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Abstract: Donoho and Johnstone’s (1994) WaveShrink procedure has proven valu-

able for signal de-noising and non-parametric regression. WaveShrink has very

broad asymptotic near-optimality properties. In this paper, we introduce a new

shrinkage scheme, firm, which generalizes the hard and soft shrinkage proposed by
Donoho and Johnstone (1994). We derive minimax thresholds and provide for-

mulas for computing the pointwise variance, bias, and risk for WaveShrink with

firm shrinkage. We study the properties of the shrinkage functions, and demon-

strate that firm shrinkage offers advantages over both hard shrinkage (uniformly
smaller risk and less sensitivity to small perturbations in the data) and soft shrink-

age (smaller bias and overall L2 risk). Software is provided to reproduce all results

in this paper.
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1. Introduction

Suppose we observe data y = (y1, . . . , yn)′ given by

yi = fi + σzi i = 1, . . . , n, (1)

where {zi} are i.i.d. N(0, 1). The goal is to estimate f = (f1, . . . , fn)′ with small
mean-square-error, i.e. to find an estimate f̂ with small L2 risk:

R(f̂ , f) =
1
n

n∑
i=1

E(f̂i − fi)2. (2)

Donoho and Jonhstone (1994) have developed a powerful methodology called
“WaveShrink” for estimating f ; see also Donoho et al. (1995). WaveShrink has
very broad asymptotic near-optimality properties. For example, WaveShrink
achieves, within a factor of log n, the optimal minimax risk over each functional
class in a variety of smoothness classes and with respect to a variety of losses,
including L2 risk: (see Donoho et al. (1995)). WaveShrink is now well established
as a technique for removing noise from signals and images.

WaveShrink is based on the principle of shrinking wavelet coefficients towards
zero to remove noise. Let w = (w1, . . . , wn)′ be the empirical wavelet coefficients
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and let W be the wavelet transform matrix. The WaveShrink estimate is obtained
by the following 3 steps:
(i) Compute wavelet transform w = Wy.
(ii) Apply a non-linear shrinkage rule δλk

(·) to the wavelet coefficients to obtain

ŵk = δλkσ̂(wk), (3)

where σ̂ is an estimate of the noise standard deviation σ.
(iii) Invert the wavelet transform f̂λ = W−1ŵ.

Donoho and Johnstone (1994) studied the behavior of WaveShrink using the
hard and the soft shrinkage functions:

δH
λ (x) = xI[|x|>λ]

δS
λ (x) = sgn(x)(|x| − λ)+,

where λ ∈ [0,∞). Bruce and Gao (1996) showed that hard shrink tends to
have bigger variance (because of the discontinuity of the shrink function) and
the soft shrink tends to have bigger bias (because of shrinking all big coefficients
towards zero by λ). To remedy the drawbacks of hard shrink and soft shrink, we
introduce a general firm (formerly called semisoft, the name firm was suggested
by Professor David Donoho) shrinkage function δλ1,λ2 :

δλ1,λ2(x) =




0, if |x| ≤ λ1,

sgn(x)λ2(|x|−λ1)
λ2−λ1

, if λ1 < |x| ≤ λ2,

x, if |x| > λ2.

(4)

Figure 1 displays the hard, soft and firm shrinkage functions. For values of x
near the lower threshold λ1, δλ1,λ2(x) behaves like δS

λ1
(x). For values of x above

the upper threshold λ2, δλ1,λ2(x) = δH
λ2

(x) = x. Note that hard shrinkage, with
λ1 = λ2, and soft shrinkage, with λ2 = ∞, are limiting cases of (4). A special
case of firm shrinkage, with λ2 = 2λ1, was successfully used in spectral density
estimation by Walden et al. (1995).

There is a parallel between the choice of shrinkage functions for WaveShrink
and the choice of influence functions in robust statistics. The function x−δH

λ (x) is
the influence function (ψ) for a trimmed mean estimator; x−δS

λ (x) is the influence
function for a Huber estimator; and x − δλ1,λ2(x) is the influence function for a
Hampel estimator (Hampel et al. (1986)).

The main objectives of this paper are to show the advantages of the firm
shrinkage function over hard and soft shrinkage, and to further develop the use
of WaveShrink with the firm shrinkage function. Towards this end, we extend
the work of Donoho and Johnstone (1994) to derive minimax thresholds for firm
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shrinkage. We also extend the work of Bruce and Gao (1996) to derive ex-
act formulae for the finite sample bias and variance for WaveShrink under firm
shrinkage. Finally, we illustrate some of the properties which make firm shrink-
age advantageous over both hard and soft shrinkage. Following the principle of
reproducible research as advocated by Buckheit and Donoho (1995), the software
which produces all figures and tables in this paper are available by anonymous
ftp.
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Figure 1. From left to right: hard, soft and firm shrinkage function (solid
lines). Like hard shrinkage, firm is the identity function (dashed lines) for
large enough |x|. Like soft shrinkage, firm shrinkage is continuous.

The paper is organized as follows. In Section 2, we give the formula for
computing the L2 risk for firm shrinkage of a Gaussian random variable. In
Section 3, we use this formula to compute minimax thresholds for firm shrinkage.
Finite sample bias and variance formulae are given in Section 4. Some advantages
of firm shrinkage over hard and soft shrinkage are discussed in Section 5. Section
6 gives a summary and discusses on-going work. Proofs and technical details are
given in Section 7. Computational and software details are given in Section 8.

2. L2 Risk for Firm Shrinkage

In this Section, we study the L2 risk of the firm shrinkage estimate of a
Gaussian random variable X ∼ N(θ, 1). The L2 risk of the shrinkage function
directly relates to the overall L2 risk of the WaveShrink estimate, and is funda-
mental to the computation of minimax estimators: see Remark 1 and Section 3
below. The L2 risk for firm shrinkage is defined as

Rλ1,λ2
(θ) = E

{
δλ1,λ2

(X) − θ
}2
. (5)

The following theorem gives an analytical expression for Rλ1,λ2
(θ).
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Theorem 1. For X ∼ N(θ, 1),

Rλ1,λ2
(θ) = θ2 {Φ(λ1 − θ) − Φ(−λ1 − θ)} + 1 − Φ(λ2 − θ) + Φ(−λ2 − θ)

+Ψ0(θ, λ1, λ2) + Ψ0(−θ, λ1, λ2)

+(λ2 − θ)φ(λ2 − θ) + (λ2 + θ)φ(λ2 + θ),

where r1 = λ1/(λ2 − λ1), r2 = λ2/(λ2 − λ1), Φ is the probability distribution

function, φ is the probability density function for standard Gaussian random

variable Ψ0(θ, λ1, λ2) = Ψ(λ1 − θ, λ2 − θ, r2, r1(θ − λ2)) and

Ψ(a, b, c, d) ≡
∫ b

a
(cx+ d)2φ(x)dx

= (c2 + d2)
(
Φ(b) − Φ(a)

)
+ cφ(a)(ac + 2d) − cφ(b)(bc + 2d).

The proof of the theorem follows by straightforward calculus. Formulas decom-

posing the risk into squared bias and variance components are given in Section 7.

Figure 2 displays the L2 risk of the firm shrinkage estimates for different

choices of (λ1, λ2). Figure 2 also displays the L2 risk split into squared bias and

variance. From Figure 2, it is evident that firm shrinkage offers a continuum

with soft shrinkage at one extreme (high bias, low variance) and hard shrinkage

at the other extreme (low bias, high variance).

Remark 1. For orthogonal wavelets, W−1 = W ′. Therefore,

R(f̂λ, f) =
1
n

n∑
k=1

E (ŵk − θk)
2 , (6)

where θ = W f are the true wavelet coefficients. If σ2 is known, then the global

risk for the WaveShrink estimate is

R(f̂λ, f) =
σ2

n

n∑
k=1

Rλ1,λ2

(
θk

σ

)
. (7)

Hence, the form of Rλ1,λ2
(θ) directly relates to the L2 risk for the WaveShrink

estimate.
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Figure 2. First row: L2 risks vs. θ for firm shrinkage; middle row: variances
vs. θ for firm shrinkage; bottom row: squared biases vs. θ for firm shrinkage.
Dotted vertical lines indicate the thresholds. Thresholds are (from left to
right): λ1 ≡ 2 and λ2 = ∞, 8, 6, 4, 2.

Remark 2. Visually, in Figure 2, it may appear that hard shrinkage has the
smallest overall risk. Note, however, that hard shrinkage has much higher risk
at the origin. Since the wavelet coefficients are typically near zero, the risk of
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the WaveShrink estimate is often higher. For further elaboration, see Bruce and
Gao (1996) and Section 4.

Remark 3. We can exploit the extra flexibility of firm shrinkage to achieve
WaveShrink estimates with smaller L2 risk. In fact, firm shrinkage can be made
to have uniformly smaller L2 risk than hard shrinkage. For each threshold λ, we
can find many pairs of thresholds λ1 < λ < λ2 such that

Rλ1,λ2(θ) < RH
λ (θ) for all θ. (8)

Figure 3 displays the region for the values (λ1, λ2) such that (8) holds when
λ = 3.33.

A similar result does not hold for soft shrinkage. This is because soft shrink-
age dominates at the origin.
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Figure 3. Left: the pairs of thresholds (λ1, λ2) for which firm shrinkage has
uniformly smaller risk than hard shrinkage for λ = 3.33. Right: the risk
curves under firm shrinkage with λ1 = 3.055 and λ2 = 3.51 (solid line) and
under hard shrinkage with λ = 3.33 (dotted line). This pair of thresholds
gives the greatest minimum risk improvement over hard shrinkage over the
grid of thresholds searched.

3. Threshold Selection for Firm Shrinkage

One of the attractive aspects of the original Donoho and Johnstone (1994)-
hereafter referred to as DJ94 — WaveShrink scheme is its computational and con-
ceptual simplicity. Using a simple, data independent, threshold, one can achieve
nearly optimal estimates in a minimax sense for a broad class of functionals in
a variety of smoothness classes. In this section, we extend these results to firm
shrinkage by computing several types of minimax thresholds. These thresholds
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achieve a tighter upper bound on the L2 minimax risk than both hard and soft
shrinkage.

3.1. Minimax thresholds

Following DJ94, define the minimax quantity

Λ∗∗
n ≡ inf

λ1≤λ2

sup
θ

{ Rλ1,λ2(θ)
n−1 + min(θ2, 1)

}
. (9)

The term min(θ2, 1) in the denominator is the ideal risk under the diagonal
linear projection oracle: an oracle who tells you whether to “keep” or “kill” each
coefficient, §2.1 of DJ94. Hence, from (7), we can bound the L2 risk by

R(f̂λ∗ , f) ≤ Λ∗∗
n

n

{
σ2 +

n∑
k=1

min(θ2
k, σ

2)
}
. (10)

DJ94 show that Λ∗∗
n ∼ 2 log n for hard and soft shrinkage, therefore f̂λ∗ is within

a factor of log n of the optimal bound. Since firm shrinkage is guaranteed to have
smaller minimax risk than soft and hard shrinkage, the nearly optimal asymptotic
results hold for firm shrinkage as well.

The minimax thresholds (λ∗1, λ∗2) can be derived by choosing (λ∗1, λ∗2) to attain
(9): (see Section 8 for computational details). Table 1 gives the minimax thresh-
olds for selected values of n. From Table 1, we can see that the soft minimax
quantities are improved by roughly 6% –19% and the hard minimax quantities
are improved by roughly 19%-39%. As n increases, λ∗n,1 also increases while λ∗n,2

decreases. In other words, firm shrinkage moves from emulating soft shrinkage
for small n to emulating hard shrinkage for large n. This corresponds to the
findings of Bruce and Gao (1996), who determined that ideal soft shrinkage has
lower risk for small n but ideal hard shrinkage has lower risk for large n.

Table 1. Minimax thresholds and minimax risk bounds for the firm, soft and
hard shrinkages.

firm soft hard
n λ∗n,1 λ∗n,2 Λ∗∗

n λ∗n Λ∗
n λ∗n Λ∗

n

64 1.678 8.004 2.931 1.474 3.124 2.697 4.078
128 1.893 7.980 3.464 1.669 3.755 2.913 4.735
256 2.116 7.549 4.033 1.859 4.439 3.117 5.409
512 2.331 7.259 4.634 2.045 5.172 3.312 6.098

1024 2.538 7.069 5.264 2.226 5.950 3.497 6.805
2048 2.737 6.939 5.921 2.403 6.771 3.674 7.529
4096 2.930 6.848 6.603 2.575 7.629 3.844 8.268
8192 3.116 6.799 7.307 2.743 8.522 4.008 9.022

16384 3.296 6.760 8.032 2.906 9.447 4.166 9.791
32768 3.471 6.748 8.776 3.066 10.399 4.319 10.572
65536 3.640 6.748 9.537 3.221 11.376 4.467 11.367
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Define the supremum risk by

Λn(λ1, λ2) ≡ sup
θ

{ Rλ1,λ2(θ)
n−1 + min(θ2, 1)

}
. (11)

In Figure 4, we plot Λ(λ1, λ2) vs. (λ1, λ2) for n = 256. The nearly minimax risk
can be achieved with a broad range of threshold pairs (λ1, λ2). The supremum
risk function Λ(λ1, λ2) is particularly flat relative to the upper threshold λ2.
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Figure 4. The supremum risk Λn(λ1, λ2) defined by (11) is plotted over
(λ1, λ2) with contour lines: 1.02Λ∗∗

n , 1.10Λ∗∗
n and 1.20Λ∗∗

n , where Λ∗∗
n is de-

fined in (9).

3.2. Fix the upper threshold

The simplest rule for setting the WaveShrink threshold is the universal
threshold

√
2 log n, referred to as VisuShrink in DJ94. The universal threshold

ensures that

P

{
max
1≤i≤n

|Xi| >
√

2 log n
}
→ 0, as n→ ∞,

where X1, . . . ,Xn are i.i.d. N(0, 1) random variables. In fact, it can be shown
that

P

{
max
1≤i≤n

|Xi| >
√

2 log n
}
∼ 1√

π log n
, as n→ ∞. (12)

In general,

P

{
max
1≤i≤n

|Xi| >
√
c log n

}
∼

√
2

nc/2−1
√
cπ log n

, as n→ ∞. (13)
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We can define other universal thresholds such that (13) converges to zero faster
(i.e., to suppress noise more thoroughly). For example, threshold

√
4 log n makes

the above convergence rate 1/n
√

2π log n and threshold
√

6 log n makes the above
convergence rate 1/n2

√
3π log n.

Table 2. Minimax lower thresholds λ∗n,1 for the upper thresholds set to the

universal thresholds λ(j)
n,2 =

√
2j logn for j = 1, 2, 3. The minimax risk

bound Λ∗
n is also given.

n λ∗n,1 λ
(1)
n,2 Λ∗

n λ∗n,1 λ
(2)
n,2 Λ∗

n λ∗n,1 λ
(3)
n,2 Λ∗

n

64 2.471 2.884 3.805 1.940 4.079 3.194 1.823 4.995 3.047
128 2.669 3.115 4.393 2.137 4.405 3.694 2.022 5.396 3.544
256 2.860 3.330 4.999 2.327 4.710 4.223 2.213 5.768 4.082
512 3.045 3.532 5.626 2.511 4.995 4.785 2.398 6.118 4.658

1024 3.223 3.723 6.272 2.689 5.266 5.379 2.576 6.449 5.272
2048 3.394 3.905 6.938 2.861 5.523 6.004 2.749 6.764 5.922
4096 3.560 4.079 7.622 3.027 5.768 6.658 2.916 7.064 6.604
8192 3.721 4.245 8.324 3.189 6.004 7.340 3.079 7.353 7.317

16384 3.876 4.405 9.043 3.346 6.230 8.049 3.237 7.630 8.058
32768 4.028 4.560 9.778 3.499 6.449 8.782 3.391 7.898 8.825
65536 4.175 4.710 10.528 3.648 6.660 9.538 3.541 8.157 9.616
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Figure 5. The minimax bounds Λ∗∗
n defined in (9) vs. log2(n) for soft, hard,

firm (all listed in Table 1) and firm with fixed upper thresholds (listed in
Table 2 and labelled as “firm1”, “firm2” and “firm3” in the legend).
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These universal thresholds give, in some sense, an upper bound on the thresh-
olds needed to suppress noise. Table 2 gives an alternative set of minimax thresh-
olds for firm shrinkage with the upper threshold λn,2 set to one of the universal
thresholds. Table 2 lists the minimax thresholds λ∗n,1 and the minimax risk

bounds Λ∗
n for λ(1)

n,2 =
√

2 log n, λ(2)
n,2 =

√
4 log n, λ(3)

n,2 =
√

6 log n and some se-
lected n. Figure 5 plots the minimax bounds for fixed upper thresholds, along
with the minimax bounds for soft, hard and firm derived from previous section.
From Table 2 and Figure 5, we can see that the minimax bounds with fixed upper
thresholds are tighter than those for the hard shrinkage for all sample sizes, and
tighter than those for the soft shrinkage for large sample sizes (n ≥ 4096).

3.3. Fix the lower threshold

In some cases, it may be desirable to fix the lower threshold and optimize
over the upper threshold. For example, a small threshold may be desired to
preserve locally non-smooth features, such as jumps (to avoid overshrinking the
coefficients associated with the jumps). Section 8 describes available software for
computing the minimax upper threshold for a given lower threshold.

3.4. Use different oracle

Instead of the “keep” or “kill” oracle, we can also consider a “keep”, “shrink”
or “kill” (KSK) oracle. Let X ∼ N(θ, σ2), choose constants a, b, c such that
0 < a < 1 < b, 0 < c < 1, and define

θ̂ =




0 |θ| ≤ aσ kill,
cX aσ < |θ| ≤ bσ shrink,
X |θ| > bσ keep.

Then the ideal risk is

R(θ) ≡ E
{
(θ̂ − θ)2

}
=



θ2 |θ| ≤ aσ,

c2σ2 + (c− 1)2θ2 aσ < |θ| ≤ bσ,

σ2 |θ| > bσ.

To make R(θ) continuous, choose

b =

√
1 + 3a2

1 − a2
c =

2a2

1 + a2
.

In particular, for a = 1/
√

3, b =
√

3 and c = 1/2.
Software and tables for computing (λ∗1, λ

∗
2) are available: see Section 8. The

minimax thresholds using the KSK oracle are very close to those in Table 1.
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4. Variance and Bias in Firm WaveShrink

Not only does firm shrinkage produce small minimax risk estimates, but
it also can reduce the risk in many finite sample situations. In this section,
we compute the exact pointwise bias and variance for WaveShrink using firm
shrinkage, and show that firm can lead to substantially lower risk than both
hard and soft shrinkage.

We can get access to the pointwise variance and bias of WaveShrink estimate
using the expression in WaveShrink algorithm step (iii). Let

W−1 =


 c̃11 · · · c̃n1

· · ·
c̃1n · · · c̃nn




be the corresponding matrix for inverse wavelet transform. Then under model
(1), w ∼ N

(
θ, σ2WW′) and the WaveShrink estimate can be written as

f̂i =
∑
k

c̃kiŵk i = 1, . . . , n, (14)

where ŵk are defined in (3).
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Figure 6. A synthetic “jumps” signal used to compare the variance, bias
and risk of the various shrinkage estimates. The top panel displays the noisy
signal and the bottom panel displays the original noise free signal. The noise
is additive white Gaussian with the variance set so that the signal to noise
ratio is 6.
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Theorem 2. If σ2 is known, then for i = 1, . . . , n,

E(f̂i) = σ
∑
k

c̃ki Mλ

(θk

σ

)
(15)

Var (f̂i) = σ2
∑
k,�

c̃kic̃�i Cλ

(θk

σ
,
θ�

σ
; ρk,�

)
, (16)

where Mλ(·) and Cλ(·) are the mean and covariance functions of the firm shrink-
age function defined in the Section 7 and ρk,� = corr(wk, w�).

The proof follows from Bruce and Gao (1996), which gives a similar formula
for hard and soft shrinkage.
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Figure 7. Bias, standard error, and L2 risk for the signal of Figure 6. First
row, from left to right: bias for hard, soft, and firm shrinkage. Second row,
from left to right: standard error for hard, soft, and firm shrinkage. Third
row, from left to right: L2 risk for hard, soft, and firm shrinkage. The
overall squared bias, variance and L2 risk is given above the plots. Hard
shrinkage has the smallest bias, soft shrinkage has the smallest variance, and
firm shrinkage has smallest L2 risk.
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We use the results of Theorem 2 to present an example of how firm can
produce estimates with lower risk. Figure 6 shows the synthetic “jumps” signal,
which is a sinusoid punctuated by a variety of jumps and ramps. The signal
contains additive Gaussian white noise and has a signal-to-noise ratio (SNR)

of 6. The SNR is defined by SNR = SD(signal)
SD(noise) . In Figure 7, we plot the bias,

standard error, and L2 risk of WaveShrink using hard, soft, and firm shrinkage for
the signal displayed in the top panel of Figure 7. Note that these values depend
only on the underlying true signal and noise variance and not on the actual
realization. The minimax thresholds are used for all three shrinkage functions.
In this example, hard shrinkage has the smallest bias, soft shrinkage has the
smallest variance, and firm shrinkage has smallest L2 risk. This example is quite
typical, and reflects very general behavior of hard, soft, and firm shrinkage. See
also Bruce and Gao (1996).

Remark 1. Under certain conditions, Brillinger (1995) shows that, for each i, f̂i

is asymptotically Gaussian distributed. Hence, approximate confidence intervals
can be constructed from the estimated pointwise standard errors

si = σ̂
{∑

k,�

c̃kic̃�i Cλ

( θ̂k

σ̂
,
θ̂�

σ̂
; ρk,�

)}1/2
. (17)

Remark 2. The summations in (15)-(16) involve only P non-zero terms cki

where P depends on the wavelet filter length and maximum resolution level J .
In practice, if we shrink only a few levels, then the effort required to compute
the variance and bias is not much greater than for the WaveShrink estimate
itself. (See Section 8 for information on how to obtain an efficient software
implementation of the above formulas.)

Remark 3. In the above example, the calculations are done with periodized
wavelets. The formulas, however, are valid for more general boundary treatment
methods (e.g., the “interval” wavelets of Cohen et al. (1993)).

Remark 4. For orthogonal wavelets, the variance formula in Theorem 2 simpli-
fies considerably since ρk,� = 0 for all k 	= 	. Note also that c̃ij = cij .

5. Local Shift Sensitivity and Bias Reduction

Hard shrinkage is sensitive to small fluctuations in the data. This sensitivity
is a result of the discontinuity in the shrinkage function at x = ±λ. When values
of wavelet coefficients are changed slightly (e.g. from barely below λ to barely
above λ, or vice versa), this has a measurable effect on the WaveShrink estimate.
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Following §2.1c of Hampel et al. (1986), define local-shift sensitivity by

αλ = sup
x �=y

∣∣∣δλ(y) − δλ(x)
y − x

∣∣∣. (18)

It is easy to see that αH
λ = ∞, αS

λ = 1 and αλ1,λ2
= λ2/(λ2−λ1). Soft shrinkage

and firm shrinkage are less sensitive to small perturbations in the data than hard
shrinkage.
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Figure 8. Hard shrinkage is more sensitive to small perturbations in the data
than soft or firm shrinkage. The top panel displays a signal of length 512 with
additive Gaussian white noise (signal to noise ratio of 5). The middle panel
displays the estimates of the signal obtained using the WaveShrink procedure
with hard shrinkage applied to 16 overlapping windows of length 384. The
windows are obtained by successively dropping 8 samples from the beginning
of the signal and adding 8 samples to the end of the signal. The bottom
panel displays the sliding window WaveShrink estimates for firm shrinkage.
Minimax thresholds are used for both hard and firm shrinkage and the scale
of the noise is re-estimated for each window.

Figure 8 illustrates some of the problems associated with the local shift
sensitivity of hard shrinkage. The top panel displays a signal of length 512 with
additive Gaussian white noise. This signal is similar to that of Figures 6 and 7
except that the variance of the noise changes. The signal-to-noise ratio is 5. The
middle panel displays the estimates of the signal obtained using the WaveShrink
procedure with hard shrinkage applied to 16 overlapping windows of length 384.
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The windows are obtained by successively dropping 8 samples from the beginning
of the signal and adding 8 samples to the end of the signal. The bottom panel
displays the 16 windowed WaveShrink estimates for firm shrinkage. Minimax
thresholds are used for both hard and firm shrinkage and the scale of the noise
is re-estimated for each window. The hard shrinkage estimates are visibly more
volatile, particularly near the discontinuities.

In this example, the data hasn’t been perturbed — only the estimated scale
factor σ̂ changes for each window. If we perturb the data as well, then we can
expect hard shrinkage to exhibit even greater volatility.

Soft shrinkage almost always introduces bias. To measure this, define

βλ = inf{r > 0; δλ(x) = x, when |x| > r}. (19)

The shrinkage function does not generate bias for x larger than βλ. It is easy to
see that βS

λ = ∞, βH
λ = λ and βλ1,λ2

= λ2. Note that (19) is similar to the idea
of rejection point in robust statistics literature: (see Hampel et al. (1986)).

The following example illustrates the bias sensitivity of soft shrinkage. Let
fv(x) = v I[0≤x<0.5], i.e. fv(x) is a step function with a jump of height v. The
bigger the v, the bigger the signal-to-noise ratio, and the easier to estimate fv.
Table 3 shows that no matter how big v is, the soft shrinkage estimate is always
biased. By contrast, the biases for both hard shrinkage and firm shrinkage (with
the Haar wavelet) go to zero as v → ∞.

Table 3. Bias comparison of soft, hard, and firm shrinkage with the Haar
wavelet for fv(x) = vI[0≤x≤0.5], sample size n = 1024, and noise variance
σ2 = 1. Minimax thresholds are used for all shrinkage estimates. The first
three columns compare the maximum bias max{|Ef̂i−fi|} and the last three
columns compare the average squared bias

∑n
i=1(Ef̂i − fi)2.

max{|Ef̂i − fi|}
∑n

i=1{|Ef̂i − fi|2}
v soft hard firm soft hard firm
1 0.9502 0.9730 0.9597 0.9172 0.9617 0.9357
2 1.8425 1.9004 1.8637 3.4505 3.6699 3.5303
5 3.5824 2.9574 3.3368 13.4064 10.3365 12.0012

10 4.3657 1.4655 2.2923 22.2400 9.2453 12.2984
50 4.7023 0.0012 0.0670 29.7304 0.0001 0.2745

500 4.7023 0.0000 0.0000 29.7305 0.0000 0.0000
∞ 4.7023 0.0000 0.0000 29.7305 0.0000 0.0000

6. Discussion

In this paper, we introduce the firm shrinkage function for use with the
WaveShrink procedure. Firm shrinkage gives uniformly lower risk than hard
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shrinkage, a lower minimax risk bound than both hard and soft shrinkage, and
lower risk in many finite sample situations. In addition, firm shrinkage overcomes
the sensitivity of hard shrinkage to small perturbations in the data and avoids
the bias artifacts of soft shrinkage. We derive formulas and tables for L2 risk,
minimax thresholds, and pointwise variance and bias. Software is provided to
reproduce all results in this paper.

The firm shrink function discussed in this paper is a piece-wise linear function
and is not differentiable. An alternative is to replace the linear function in the
interval [λ1, λ2] with a higher order polynomial. This will enable one to get a
differentiable shrink function, ensuring that the shrunken random variable has
density when the original variable has one. For example, one could define

δλ1,λ2(x) =




0, if |x| ≤ λ1,

sgn(x)(r2 − r1|x|)(|x| − λ1)2, if λ1 < |x| ≤ λ2,
x, if |x| > λ2,

where r1 = (λ1 + λ2)/(λ2 − λ1)3 and r2 = 2λ2
2/(λ2 − λ1)3.

7. Technical Details

Bruce and Gao (1996) give formulas for the mean, variance and covariance
function of the hard and soft shrink functions. In this section, we give parallel
results for the firm shrink function.

7.1. Mean and variance of shrinkage estimate

The relationships between the shrinkage functions:

δλ1,λ2(X) = δH
λ2

(X) +
λ2

λ2 − λ1
δS
λ1

(XI[|X|≤λ2]).

Notice also ŵk = δλσ̂(wk) = σ̂δλ(wk/σ̂) = σδλσ̂/σ(wk/σ).

Lemma 1. (Mean) Suppose X ∼ N (θ, 1) is a Gaussian random variable with
mean θ and unit variance, then

Mλ1,λ2(θ) ≡ E
{
δλ1,λ2

(X)
}

=MH
λ2

(θ) +
λ2

λ2 − λ1
{m1(λ1, λ2, θ) −m1(λ1, λ2,−θ)} ,

where

MH
λ (θ) = θ + θ [1 − Φ(λ− θ)− Φ(λ+ θ)] + φ(λ− θ) − φ(λ+ θ)

m1(λ1, λ2, θ) ≡
∫ λ2−θ

λ1−θ
(x+ θ − λ1)φ(x)dx

= (θ − λ1)(Φ(λ2 − θ) − Φ(λ1 − θ)) − φ(λ2 − θ) + φ(λ1 − θ).
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It is easy to see that the mean function is odd, i.e. Mλ(−θ) = −Mλ(θ).

Lemma 2. (Variance) Suppose X ∼ N (θ, 1) is a Gaussian random variable
with mean θ and unit variance, then

Vλ1,λ2(θ) ≡ Var (δλ1,λ2
(X))

= V H
λ2

(θ) − λ2

λ2 − λ1

{
v2(λ1, λ2, θ) + v2(λ1, λ2,−θ)

}
,

where

V H
λ (θ) = (θ2 + 1)(2 − Φ(λ− θ) − Φ(λ+ θ))

+ (λ+ θ)φ(λ− θ) + (λ− θ)φ(λ+ θ) −MH
λ (θ)2

v2(λ1, λ2, θ) =m1(λ1, λ2, θ)
{
2MH

λ2
(θ)+

λ2

λ2 − λ1
(m1(λ1, λ2, θ)−m1(λ1, λ2,−θ))

}

− λ2

λ2 − λ1
m2(λ1, λ2, θ)

m2(λ1, λ2, θ) ≡
∫ λ2−θ

λ1−θ
(x+ θ − λ1)2φ(x)dx

= (1 + (θ − λ1)2) {Φ(λ2 − θ)− Φ(λ1 − θ)}
− (λ2 − 2λ1 + θ)φ(λ2 − θ)− (λ1 − θ)φ(λ1 − θ).

The proofs of these lemmas are based on straight forward calculus, e.g.

E
(
XI[|X|≤λ]

)
=
∫ λ−θ

−λ−θ
(x+ θ)φ(x)dx.

Figure 2 displays the L2 risk, variance and bias for the firm shrinkage estimates.

7.2. Covariance of shrinkage estimate

It is much more complex for the covariance function as it involves the bivari-
ate Gaussian distribution.

Lemma 3. (Covariance) Suppose(
X1

X2

)
∼ N

((
θ1
θ2

)
,

(
1 ρ
ρ 1

))
,

then

E
{
δλ(X1)δλ(X2)

}
=
√

1 − ρ2

∫ ∞

−∞
δλ(x+ θ1)φ(x)M λ√

1−ρ2

( ρx+ θ2√
1 − ρ2

)
dx,

where Mt(·) is the mean function for shrinkage δt(·) as in Lemma 1. Then the
covariance function Cλ(θ1, θ2; ρ) can be computed by

Cλ(θ1, θ2; ρ) = Eδλ(X1)δλ(X2) −Mλ(θ1)Mλ(θ2).
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For the firm shrinkage,

E
{
δλ1,λ2(X1)δλ1,λ2(X2)

}
= ρ1

{
G1(λ1 − θ1, θ1, ρ

′, θ′2, λ
′
2) −G1(λ1 + θ1,−θ1,−ρ′, θ′2, λ′2)

}
+ r2ρ1

{
G3(λ2 − θ1, θ1, λ

′
1, λ

′
2, ρ

′, θ′2) −G3(λ2 + θ1,−θ1, λ′1, λ′2,−ρ′, θ′2)
− G3(λ2 − θ1, θ1, λ

′
1, λ

′
2,−ρ′,−θ′2) +G3(λ2 + θ1,−θ1, λ′1, λ′2, ρ′,−θ′2)

+ G1(λ1 − θ1, θ1 − λ1, ρ
′, θ′2, λ

′
2) −G1(λ2 − θ1, θ1 − λ1, ρ

′, θ′2, λ
′
2)

− G1(λ1 + θ1,−θ1 − λ1,−ρ′, θ′2, λ′2)+G1(λ2 + θ1,−θ1 − λ1,−ρ′, θ′2, λ′2)
}

+r22ρ1

{
G3(λ1 − θ1, θ1 − λ1, λ

′
1, λ

′
2, ρ

′, θ′2) −G3(λ2 − θ1, θ1 − λ1, λ
′
1, λ

′
2, ρ

′, θ′2)

− G3(λ1+θ1,−θ1−λ1, λ
′
1, λ

′
2,−ρ′, θ′2)+G3(λ2+θ1,−θ1−λ1, λ

′
1, λ

′
2,−ρ′, θ′2)

− G3(λ1−θ1, θ1−λ1, λ
′
1, λ

′
2,−ρ′,−θ′2)+G3(λ2−θ1, θ1−λ1, λ

′
1, λ

′
2,−ρ′,−θ′2)

+G3(λ1 + θ1,−θ1−λ1, λ
′
1, λ

′
2, ρ

′,−θ′2) −G3(λ2+θ1,−θ1−λ1, λ
′
1, λ

′
2, ρ

′,−θ′2)
}
,

where

H1(a, b, c, d) ≡
∫ ∞

a
(x+b)(cx+d)φ(x)dx = (ac+bc+d)φ(a)+(bd+c)(1−Φ(a))

H2(a, b, c, d) ≡
∫ ∞

a
(x+ b)φ(x)φ(cx + d)dx = A1(a, d, c) + bA0(a, d, c)

A0(a, b, c) ≡
∫ ∞

a
φ(x)φ(cx + b)dx =

φ(b′)√
1 + c2

(
1 − Φ

(
a
√

1 + c2 + b′c
))

A1(a, b, c) ≡
∫ ∞

a
xφ(x)φ(cx + b)dx =

φ(a)φ(ac + b)
1 + c2

− b′c A0(a, b, c)

B0(a, b, c) ≡
∫ ∞

a
φ(x)Φ(cx+ b)dx = 1 − Φ(a) − Φ2(a, b′;−c′)

B1(a, b, c) ≡
∫ ∞

a
xφ(x)Φ(cx+ b)dx = φ(a)Φ(ac+ b) + cA0(a, b, c)

B2(a, b, c) ≡
∫ ∞

a
x2φ(x)Φ(cx+b)dx=aφ(a)Φ(ac + b)+B0(a, b, c)+cA1(a, b, c)

G1(a, b, c, d, e) ≡
∫ ∞

a
(x+ b)φ(x)MH

e (cx+ d)dx

=H1(a, b, c, d) +H2(a, b, c, d − e) −H2(a, b, c, d + e)
+ G2(a, b, c, d, d − e) −G2(a, b, c, d, d + e)

G2(a, b, c, d, e, f) ≡
∫ ∞

a
(x+ b)(cx + d)φ(x)Φ(ex + f)dx

= bdB0(a, f, e) + (bc+ d)B1(a, f, e) + cB2(a, f, e)

G3(a, b, c, d, e, f) ≡
∫ ∞

a
(x+ b)φ(x)m1(c, d, ex + f)dx
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=G2(a, b, e, f − c, e, f − c) −G2(a, b, e, f − c, e, f − d)

+ H2(a, b, e, f − c) −H2(a, b, e, f − d)

ρ1 =
√

1 − ρ2, r2 = λ2/(λ2−λ1), λ′1 = λ1/ρ1, λ′2 = λ2/ρ1, ρ′ = ρ/ρ1, θ′2 = θ2/ρ1,
b′ = b/

√
1 + c2, c′ = c/

√
1 + c2 and

Φ2(a, b; ρ) =
∫ ∞

a

∫ ∞

b
n2(x, y; ρ)dxdy,

where n2(x, y; ρ) is the probability density function of a bivariate Gaussian
(X1,X2).

8. Software and Computational Details

All plots and calculations are done using extensions to the S+WAVELETS
software toolkit version1.1 (Bruce et al. (1996)). S+WAVELETS is a module in
the S-Plus software system (Statistical Sciences (1993)). The figures and tables
are reproducible through software which can be obtained by anonymous ftp to
ftp.statsci.com in the directory pub/WAVELETS.

The formulas for the mean, variance, L2 risk, and covariances for the firm
shrinkage function are given in Theorem 1 of Section 2 and Lemmas 1-3 of
Section 7. These formulas are implemented by the functions wv.shrink.mean,
wv.shrink.var, wv.shrink.l2, and wv.shrink.cov.

The values in Table 1 were computed by the following steps:
(1) The supremum risk Λn(λ1, λ2) defined in (11), is computed for a given pair

(λ1, λ2) using a quasi-Newton optimization with numerical derivatives (Den-
nis and Mei (1979)).

(2) Apply step (1) to a grid of (λ1, λ2) with increments (∆λ1 ,∆λ2)=(0.01, 0.01).
(3) Compute the minimum and find a region for (λ1, λ2) such that Λn(λ1, λ2) are

within 1% of the minimum.
(4) Apply a quasi-Newton optimization procedure with numerical derivatives

(Dennis and Mei (1979)) using initial values from the region obtained in
step (3).
The values in Table 2 were computed using a grid search over λ1 with incre-

ments ∆λ1 = 0.0001. At each grid point, the supremum over θ was computed
using a quasi-Newton optimization with numerical derivatives (Dennis and Mei
(1979)).

These (and other) minimax thresholds can be computed using the functions
minimax.hard (keep or kill and shrink oracles), minimax.soft1 (keep or kill
oracle), minimax.soft2 (shrink oracle), minimax.firm (keep or kill oracle), and
minimax.firm1 (keep, shrink, or kill oracle),

The pointwise variances, given by (16), are computed by the func-
tion var.waveshrink. For orthogonal wavelets, var.waveshrink computes the
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variances using either a matrix formulation or more efficient implementation tak-
ing advantage of the sparsity in the matrix implied by the wavelet filters. For
biorthogonal wavelets, which requires considerably greater computational effort,
only the more efficient implementation is used. (Details are described in Bruce
et al. (1996).)
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