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Abstract: In Computerized Adaptive Testing (CAT), items are selected in real

time and are adjusted to the test-taker’s ability. While CAT has become popular

for many measurement tasks, such as educational testing and patient reported

outcomes, it has been criticized for not allowing examinees to review and revise

their answers. In this work, we propose a novel CAT design that preserves the

efficiency of a conventional CAT, but allows test-takers to revise their previous

answers at any time during the test. The proposed method relies on a polytomous

Item Response model that describes the first response to each item, as well as

any subsequent responses to it. Each item is selected in order to maximize the

Fisher information of the model at the current ability estimate, which is given by

the maximizer of a partial likelihood function. We establish the strong consistency

and asymptotic normality of the final ability estimator under minimal conditions on

the test-taker’s revision behavior. We present the findings of two simulation studies

that illustrate our theoretical results, as well as the behavior of the proposed design

in a realistic item pool.
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1. Introduction

A main goal in educational assessment is the accurate estimation of the test-

taker’s ability. In a conventional paper-pencil test, this estimation is based on the

examinee’s responses to a preassembled set of items. However, in Computerized

Adaptive Testing (CAT), as it was originally conceived by Lord (1971), items are

selected in real time and are tailored to the examinee’s ability, which is learned

as the test progresses. This feature is especially important for examinees at the

two extreme ends of the ability distribution, who may otherwise receive items

that are either too difficult or too easy.
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The design of CAT is based on Item Response Theory (IRT) models, which

describe the probability of a correct answer given the examinee’s ability and the

item itself. The simplest IRT model is the Rasch model (Rasch (1993)), in which

the probability of a correct answer is equal to H(θ− b), where H is the cdf of the

logistic distribution, θ is an unknown, scalar parameter that represents the ability

of the examinee, and b a known, scalar parameter that reflects the difficulty of the

item. A generalization of the Rasch model is the three-parameter logistic model

(3PL) model, in which the probability of a correct answer is c+(1−c)H(a(θ−b)),
where c ∈ (0, 1) represents the probability of guessing the right answer, and a > 0

is the discrimination parameter of the item. An intermediate model, the two-

parameter logistic model (2PL), arises when we set c = 0.

A standard approach for item selection in CAT, proposed by Lord (1980),

is to select the item with the maximum Fisher information at each step. In the

case of the Rasch model, this means that item i should be selected such that its

difficulty parameter bi equals to θ. Since θ is unknown, this suggests setting bi
equal to an estimate of θ based on the first i− 1 observations. For the adaptive

estimation of θ, Lord (1971) proposed the Stochastic Approximation algorithm

of Robbins and Monro (1951). However, this non-parametric approach can be

very inefficient with binary data, as was shown by Lai and Robbins (1979). For

this reason, Wu (1985, 1986) suggested using the Maximum Likelihood Estima-

tor (MLE) of θ based on the first i − 1 observations. Following this approach,

coupled with the information maximizing item selection strategy, Ying and Wu

(1997) established the strong consistency and asymptotic normality of the result-

ing estimator under the Rasch model, whereas Chang and Ying (2009) extended

these results to the case of the 2PL and 3PL model. Alternative item selec-

tion algorithms have been proposed in the literature, such as the approximate

Bayes procedures (Owen (1969, 1975)), the maximum global-information crite-

rion (Chang and Ying (1996)), and various criteria in Veerkamp and Berger

(1997). Moreover, many modifications on the original item selection algorithms

have been suggested in order to incorporate non-statistical constraints, such as

content coverage, answer key distribution, and exposure control (Wang et al.

(2016a); Chang and Ying (1999); Luecht (1998); Swanson and Stocking (1993)).

Thanks to these statistical advances, as well as the rapid development of

modern technology, CAT has become popular for many kinds of measurement

tasks, such as educational testing, patient reported outcomes, and quality of

life measurement. Examples of large-scale CATs include the Graduate Man-

agement Admission Test (GMAT), the National Council Licensure Examina-
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tion (NCLEX) for nurses, and the Armed Services Vocational Aptitude Battery

(ASVAB) (Chang and Ying (2007)). Beyond the problem of ability estimation,

CAT has been applied to mastery testing (Sie et al. (2015); Bartroff, Finkelman

and Lai (2008)) and cognitive diagnosis (liu2013rate). However, currently oper-

ational CAT programs typically do not allow examinees to revise their responses

to previously administered items during the test (Vispoel et al. (1999)), and this

is one of the reasons that some testing programs have decided to switch to other

modes of testing , such as Multistage Adaptive Testing (Luecht and Nungester

(1998)).

A main argument against response revision among practitioners and re-

searchers who oppose this feature is that it violates the adaptive nature of CAT.

Specifically, it has been argued that allowing for response revision decreases es-

timation efficiency and increases bias (Stocking (1997); Vispoel et al. (1999)), as

well as that it gives the opportunity to disingenuous examinees to artificially in-

flate their test scores by adopting deceptive test-taking strategies (Wainer (1993);

Kingsbury (1996); Wise et al. (1999)). On the other hand, it has been argued

that response revision in CAT can minimize measurement error, leading to more

accurate inference, and that it can lower the anxiety levels of the examinees, lead-

ing to a friendlier testing environment (Wise (1996); Vispoel, Hendrickson and

Bleiler (2000)). It has been reported that examinees would favor the response

revision feature in CAT (Vispoel and Coffman (1992); Han (2015)), whereas the

desire for review opportunities has also been verified in other studies of comput-

erized tests, e.g. (Schmidt, Urry and Gugel (1978)).

Overall, the absence of the opportunity to revise in CAT has been a main

concern for both examinees and testing companies, and a number of modified

CAT designs have been proposed in order to incorporate this feature (Stocking

(1997); Vispoel, Hendrickson and Bleiler (2000); Han (2013)). In order to prevent

the potential dangers of revision, these designs have postulated quite limited

revision rules, such as an upper bound on the number of items that can be

revised.

Under such rules and restrictions, it has been reported that response revision

does not impact significantly the estimation accuracy and efficiency of CAT.

However, these conclusions were based only on simulation experiments and not

supported theoretically.

In this work, we propose and analyze a novel CAT design whose goal is

to preserve the advantages of conventional CAT with respect to estimation effi-

ciency, but at the same time to allow examinees to revise their answers at any
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time during the test.

In order to achieve this, we use a different modeling framework than that of

a typical CAT design. Indeed, although most operational CAT programs employ

multiple-choice items, they model them in a dichotomous way, specifying the

probability of each response being either right or wrong. We use a polytomous

IRT model, the nominal response model proposed by Bock (1972), and specify

the probability that the examinee selects each category of a given item. Based

on this model, we postulate a joint probability model for the first answer to each

item and any subsequent revisions to it, and we update the ability parameter

after each response with the maximizer of the likelihood of all responses, first

answers, and revisions. We do not make any assumptions regarding the decision

of the examinee to revise or not at each step and, whenever the examinee asks

for a new item, we select the one with the maximum Fisher information at the

current estimate of the ability level.

We provide an asymptotic study of the proposed method as the number

of administered items goes to infinity, apparently the first rigorous analysis of

a CAT design that allows for response revision. Our main result is that the

proposed estimator is asymptotically normal under a stability assumption on the

cumulative Fisher information. That is satisfied, for example, when the number

of revisions is small relative to the number of items.

We consider separately the case of a CAT that is based on the nominal

response model, but does not allow for response revision. Again, there has ap-

parently not been any theoretical analysis of a conventional CAT based on a

polytomous IRT model, so the corresponding asymptotic results are of indepen-

dent interest. They help us illustrate the conceptual and technical differences

between the traditional CAT setup, where the number of observed responses co-

incides with the number administered items at any time during the test, and

the proposed setup in which the number of responses and items are , in general,

different.

The rest of the paper is organized as follows. In Section 2, we introduce

the nominal response model and present its main properties. In Section 3 we

consider the design and analysis of a CAT that is based on the nominal response

model, but in which response revision is not allowed. In Section 4, we present and

analyze the proposed CAT design that allows for response revision. In Section

5, we present the findings of two simulation studies that illustrate our results

and evaluate our proposed design in a realistic setup. We conclude in Section 6.

Throughout the paper, we focus on a single examinee whose ability is quantified
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by an unknown, scalar parameter θ ∈ R , and we denote by Pθ/Eθ/Varθ the

corresponding probability measure/expectation/variance.

2. Nominal Response Model

Let X be the response to a multiple-choice item with m ≥ 2 categories. We

write X = k when the examinee chooses category k ∈ [m] := {1, . . . ,m}, and we

assume that

Pθ(X = k) =
exp(akθ + ck)∑m
h=1 exp(ahθ + ch)

, k ∈ [m], (2.1)

where {ak, ck}1≤k≤m are known, item-specific real numbers such that
m∑
k=1

|ak| 6= 0,

m∑
k=1

|ck| 6= 0, and

m∑
k=1

ak =

m∑
k=1

ck = 0. (2.2)

Thus, the distribution of X is specified by the ability of the examinee, θ, and

the item-specific vector b = (a2, . . . , am, c2, . . . , cm). To lighten the notation, we

write

pk(θ;b) := Pθ(X = k), k ∈ [m], (2.3)

and we denote by B the subset of R2m−2 in which b takes values. For the log-

likelihood function, the score function, and the Fisher information based on a

single observation we write

`(θ;b, k) := log
(
pk(θ;b)

)
, s(θ;b, k) :=

∂

∂θ
`(θ;b, k), k ∈ [m],

J(θ;b) := Varθ[s(θ;b, X)].
(2.4)

With a direct computation it follows that

s(θ;b, k) = ak − ā(θ;b), k ∈ [m], (2.5)

J(θ;b) =

m∑
k=1

(
ak − ā(θ;b)

)2
pk(θ;b), (2.6)

where ā(θ;b) is a weighted average of the ak’s,

ā(θ;b) :=

m∑
h=1

ah ph(θ;b). (2.7)

The derivative of s(θ;b, k) with respect to θ does not depend on k. And for every

k ∈ [m], we have

s′(θ̃;b) :=
∂

∂θ
s(θ;b, k)

∣∣∣
θ=θ̃

= −J(θ̃;b). (2.8)

In the special case of binary data (m = 2), a1 = −a2, c1 = −c2,
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p2(θ;b) = 1− p1(θ;b) =
exp(2a2θ + 2c2)

1 + exp(2a2θ + 2c2)
, (2.9)

i.e., we recover the 2PL model with discrimination parameter 2|a1| and difficulty

parameter −c2/a2.
For a given item parameter vector b, take

a∗(b) := max
k∈[m]

ak, k∗(b) := {k ∈ [m] : ak = a∗(b)} ,

a∗(b) := min
k∈[m]

ak, k∗(b) := {k ∈ [m] : ak = a∗(b)} .
(2.10)

Here k∗(b) and k∗(b) are singletons when m = 3, but this is not necessarily the

case when m > 3. For any given item parameter vector b ∈ B, it is easy to see

that

lim
θ→−∞

ā(θ;b) = a∗(b), lim
θ→∞

ā(θ;b) = a∗(b), lim
|θ|→∞

J(θ;b) = 0.

We denote by J∗(θ) and J∗(θ) the maximal and minimal, respectively, Fisher

information in the item pool for an examinee with ability level θ,

J∗(θ) := inf
b∈B

J(θ;b) and J∗(θ) := sup
b∈B

J(θ;b). (2.11)

The proofs of the following two lemmas are presented in S1 in the supple-

mentary material.

Lemma 1. Let g : R× B→ R be a jointly continuous function and set

g∗(·) := sup
b∈B

g(·,b), g∗(·) := inf
b∈B

g(·,b).

If B is compact, then g∗ and g∗ are continuous functions, and if xn → x0, then

sup
b∈B
|g(xn,b)− g(x0,b)| → 0.

Lemma 2. If B is compact, then

|s(θ; b, ·)| ≤ K, 0 < J∗(θ) ≤ J∗(θ) ≤ K,

where K is a constant that does not depend on θ or b.

In what follows, the subset B ⊂ R2m−2, that represents the underlying item

bank/pool, is assumed to be compact.

3. Standard CAT with Nominal Response Model

In this section we consider the design of a CAT that is based on the nominal

response model, but is conventional in that it does not allow for response revision.

3.1. Problem formulation

Let n be the total number of items that will be administered to the examinee
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and let Xi denote the response to item i, where i ∈ [n] := {1, . . . , n}. To lighten

the notation, we assume that each item has the same number of categories m ≥ 2,

and we write Xi = k if the examinee chooses category k in item i, where k ∈ [m]

and i ∈ [n]. The responses are assumed to be governed by the nominal response

model (2.1)–(2.3), thus

Pθ(Xi = k) := pk(θ;bi), k ∈ [m], i ∈ [n], (3.1)

where θ is the unknown ability parameter, and the item parameter vector bi :=

(ai2, . . . , aim, ci2, . . . , cim) takes values in a compact set B ⊂ R2m−2 with com-

ponents satisfying (2.2). In practice, there is only a finite number of items in a

given item bank and there are further restrictions on the exposure rate of the

items (Chang and Ying (1999)), so each bi cannot actually take any value in

B. Nevertheless, this assumption will allow us to obtain a benchmark for the

achievable large-sample performance in CAT.

We assume that the responses are conditionally independent given the se-

lected items, in the sense that

Pθ(X1:i|b1:i) =

i∏
j=1

Pθ(Xj |bj), i ∈ [n], (3.2)

where X1:i ≡ (X1, . . . , Xi) and b1:i ≡ (b1, . . . ,bi). In a paper-pencil test where

the selected items are fixed in advance, b1:n is a deterministic vector. This

is not the case in CAT, where items are determined in real time based on the

already observed responses. Specifically, if we denote by FXi := σ(X1, . . . , Xi) the

information contained in the first i responses, then bi must be a FXi−1-measurable,

B-valued random vector for every 2 ≤ i ≤ n, whereas b1 is arbitrary.

The specification of the item selection strategy, (bi)1≤i≤n, is a major com-

ponent in CAT design. Here we adopt the standard approach of selecting each

item in order to maximize the Fisher information at the current estimate of the

ability level, i.e., item i+ 1 is selected such that

J(b̂i) = max
b∈B

J(θ̂i−1;b), 2 ≤ i ≤ n, (3.3)

where J is the Fisher information function of the nominal response model given

by (2.6), and θ̂i is an estimate of θ based on the first i responses. Due to

assumptions (3.1)–(3.2), the conditional log-likelihood and score functions of the

first i responses given arbitrary selected items b1:i take the form

Li(θ) := logPθ(X1:i | b1:i) =

i∑
j=1

`(θ;bj , Xj),
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Si(θ) :=
d

dθ
Li(θ) =

i∑
j=1

s(θ;bj , Xj), (3.4)

where `(θ;bj , Xj) and s(θ;bj , Xj) are the log-likelihood function and score func-

tion, respectively, of the jth response, defined in (2.4). Our estimate of θ based

on the first i observations is given by the root of Si(θ), which exists and is unique

for every i > n0 such that

n0 := max
{
i ∈ {1, . . . , n} : Xj ∈ k∗(bj) ∀ j ≤ i or Xj ∈ k∗(bj) ∀ j ≤ i

}
,

where k∗(b) and k∗(b) are defined in (2.10). Thus the root of Si(θ) exists and is

unique as long as either at least one of the first i responses does not correspond

to a category with the largest a-value, or to a category with the smallest a-

value. For i ≤ n0, we need an alternative ability estimator, such as the Bayesian

estimator in Bock and Aitkin (1981). Alternatively, for i ≤ n0 we can set θ̂0 = 0

and θ̂i = θ̂i−1 + d (resp. θ̂i = θ̂i−1 − d) if the initial responses have the largest

(resp. smallest) a-value, where d is some predetermined constant.

Lemma 3. Pθ(Sn(θ̂n) = 0 for all large n) = 1.

The proof of Lemma 3 is presented in S2 of the supplementary material.

3.2. Asymptotic analysis

In this section, we establish the asymptotic properties of the proposed ability

estimator, θ̂n, assuming that (3.1)–(3.2) hold. Specifically, we establish strong

consistency for an arbitrary item selection strategy and its asymptotic normality

when the information-maximizing item selection strategy (3.3) is adopted.

We first show that for an arbitrary item selection strategy, (bi)1≤i≤n, the

corresponding score function {Sn(θ)}n∈N is a martingale with mean 0 and pre-

dictable variation equal to the conditional Fisher information

In(θ) :=

n∑
i=1

J(θ;bi), n ∈ N, (3.5)

where J(θ;bi) is the Fisher information of the ith item given by (2.6). From (2.8)

it follows that

S
′

n(θ̃) :=
d

dθ
Sn(θ)

∣∣∣
θ=θ̃

=

n∑
i=1

−J(θ̃;bi) = −In(θ̃). (3.6)

Lemma 4. For any item selection strategy, the score function {Sn(θ)}n∈N is

a {Fn}-martingale under Pθ, with bounded increments, mean 0 and predictable

variation
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〈S(θ)〉n :=

n∑
i=1

Eθ

[(
Si(θ)− Si−1(θ)

)2 | Fi−1] = In(θ).

The proof is presented in S2 of the supplementary materials.

Theorem 1. For any item selection strategy, θ̂n → θ Pθ-a.s. and

In(θ̂n)

In(θ)
→ 1 Pθ − a.s.. (3.7)

The proof is presented in Appendix S2 of the supplementary materials. It is

interesting to note that (3.7) remains valid for any strongly consistent estimator

of θ and that the strong consistency of θ̂n is established for any item selection

strategy. This is due to the compactness of the item parameter space, B. Were

this not the case, the resulting estimator could fail to be consistent (see Chang

and Ying (2009) for a counterexample).

Theorem 2. If In(θ)/n converges in probability to some positive constant under

Pθ, then as n→∞ we have√
In(θ̂n) (θ̂n − θ) −→ N (0, 1). (3.8)

When the information-maximizing item selection strategy (3.3) is adopted, in

which case
√
n(θ̂n − θ)→ N

(
0, [J∗(θ)]−1

)
. (3.9)

Proof. From Lemma 4 we know that {Sn(θ)}n∈N is a martingale with bounded

increments, mean 0, and predictable variation {In(θ)}n∈N. Then, if In(θ)/n

converges in probability to some positive constant under Pθ, we can apply the

Martingale Central Limit Theorem (see, e.g., Billingsley (2008), p.481) and ob-

tain
Sn(θ)√
In(θ)

−→ N (0, 1).

From Lemma 3 and a Taylor expansion of Sn(θ) around θ̂n it follows that

there exists some θ̃n that lies between θ̂n and θ such that

0 = Sn(θ̂n) = Sn(θ) + S
′

n(θ̃n)(θ̂n − θ)
= Sn(θ)− In(θ̃n)(θ̂n − θ) Pθ − a.s.,

(3.10)

where the second equality follows from (3.6). Consequently,

In(θ̃n)

In(θ)

√
In(θ) (θ̂n − θ)→ N (0, 1).
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Since θ̃n lies between θ̂n and θ, similarly to (3.7), we can show that

In(θ̃n)

In(θ)
→ 1 Pθ − a.s..

Thus, from an application of Slutsky’s theorem we obtain√
In(θ) (θ̂n − θ) −→ N (0, 1). (3.11)

From (3.7) and another application of Slutsky’s theorem we obtain (3.8).

In order to prove the second part of this theorem, it suffices to show that

1

n
In(θ) =

1

n

n∑
i=1

J(θ; b̂i)→ J∗(θ) Pθ − a.s, (3.12)

where (b̂i)1≤i≤n are the item parameters selected according to (3.3). To prove

(3.12) it suffices to show that J(θ; b̂n) → J∗(θ) Pθ–a.s. Since J(θ;b) is jointly

continuous and θ̂n strongly consistent, from Lemma 1 it follows that

sup
b∈B
|J(θ̂n;b)− J(θ;b)| → 0 Pθ − a.s. (3.13)

and, consequently,

|J(θ̂n; b̂n)− J(θ; b̂n)| → 0 Pθ − a.s..

Therefore, it suffices to show that J(θ̂n; b̂n)→ J∗(θ) Pθ−a.s. From the definition

of (b̂n) in (3.3) we have J(θ̂n−1; b̂n) = J∗(θ̂n−1), and from the triangle inequality

we obtain

|J(θ̂n; b̂n)− J∗(θ)| ≤ |J(θ̂n; b̂n)− J(θ̂n−1; b̂n)|+ |J∗(θ̂n−1)− J∗(θ)|
≤ sup

b∈B
|J(θ̂n;b)− J(θ̂n−1;b)|+ |J∗(θ̂n−1)− J∗(θ)|.

From (3.13), the first term in the upper bound goes to 0 Pθ − a.s.. From the

continuity of J∗ (recall Lemma 1) and the strong consistency of θ̂n, the second

term in the upper bound goes to 0, which completes the proof.

Remark: The resulting estimator is asymptotically efficient in the sense that if

we could employ an oracle item selection method and select each item i such that

J(θ;bi) = J∗(θ), where J∗(θ) is the maximum Fisher information an item can

achieve at the true ability level θ, the asymptotic distribution of the resulting

estimator is that of (3.9).

3.3. Discussion of the design

The proposed CAT design based on the nominal response model is similar,

but not identical to the CAT design of Chang and Ying (2009) that is based

on dichotomous logistic models. We point out the difference in the dichotomous
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2PL model in which each item is characterized by the difficulty parameter and

the discrimination parameter.

Chang and Ying (2009) select only the difficulty parameter in order to maxi-

mize the Fisher information while assuming that the discrimination parameter is

bounded. This is not a very realistic assumption, and their asymptotic analysis

relies on a closed-form expression for the difficulty parameter.

We assume that all components of the item parameter vector are bounded

and establish the consistency of the resulting estimator for an arbitrary item

selection strategy. We select all components of the item parameter vector to

maximize the Fisher information function, and our analysis does not require a

closed-form expression for the item parameters defined by (3.3).

4. CAT with Response Revision

4.1. A novel CAT

In this section we propose and analyze a CAT design in which examinees are

allowed to revise their previous answers. We consider multiple-choice items with

m categories and assume that the total number of items that will be administered,

n, is fixed. Here, after each response, the examinee decides whether to revise the

answer to a previous item or to proceed to a new item. Examinees are not allowed

to switch back to previously selected answers, and each item can be revised at

most m−2 times during the test. We need restrict ourselves to items with m ≥ 3

categories.

Consider the time during the test at which the examinee has completed t

responses and let ft be the number of distinct items that have been administered

until this time, the number of revisions until this time being t−ft. For each item

i ∈ [ft] ,we denote by git the number of responses on item i up to this time, so

git ≤ m − 1. If Ct is the set of items that can still be revised at this time, then

Ct = {i ∈ [ft] : git < m− 1}, and the decision of the examinee is described as

dt :=

{
0, the t+ 1th response corresponds to a new item,

i, the t+ 1th response is a revision of item i ∈ Ct.

For each item i ∈ [ft] we denote by Xi
j the selected answer at the jth attempt on

this item and by Xi
1:j := (Xi

1, . . . , X
i
j) the set of all selected answers in the first j

attempts on this item, where j ∈ [git]. Thus, we write Xi
1 = k if category k ∈ [m]

is the first answer to item i, and Xi
j = k if category k /∈ Xi

1:j−1 is selected on the

jth attempt on item i, where 2 ≤ j ≤ git whenever git ≥ 2.
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Information is generated from the content of the responses, from the decisions

of the examinee to revise or not, and the identity of the items that are chosen

for revision. Specifically, if Gt := σ(ds, s ∈ [t]) is the σ-algebra of the first t

decisions of the examinee regarding revision, and FXt := σ(Xi
1:git

, i ∈ [ft]) the σ-

algebra of the first t responses, then Ft := Gt ∨FXt is the σ-algebra that contains

all available information after t responses. The number of items that have been

administered until this time, ft, is Gt−1-measurable, since it can be fully recovered

by d1, . . . , dt−1.

For each i ∈ [n−1], item i+1 needs to be selected at the {Gt}-stopping time

τi := min{t ≥ 1 : ft = i and dt = 0},

i.e., the first time the examinee has answered i distinct items and does not want

or is not allowed to revise any more items. Since the total number of items to be

administered is n, the test stops at the random time τn, which is determined by

the test-taker’s revision strategy, (dt)1≤t≤τn . Our goal is to propose a design that

will guarantee the reliable estimation of the test-taker’s ability for any revision

strategy, that is no matter when and which items the test-taker chooses to revise.

We postulate only a statistical model for the responses.

4.2. The proposed design

We assume that the first response to each item is governed by the nominal

response model. That is, for every item i ∈ [n] ,

Pθ(X
i
1 = k |bi) = pk(θ;bi), k ∈ [m], (4.1)

where pk(θ;b) is the pmf of the nominal response model defined in (2.1)-(2.3),

θ is an unknown, scalar parameter that represents the ability of the test-taker

and bi := (aik, cik)2≤k≤m is a B-valued vector that characterizes item i. The

item parameter bi+1 needs to be selected at time τi based on all the available

information until this time, and we say that (bi)2≤i≤n is an item selection strategy

if bi+1 is a B-valued, Fτi-measurable random vector for every i ∈ [n − 1]. The

ultimate goal is to obtain an Fτn-measurable statistic θ̂n that is close to the true

ability θ under minimal assumptions on how the examinee chooses to revise.

As before, we suggest that item i+ 1 should be selected such that

J(b̂i+1) = max
b∈B

J(θ̂τi ;b), (4.2)

where J is the Fisher information function of the nominal response model given

by (2.6), and θ̂τi is an Fτi-measurable statistic. Therefore, the item selection

method (4.2) requires an estimate of θ at all times at which items are selected,
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(τi)1≤i≤n.

For the adaptive estimation of θ we use the maximizer of the partial likeli-

hood of all observed responses, conditioned on the selected items and the revision

decisions of the examinee. We describe the proposed estimator for an arbitrary

item selection strategy, not necessarily (4.2), and at every time t, not only at

(τi)1≤i≤n. Thus, for any revision strategy (dt)1≤t≤τn and any item selection strat-

egy (bi)1≤i≤n, we suggest updating the ability of the examinee after t responses

with the maximizer of

Lt(θ) := logPθ(X
i
1:git

, 1 ≤ i ≤ ft
∣∣∣ Gt,b1:ft). (4.3)

We assume that responses coming from different items are conditionally in-

dependent, so

Pθ(X
i
1:git

, 1 ≤ i ≤ ft
∣∣∣ Gt,b1:ft) =

ft∏
i=1

Pθ(X
i
1:git
| Gt,bi). (4.4)

We assume that the response on a given item is independent of the revision

strategy of the examinee, in the sense that for every item i ∈ {1, . . . , ft} we have

Pθ(X
i
1:git
| Gt,bi) = Pθ(X

i
1:git
| git,bi) (4.5)

= Pθ(X
i
1 |bi) ·

git∏
j=2

Pθ
(
Xi
j |Xi

1:j−1,bi
)
.

The second equality follows from the definition of conditional probability and it

is understood that the second factor in the right-hand side is equal to 1 whenever

git = 1. Each probability Pθ(X
i
1 |bi) is determined by (4.1), according to which

the first answer to each item is governed by the nominal response model. Thus,

it remains to specify the contribution of revisions. We assume that the nominal

response model also determines revisions, in the sense that

Pθ
(
Xi
j = k |Xi

1:j−1,bi
)

=
pk(θ;bi)∑

h/∈Xi
1:j−1

ph(θ;bi)
, k /∈ Xi

1:j−1. (4.6)

Assumptions (4.1), (4.4), (4.5), and (4.6) imply that the conditional log-likelihood

function takes the form

Lt(θ) =

ft∑
i=1

[
`
(
θ;bi, X

i
1

)
+ 1{git≥2}

git∑
j=2

`(θ;bi, X
i
j |Xi

1:j−1)
]
, (4.7)

where `(θ;bi, X
i
1) is defined according to (2.4), and for every 2 ≤ j ≤ git we set

`(θ;bi, X
i
j |Xi

1:j−1) := logPθ
(
Xi
j |Xi

1:j−1,bi
)
.
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Then, the corresponding score function takes the form

St(θ) :=
d

dθ
Lt(θ) =

ft∑
i=1

[
s
(
θ;bi, X

i
1

)
+ 1{git≥2}

git∑
j=2

s
(
θ;bi, X

i
j |Xi

1:j−1
)]
, (4.8)

where s(θ;bi, X
i
1) is defined according to (2.5), and for every 2 ≤ j ≤ git we have

s(θ;bi, X
i
j |Xi

1:j−1) :=
d

dθ
`
(
θ;bi, X

i
j | Xi

1:j−1
)
. (4.9)

The proposed estimate for θ after t responses, θ̂t, is the root of the score function

St(θ). The root exists and is unique for every t that is larger than some random

time and a preliminary estimation procedure is needed until this time. We can

show that θ̂τn is the root of Sτn(θ) for all large n with probability 1.

4.3. Discussion of the proposed design

Assumptions (4.1)-(4.4) are analogous to (3.1)-(3.2) in the context of a con-

ventional CAT. The additional modeling assumptions that we impose are (4.5)

and (4.6).

The proposed design does not introduce any additional item parameters to

the ones used in the conventional CAT of the previous section, and contrary

to previous CAT designs in the literature that allow for response revision, the

proposed method takes into account all responses of the examinee on a given

item during the test, not only the last one. Examinees benefit by revising wrong

answers, but have to be cautious with revisions, since every recorded answer

during the test contributes to item selection and interim ability estimation.

We do not make any assumptions regarding when and what items the test-

taker chooses to revise. Incorporating such information could lead to alternative

estimators and item selection methods. But would make the design more vulner-

able to model mispecification.

4.4. Asymptotic properties

We assume that (4.1), (4.4), (4.5), and (4.6) hold, and study the asymptotic

behavior of the proposed final ability estimator. We establish its strong consis-

tency for any item selection strategy and revision behavior, and its asymptotic

normality when the items are selected according to (4.2) and the total number

of revisions is small relative to the total number of distinct items.

We show that the conditional score function, St(θ), is a martingale with

predictable variation equal to the conditional Fisher information
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It(θ) :=

ft∑
i=1

J(θ;bi) + 1{git≥2}

git∑
j=2

J
(
θ;bi |Xi

1:j−1
) =

d

dθ
St(θ), (4.10)

where J(θ;bi) is defined as in (3.5), and for every 2 ≤ j ≤ git we set

J
(
θ;bi |Xi

1:j−1
)

:= Varθ
[
s(θ;bi, X

i
j |Xi

1:j−1)
]
, (4.11)

where s(θ;bi, X
i
j |Xi

1:j−1) is defined in (4.9).

Lemma 5. For any item selection strategy and any revision strategy,

(i) {St(θ)}t∈N is a {Ft}t∈N-martingale under Pθ with bounded increments, mean

zero and predictable variation equal to the conditional Fisher information

(4.10), i.e.,

〈S(θ)〉t :=

t∑
u=1

Eθ

[
(Su(θ)− Su−1(θ))2 |Fu−1

]
= It(θ).

(ii) {Sτn(θ)}n∈N is a {Fτn}n∈N-martingale with mean 0 and predictable variation

{Iτn(θ)}n∈N.

The proof of Lemma 5 is presented in S3 of the supplementary materials.

Lemma 6. Fix bi ∈ B, j ∈ {2, . . . ,m− 1}, and Xi
1:j−1 and let

pk(θ;bi|Xi
1:j−1) := Pθ

(
Xi
j = k |Xi

1:j−1,bi
)
,

ā(θ;bi|Xi
1:j−1) :=

∑
k/∈Xi

1:j−1

aki pk(θ;bi|Xi
1:j−1).

(i) The conditional score in (4.9) and the conditional Fisher information (4.11)

admit satisfy

s(θ;bi, X
i
j = k |Xi

1:j−1) = aki − ā(θ;bi|Xi
1:j−1), k /∈ Xi

1:j−1,

J
(
θ;bi |Xi

1:j−1
)

=
∑

k/∈Xi
1:j−1

(
aki − ā(θ;bi |Xi

1:j−1)
)2

pk(θ;bi|Xi
1:j−1),

and are bounded by a constant that does not depend on θ or bi.

(ii) ā(θ;bi|Xi
1:j−1) → a∗(bi) as θ → −∞ and ā(θ;bi|Xi

1:j−1) → a∗(bi) as θ →
+∞.

The proof of Lemma 6 follows by direct computation.

Theorem 3. For any item selection method and any revision strategy, as n→∞
we have

θ̂τn → θ and
Iτn(θ̂τn)

Iτn(θ)
→ 1 Pθ-a.s.. (4.12)



2002 SHIYU WANG, GEORGIOS FELLOURIS AND HUA-HUA CHANG

The proof of Theorem 4.1 is presented in S3 of the supplementary materials.

Theorem 4. If Iτn(θ)/n converges in probability to a positive number, then√
Iτn(θ̂τn) (θ̂τn − θ)→ N (0, 1). (4.13)

This holds when items are selected according to (4.2), and the number of revisions

is much smaller than the number of items in the sense that τn − n = op(n), in

which case
√
n(θ̂τn − θ)→ N

(
0, [J∗(θ)]−1

)
. (4.14)

Proof. Assume for the moment that as n→∞
Sτn(θ)√
Iτn(θ)

→ N (0, 1). (4.15)

Since Sτn(θ̂τn) = 0 for large enough n with probability 1, with a Taylor expansion

around θ we have

0 = Sτn(θ̂τn) = Sτn(θ) + S
′

τn(θ̃τn)(θ̂τn − θ)
= Sτn(θ)− Iτn(θ̃τn)(θ̂τn − θ) Pθ − a.s.,

(4.16)

where θ̃τn lies between θ̂τn and θ. From (4.15) and (4.16) we obtain

Iτn(θ̃τn)

Iτn(θ)

√
Iτn(θ) (θ̂τn − θ)→ N (0, 1).

Thus, from (4.12) it follows that the ratio on the left-hand side goes to 1 almost

surely, and from Slutsky’s theorem we obtain (4.13). Therefore, in order to

prove the first part of the theorem, it suffices to show that if Iτn(θ)/n converges in

probability to some positive number, then (4.15) holds. We define the martingale-

difference array

Ynt :=
St(θ)− St−1(θ)√

n
1{t≤τn}, t ∈ N, n ∈ N.

Since {St(θ)} is an {Ft}-martingale and τn an {Ft}-stopping time, then {t ≤
τn} = {τn ≤ t− 1}c ∈ Ft−1 and we have

Eθ [Ynt|Ft−1] =
1{t≤τn}√

n
Eθ[St(θ)− St−1(θ) | Ft−1] = 0.

The increments of {St(θ)}t∈N are uniformly bounded, which implies that for every

ε > 0 we have, as n→∞,
∞∑
t=1

Eθ
[
Y 2
nt 1{|Ynt|>ε}

]
→ 0. (4.17)

Therefore, from the Martingale Central Limit Theorem (see, e.g. Ex. 35.12 in
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Billingsley (2008)) and Slutsky’s theorem it follows that if
∑∞

t=1 Eθ[Y
2
nt | Ft−1]

converges in probability to a positive number, then√
n

Iτn(θ)

∞∑
t=1

Ynt −→ N (0, 1).

But
∞∑
t=1

Eθ[Y
2
nt | Ft−1] =

1

n

τn∑
t=1

Eθ
[
(St(θ)− St−1(θ))2 | Ft−1

]
=
Iτn(θ)

n
,

√
n

Iτn(θ)

∞∑
t=1

Ynt =
1√
Iτn(θ)

τn∑
t=1

[St(θ)− St−1(θ)] =
Sτn(θ)√
Iτn(θ)

,

which completes the proof of the first part of the theorem. In order to prove

the second part, it suffices to show that

Iτn(θ)

n
→ J∗(θ)

in probability as n → ∞. From (4.10) it follows that the Fisher information

function can be decomposed as

Iτn(θ) =

n∑
i=1

J(θ;bi) + IRτn(θ),

where IRτn(θ) is the part of the information coming from revisions, i.e.,

IRτn(θ) :=

n∑
i=1

1{giτn≥2}

giτn∑
j=2

J
(
θ;bi |Xi

1:j−1
)
. (4.18)

Let (b̂i)2≤i≤n be the information maximizing item selection strategy defined in

(4.2). Then, from (3.12) we have

1

n

n∑
i=1

J(θ, b̂i)→ J∗(θ) Pθ − a.s.,

whereas from Lemma 6(ii), for any revision strategy we have

1

n
IRτn(θ) ≤ Kτn − n

n
,

where K is some constant that does not depend on θ. The upper bound goes to

0 in probability when τn − n = op(n), which completes the proof.

5. Simulation Study

In this section we present the results of two simulation studies in which we

compared the proposed CAT design that allows for response revision, to which we
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refer as RCAT, with a conventional CAT that does not allow for response revision,

when both are based on the nominal response model (2.1). In the first study we

illustrate our asymptotic results, whereas in the second study we compare the two

designs in a realistic item pool. Specifically, in both studies items were selected

according to the information-maximizing item selection strategies (3.3) and (4.2)

for CAT and RCAT, respectively, however in the second study items are selected

from a discrete item pool without replacement.

For both studies, when revision is allowed we assumed that at most n1 items

could be revised during the test and that the examinee decided to revise a previ-

ous answer after the tth response with probability pt that satisfies the recursion

pt+1 = pt −
0.5

n1
, p1 = 0.5.

For n1, we considered the cases n1/n = 0.1, 0.5, 1. At any given time the examinee

decided to revise, we assumed that all previous items that could still be revised

were equally likely to be selected. The revised responses were simulated according

to the conditional probability model (4.6).

We replicated the two studies for ability levels in the set {−3,−2,−1, 0, 1, 2, 3}.
For each scenario, we computed the root mean square error (RMSE) of the fi-

nal ability estimator,

√
Eθ[(θ̂n − θ))2] and

√
Eθ[(θ̂τn − θ))2], for CAT and RCAT,

respectively, on the basis of 1, 000 simulation runs (examinees).

5.1. An idealized item pool

In the first study we considered an idealized item pool of items that was simu-

lated based on Passos, Berger and Tan (2007). Each item had m = 3 categories,

which means that each item could be revised at most once whenever revision

was allowed. The parameters of the nominal response model were restricted to

a2 ∈ [−0.18, 4.15], a3 ∈ [0.17, 3.93], c2 ∈ [−8.27, 6.38] and c3 ∈ [−7.00, 8.24],

whereas a1 = c1 = 0. The test length was n = 50 items.

The results are summarized in Table 1. We observe that the RMSE in

RCAT is, typically, slightly smaller than that in CAT and slightly larger than

the quantity that is suggested by our asymptotic analysis, (
√
nJ∗(θ))−1. The

RMSE in RCAT seems to slightly outperform this benchmark in the case θ = −2

when the number of revisions is large. For an examinee with this ability, we

plot in Figure 1 the evolution of the normalized total information It(θ)/ft, as

well as the corresponding information from first responses,
∑ft

i=1 J(θ;bi)/ft, and

revisions, IRt (θ)/ft, where 1 ≤ t ≤ τn.

In Figure 2 we compare the approximate 95% confidence intervals that are
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Table 1. RMSE in CAT and RCAT.

θ (
√
nJ∗(θ))−1 CAT RCAT

Expected Number of Revision
4 18 26

−3 0.097 0.104 0.105 0.107 0.100
−2 0.071 0.075 0.073 0.070 0.070
−1 0.068 0.072 0.072 0.072 0.071

0 0.068 0.074 0.072 0.072 0.072
1 0.068 0.077 0.072 0.069 0.070
2 0.068 0.075 0.072 0.070 0.070
3 0.071 0.079 0.076 0.073 0.072

obtained after i distinct items have been answered with a CAT and RCAT,

respectively,

θ̂i ± 1.96 · (Ii(θ̂i))−1/2 and θ̂τi ± 1.96 · (Iτi(θ̂τi))−1/2, 1 ≤ i ≤ n,

for an examinee with ability parameter θ = −3. Our asymptotic results guarantee

the validity of the final confidence interval (i = n) when n is large. The graph

indicates that revision improves the estimation of θ.

5.2. A discrete item pool

In the second study, an item pool was constructed based on a random sample

of 135 multiple choice items from the Chinese Proficiency Tests (HSK), a large

scale international standardized exam for non-native Chinese speakers with more

500,000 test takers annually (Wang et al. (2016b)). The item parameters were

calibrated based on the responses of 10,000 examinees. The MULTILOG (Thissen

(1991)) was used to calibrate the item parameters of the nominal response model

that are described by figure S4 of the supplementary material. Each item had

m = 4 categories, which means that each item could be revised at most twice

when revision was allowed. We considered 3 levels for the test length(n), and 3

levels for the maximum number of items that could be revised (n1), to which we

refer as “small”, “medium” and “large”. Specifically, we considered n = 20(n1 =

5, 10, 20), 30(n1 = 5, 15, 30) and 40(n1 = 5, 20, 40). The results are documented

in Table 2 and show that the positive effect of revisions in the efficiency of the

proposed estimator is much more intense than in the case of the idealized item

pool, especially when the number of revisions is large. However, due to the

discreteness of item pool, the RMSEs were much larger than (
√
nJ∗(θ))−1.
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Figure 1. Decomposition of the Fisher information. The solid line represents the evo-
lution of the normalized accumulated Fisher information, {It(θ̂t)/ft, 1 ≤ t ≤ τn}, in a
CAT with response revision. The dashed line with squares (diamonds) represents the
corresponding information from first responses (revisions). The horizontal line represents
the maximal Fisher information, J∗(θ). The true ability value is θ = −2.
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Figure 2. 95% Confidence Intervals. The left-hand side presents 95% confidence intervals,
θ̂i ± 1.96 · (Ii(θ̂i))−1/2, 1 ≤ i ≤ n, in a standard CAT. The right-hand side presents the

corresponding intervals θ̂τi±1.96 ·(Iτi(θ̂τi))−1/2, 1 ≤ i ≤ n in the proposed RCAT design
that allows for response revision. In both cases, the true value of θ is −3.

6. Conclusion

An attractive feature of our approach from a practical point of view is that

it does not require any additional calibration effort to the one needed by the

corresponding conventional CAT that is based on the nominal response model.
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Table 2. RMSE of CAT and RCAT in a realistic item pool.

θ −3 −2 −1 0 1 2 3
n = 20 Design Condition

(
√
nJ∗(θ))−1 0.084 0.059 0.059 0.080 0.081 0.107 0.165

CAT 0.283 0.230 0.301 0.346 0.338 0.300 0.333
small 0.264 0.211 0.258 0.342 0.324 0.276 0.315

RCAT medium 0.267 0.194 0.278 0.342 0.328 0.276 0.292
large 0.248 0.181 0.259 0.333 0.320 0.250 0.289

n = 30 Design Condition

(
√
nJ∗(θ))−1 0.068 0.048 0.048 0.065 0.066 0.087 0.135

CAT 0.256 0.200 0.236 0.303 0.291 0.265 0.314
small 0.246 0.178 0.227 0.296 0.287 0.253 0.300

RCAT medium 0.232 0.181 0.221 0.276 0.278 0.224 0.274
large 0.222 0.159 0.205 0.283 0.275 0.217 0.267

n = 40 Design Condition

(
√
nJ∗(θ))−1 0.059 0.042 0.042 0.057 0.058 0.075 0.117

CAT 0.243 0.178 0.213 0.279 0.289 0.260 0.309
small 0.247 0.173 0.208 0.269 0.277 0.257 0.300

RCAT medium 0.209 0.149 0.190 0.260 0.253 0.215 0.271
large 0.206 0.145 0.186 0.257 0.251 0.202 0.247

Thus, a traditional CAT system based on the nominal response model may easily

be modified to allow for response revision. At the same time, we should underline

that examinees do not recover the flexibility they enjoy in a paper-pencil test, as

all responses on an item during the test, and not only the last one, contribute to

the estimation of the ability parameter. We believe that this feature helps protect

the resulting ability estimator against certain deceptive test-taking strategies by

the examinees, which is an issue we explore in our current research.

Our work opens a number of research directions. First of all, since items

are drawn without replacement, this may call for modifications of the item se-

lection strategy, in the spirit of Chang and Ying (1999). More empirical and

theoretical work is required in order to understand the effect of different revision

behaviors on the proposed methodology. It remains an open problem to develop

reliable models for the revision behavior of examinees, which could potentially

be incorporated in the ability estimation and item selection algorithms.

Supplementary Materials

The supplementary materials contain the proofs of Lemmas and Theorems in

Sections 2, 3, 4, as well as the distribution of the item parameters in the discrete

item pool.
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