XD),

=1

and hence

_1 QpZAQ X2 1+2p)—1A(2)uQ

Plugging the result into (S.7), we have

R ST (AM)? = (14 20) AR(1 — k)R E(XD)

i=1

= (1+2p)7 (1 = ko) RuA3,Q (S.10)

in probability as n — oc.
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Similarly, for > | AM;,AM;,, u # v, we have

n_1_2” zn: AMZUAMW

i=1

— % (Z A A AZVAM;, A 1AMZU>

i=1

n-1-20 {Z A Aiy(—Liuky — Livkiy + mm)X?} {1+0,(1)}
=1

_ [_ R (Z": Ao Au ik, X;) ol {i Ay Ay (L — mu)mxf}
— =1
% {iAwAw LT 3}
_ [ Avs Ao, D) e B >} B {zn:Ai“Aw(Iw ) Ku)%XE}
=1
n1-20 {Z Ap A (L — ’iv)"?uXiQ}
)"

AOuAOU'%quE(Xi2> + Op(l)'

{1+0p(1)}

{1+0,(1)}

= —(1+2p

The second equality holds because [;,[;,, = 0 for u # v. The third

4

equality holds because

z”: AiuAivX@? - E(Xzz) Zn: A Aiv

i=1 =1

lim Prin='=%
n—oo

< —2-4p 2 42 2\ e—2
< limn ZAwvaar(X )

=1

< lim (n™ % 4”2Afu+n - QPZA4 var(X7)E72/2,

n~>oo
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which goes to 0 by (S.9). The fourth equality holds because

—1-2 n
n '”Zizl A Ay
—1-2 n 72
n pA()uAOU Zz 1 4P

in probability, and

n 1
n! Z(i/n)2” — / v*dr = (1+2p)"".
i=1 0

Finally, the last equality holds by Remark 1 and the fact that A;, /n”

is bounded due to Lemma 3.

Now we proceed to show the convergence of s,,,. But note that
if =123 (AMy,)? and =720 3" | AM;,AM,;, are dominated
by integrable functions, then the asymptotic properties of s,,, and
Snuvs W # v, can be derived easily by using the dominated conver-

gence theorem. Further, since

n

< n—1—2p Z

=1

1/2n_1_2p {i(AMzu)Q + i(AMiU)Q} )

i=1 =1

‘n_1_2pZAMmAMw AM“LAMW

=1

IN

we need to show the boundedness of n='=27 3" (AM;,)? for ob-
taining the convergence result. Thus, we evaluate the upper bound

of n=1=% 3" (AM;,)? as follows. Because there exists a constant



Fei Jiang, Yanyuan Ma and Guosheng Yin

Cl<OO,

n

n 7y (AM;,)

=1
nolo% {Z(AMZ-U)Q +> Afu(A;}AMm)Q}
1<ng 1>ng

n

nomax X;? + Cyn~* Z(i/n)2p {(fm — k)X + pDi—1y /(i — 1) — B(i—l)u}Ql

1<no

IN

i>ng

_ & . 2
< No I’LI%?%(XZZ + Cm 1 Z {(Im — /fu>Xz + pDiflu/@ — 1) — ﬁ(z—l)u} ] ,(Sll)

i>no

we first show the boundedness of pD;_1,,/(i—1) and Bp—14 = Vi(n—1)u—

PY2(n—1)u-
Clearly |pD;_1,/(i—1)| < |p| max;<, | X;|. Further, since |Upy (Xni1)| <
1 and 7 is bounded by Condition (A2), there exists a constant

(5 < oo so that

Nty = E {1/2{Un_1<xn> — R () (U (X)) — KX,

fn} < Cymmax | X;|,
i<n

*

where k* = (k,...,k},) with k! defined as a point on the line

» ' m

connecting k, and U, (X,+1). In addition,

> it K (Xi — X)) (Lo — Fu)
_ = = - X, f(X,,)dX,
Y2(n—1)u / Z;’L:l Khn (Xz _ Xn) nf( n)d n

o Z?:l K, (Xi — X0) (Liw — Ku) X
nf(Xn)
< B(X) + max| X,

f(Xn)d X,

Therefore, (S.11) implies that there exist constants Cs, Cy < 0o such
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that

n1=2r Z(AMW)Q < (5 max X2+ Oy,

=1

almost surely. Since Csmax;<y, X? + Cy is an integrable function,

by the dominated convergence theorem, we have
n1=%g . = npoi7% i E {(AMW)Q}
i=1
= (1+2p)7 (1 = ku)ruAf,Q,
s = n i E (AM;,AM;,)
i=1
— —(1+2p)  KukpAgu Ao, Q. (S.12)
These give the limiting form of s, in (S.3).
To show (S.4), we first note that (S.6), (S.12) and Lemma 3 yield
((2%s,2) /22T AM,, |2

= |(z"s,z) 7 ||z" AM,, AM 7|

m—1m—1 1 m—1m-1
- ' (Z Z Z“Z”Sm“’> Z Z zquAnu(Inu - Hu)Anv([nv - :‘%)Xg{l + Op(l)}‘
u=1 v=1 u=1 v=1
m—1m—1
- OP(n_l) Z Z“Z’UA”U/np(Inu - ’iu)Am;/np(Im; - K;'U)XEL{]‘ + 0P<1)}’
u=1 v=1
-1 . 22
< 0, {n uef{l'%zc%l(]nu Ku) Xn}.

By Condition (A6), this implies

(z"s,2) " *2T AM,, = 0,(1).
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Further,

Elz" AM;(AM,)"2I{|z" AM,| > €(z"s,2)"/?}]

< E{(z"AM;(AM,)"2)*}'2E [I1{|z"AM;| > €(2"s,2)"/2}]"*
= E{(z"AM,;(AM,) 2)*}V2Pr{(2%s,2)"/*|zT AM;| > €} /2
— 0,

by Condition (A6) and because (z's,z)~'/2zTAM,, is 0,(1). This
result along with the fact that s, = O(n'™") proves (S.4). So
far, we have proven that (z's,z)~/?2z"M,, converges to a standard
normal random variable. Since z is an arbitrary vector, we conclude
that s,/ °M,, converges to a multivariate standard normal vector.
Next, in order to use the martingale results to show the asymptotic

property of D,,, we first show that for each u,
n"Y2|A- 1B 5 0.
Note that there exist constants C5, C, C7 < oo, such that

=1

< Y An AL Cs(ih,) !
=1
< Cen ') (i/n)" k!
=1
< Cyht
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in probability. Here, we use the definition of B,, to obtain the
first inequality, the definition of 5, and the results on the orders of
Yinus Yonu lead to the second inequality, Lemma 3 yields the third
inequality, and replacing average with integration we can obtain the

last inequality. Therefore, together with Condition (A4) we have

n 2| A B, 50
by Condition (A4), and this gives

AL My, = Dyl = 0,(1).

This convergence in probability result for a single u,u =1,...,m—1
implies the joint convergence in probability of the vector constructed
by these elements. So, n~'/2D,, and n~"/2A'M,, converge equiva-
lently to the same limit. Also, we have shown that (z's,z)"'/?z"M,,
converges to a standard normal random variable for an arbitrary z.
Therefore,

s /2M,, % N(0, I).

Further, A, — diag(Apn’,..., Agp,n?) implies [n 1A 1s, A1 —
Q] = o(1) by (S.12), where Q is defined in the statement of Lemma

1. Hence,

n~V2ATSY 252N, b N (0, Q).
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As a result, we have

nY20712D, 4 N(0, I).

S.3 Necessary Lemmas for Theorem 1

Lemma 4. For a new data point X,,41, we have E{(>_7"_ TTh—; Kn, (Xir—

X(n+1)k)(1iu - %u)XleF} =0 (nh;p).
Corollary 2. |7 (Liu — ku)X[z| = O, {nhfl + n1/2h;p/2},

Lemma 5. Let f(X;) be the density function of X;. We have

Z Kh ( ik — X(n+1)k>(Iiu — R )
z dX
' / Zz ; _ K, (Xik — X(nt1)k) X2 (Xni1)dXos1
/Zz 1 Khn( X(n+1)k>(Iiu - ’iu)XZHZ
nf(XnJrl)

f(Xn-i-l)an-H

- 0w hy).

S.4 Proof of Theorem 1

Following Lemma 4, Corollary 2 and Lemma 5, Theorem 1 holds by

using the same arguments as those leading to Lemma 1.
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