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Abstract: Coarse Structural Nested Mean Models (SNMMs, Robins (2000)) and

G-estimation can be used to estimate the causal effect of a time-varying treat-

ment from longitudinal observational studies. However, they rely on an untestable

assumption of no unmeasured confounding. In the presence of unmeasured con-

founders, the unobserved potential outcomes are not missing at random, and stan-

dard G-estimation leads to biased effect estimates. To remedy this, we investigate

the sensitivity of G-estimators of coarse SNMMs to unmeasured confounding, as-

suming a nonidentifiable bias function which quantifies the impact of unmeasured

confounding on the average potential outcome. We present adjusted G-estimators

of coarse SNMM parameters and prove their consistency, under the bias modeling

for unmeasured confounding. We present a sensitivity analysis for the effect of the

ART initiation time on the mean CD4 count at year 2 after infection in HIV-positive

patients, based on the prospective Acute and Early Disease Research Program.

Key words and phrases: Censoring, confounding by indication, estimating equa-

tions, HIV/AIDS research, non-ignorable, sequential randomization.

1. Introduction

Randomized control trials have been regarded as the gold standard for treat-

ment comparison; however, they may not be feasible due to ethical issues, cost re-

strictions, implementation difficulty, etcetera. In such cases, observational studies

can be useful. Since individuals are not randomly assigned to treatments, the

observed association between treatment and outcome may be due to confounders

that predict both treatment assignment and outcome. Therefore, it is important

to control for all the confounders in order to obtain a valid causal conclusion

about the treatment effect.

We consider the potential outcomes framework (Rubin (1974); Robins et al.

(1992)). This has been commonly adopted in the causal inference literature. For

illustration, consider a single-time-point setting where we have pre-treatment
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variables L, a binary treatment A with 0 indicating the control treatment and 1

indicating the active treatment, and lastly an outcome at the end of the study,

Y . In this setting, each patient has two potential outcomes: Y (0), the outcome

that would be realized if the patient received the control treatment, and Y (1),

the outcome that would be realized if the patient received the active treatment.

We assume that the observed outcome is equal to the potential outcome under

the actual treatment, Y = Y (A) (the consistency assumption, Rubin (1974)).

Therefore, causal inference can be conceptualized as a missing data problem

in which only one potential outcome is observed for each patient. Rubin (1974)

described the condition for estimating average causal effects in this setting, which

assumes that there is no unmeasured confounders,

Y (a) qA|L, (1.1)

for a = 0, 1. Under (1.1), the potential outcomes are missing at random (Rubin

(1976)) and selection bias can be removed by adjusting for the measured covari-

ates. However, if there are unmeasured confounders, potential outcomes are not

missing at random conditional on the measured covariates, which renders the

effect estimates unidentifiable.

For observational studies with a time-varying treatment, Robins (1986; 1987)

established the conditions for estimating causal effects, and proposed two classes

of models: Marginal Structural Models (MSMs, Robins (2000)) and SNMMs

(Robins (1994, 2000); Lok et al. (2004); Lok, Hérnan and Robins (2007)), which

adjust for selection bias due to measured time-varying confounders. In a recent

assessment of the dependence of the effect of ART on its initiation time, Lok and

DeGruttola (2012) developed a new class of coarse SNMMs and applied it to the

observational AIEDRP (Acute Infection and Early Disease Research Program)

database. The validity of G-estimation of the SNMMs analyses relies on two key

assumptions: (i) the treatment effect model is well-specified, and (ii) there are no

unmeasured treatment-outcome confounders. In practice, both assumptions are

rather strong and can be violated. Yang and Lok (2016) developed a goodness-of-

fit test procedure to assess the model fit (assumption (i)). This paper addresses

sensitivity to unmeasured confounding (assumption (ii)).

The existing literature on sensitivity analyses to unmeasured confounders is

large, including Schlesselman (1978), Lin, Psaty and Kronmal (1998), Greenland

(2003, 2005), McCandless, Gustafson and Levy (2007), Cornfield et al. (2009),

and Rosenbaum (2009). Cornfield et al. (2009) used sensitivity analyses formally
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to assess the association between smoking and lung cancer; Rosenbaum (2009)

has done extensive modeling of how unmeasured confounders affect the treat-

ment assignment and outcome; and McCandless, Gustafson and Levy (2007)

proposed a Bayesian approach to conducting sensitivity analyses where the prior

distribution models beliefs about unknown and unmeasured confounding. Many

existing methods are limited to simple settings, e.g., most of these works con-

sider settings with a single time-point treatment, or rely on external sources of

information on the unmeasured confounders. In a longitudinal setting with time-

dependent treatments, the literature is scarce. The exceptions include Robins,

Rotnitzky and Scharfstein (2000) and Brumback et al. (2004). Brumback et al.

(2004) implemented a sensitivity analysis to unmeasured confounding of inverse-

probability-of-treatment-weighting estimators for MSMs. SNMMs have more de-

sirable features than MSMs (Robins (2000)). For example, SNMMs do not require

the positivity assumption which assumes the probability of all patients receiv-

ing each treatment regimen is positivity, which may be questionable in practice;

SNMMs can handle continuous-valued treatments, but MSMs cannot; SNMMs

are able to model time-varying interactions between covariates and treatment

in the outcome model. Despite these advantages, their applications in practice

are still limited (Vansteelandt and Joffe (2014)). We aim to provide a suitable

methodology to deal with unmeasured confounding for SNMMs.

As in the single-time-point setting, in the presence of unmeasured con-

founders, the unobserved potential outcomes are not missing at random, and

standard G-estimation lead to biased effect estimates. We investigate the sensi-

tivity of G-estimation of coarse SNMMs to unmeasured confounding, assuming

a nonidentifiable bias function quantifying the impact of unmeasured confound-

ing on the average potential outcome. We propose adjusted G-estimators of

coarse SNMMs parameters, and prove their consistency under the bias model-

ing for unmeasured confounding. In Section 2, we present a motivating data

set and the coarse SNMMs analysis. In Section 3, we describe the sensitivity

analysis for coarse SNMMs in a time-varying treatment setting. In Section 4, we

adopt the inverse-probability-of-censoring-weighting technique to accommodate

patients loss to follow up. In Section 5, we apply the proposed method to the

motivating data set. Section 6 concludes.

2. Coarse Structural Nested Mean Models

2.1. The AIEDRP dataset

ART (Antiretroviral Treatment) is a standard initial treatment for HIV-
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positive patients, and has considerably reduced the morbidity and mortality in

them. However, there is no strong evidence to support when to start ART

in patients in the acute and early stages of infection. For this investigation,

we use the observational AIEDRP (Acute Infection and Early Disease Research

Program), which consists of 1762 HIV-positive patients diagnosed during acute

and early infection (Hecht et al (2006)). Dates of infection were estimated based

on a stepwise algorithm using clinical and laboratory data (Hecht et al (2006);

Smith et al. (2006)).

Lok and DeGruttola (2012) explored this data set and argued that the data

show time-varying confounding by indication. They applied coarse SNMMs to

estimate how the time between infection and ART initiation affects the effect of

one year of ART on immune reconstitution as measured by CD4 count, adjust-

ing for selection bias due to observed time-varying confounders. Their analysis

showed that ART is beneficial in acute and early infection, with a possibly in-

creased beneficial effect of earlier ART initiation. Although several measured

confounders were considered, including age, gender, race, injection drug use,

CD4 count, and viral load, the adjusted effect estimate may be biased due to

unmeasured confounders. For example, psychosocial factors (Villes et al. (2007))

and comorbidities (Abara et al. (2014)) are important confounders of the asso-

ciation between the ART initiation time and the CD4 count outcome. These

confounders were not available.

Our goal is to estimate the causal relationship between the ART initiation

time and the mean CD4 counts two years after infection, adjusting for both

measured confounders and possibly unmeasured confounding. To do this, we use

sensitivity analyses to estimate the potential impact of unmeasured confounders

on the estimated causal parameters.

2.2. Data structure

Suppose all participants, in a random sample of size n, are followed monthly

at months 0, . . . ,K + 1, where 0 is the estimated date of infection, and K + 1

is the last month of interest (month 24 in our application). For each individual,

we observe a treatment regimen (A0, . . . , AK) with Ak the treatment determined

at month k, and a covariate process (L0, . . . , LK+1). We denote the outcome of

interest by Y and we have Y = LK+1, the CD4 count measured at the end of the

study. Ak = 1 if the treatment is started at month k and 0 otherwise, and Lk is

a set of observed covariates at month k, which is measured after Ak−1 and be-

fore Ak. The data are represented as n i.i.d. (independently and identically
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distributed) realizations of (L0, A0, L1, A1, . . . , LK , AK , LK+1) = (ĀK , L̄K+1),

where we use overbars to denote the histories of time-dependent treatments and

covariates. For notational simplicity we drop the subscript i for patients. We

assume that treatment is monotone in the sense that once the treatment is initi-

ated, it never stops under follow-up. Thus, the treatment regimen is determined

by the treatment initiation time m. Let T be the actual month of treatment

initiation. If treatment was never initiated during the study period, let T =∞.

2.3. The potential outcomes

Let Y (∞) be the outcome CD4 count at month K + 1 after infection had

the patient never initiated treatment. This is a counterfactual outcome. It is

only observed if the patient did not initiate the treatment. Let Y (m) be the CD4

count at month K+ 1 had the patient started treatment at month m. Under the

potential outcomes framework, we need the consistency assumption, which links

the counterfactual data to the observed data, Y = Y (T ).

2.4. Coarse SNMMs

Following Robins (2000) and Lok and DeGruttola (2012), we define the treat-

ment effect model as conditional treatment contrasts, for 0 ≤ m ≤ K,

γm(l̄m) = E(Y (m) − Y (∞)|L̄m = l̄m, T = m).

We assume a parametric model γm,ψ(l̄m) = (ψ0+ψ1m)(K+1−m), since arguably

the average treatment effect is proportional to the treatment duration (K+1−m),

and the coefficients can depend on the treatment initiation time m. If ψ0+ψ1m >

0 and ψ1 < 0, the treatment is beneficial with an increased gain if it was started

earlier.

2.5. The conditional probabilities of treatment initiation

Unlike in randomized control trials, the treatment assignment mechanism is

unknown in observational studies. We assume a correctly specified parametric

model for treatment initiation given the observed covariate history:

Pr(Am = 1|L̄m, Ām−1 = 0̄) = Pr(Am = 1|L̄m, Ām−1 = 0̄;α). (2.1)

This could be a pooled logistic regression model. Since treatment is monotone,

Pr(Am = 1|L̄m, Am−1 = 1) = 1.

2.6. G-estimation under no unmeasured confounding

The parameters in γψ cannot be estimated by regression methods since the
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dependent variable involves the unobserved potential outcome. For parameter

identification, we require the assumption of no unmeasured confounding (Robins

et al. (1992); Robins (1998a,b); Robins (2000)): for 0 ≤ m ≤ K,

Am q Y (∞)|L̄m, Ām−1, (2.2)

where AqB means “A is independent of B” (Dawid (1979)).

To facilitate estimation, define

Hψ = Y − γT,ψ(L̄T ), (2.3)

which mimics the potential outcome Y (∞). By blipping off the average treat-

ment effect from the observed outcome, we obtain a quantity that has the same

conditional distribution as the outcome that would have been observed (Lok and

DeGruttola (2012)):

E(Hψ|L̄m, Ām−1 = 0̄, Am) = E(Y (∞)|L̄m, Ām−1 = 0̄, Am), (2.4)

where by convention, E(·|L̄0, Ā−1 = 0̄, A0) = E(·|L̄0, A0). Together, (2.2) and

(2.4) imply that

E(Hψ|L̄m, Ām−1 = 0̄, Am) = E(Hψ|L̄m, Ām−1 = 0̄). (2.5)

G-estimators for ψ solve unbiased estimating equations constructed based on

(2.5) (Robins et al. (1992); Robins (1994, 2000); Lok and DeGruttola (2012)).

3. Evaluating the Impact of Unmeasured Confounding

Assumption (2.2) cannot be tested empirically from the data. If it fails, the

treatment assignment is non-ignorable or, equivalently, there is selection bias due

to unmeasured confounders. For 0 ≤ m ≤ K, define the selection bias function

due to unmeasured confounders (Robins, Rotnitzky and Scharfstein (2000)) as

g(L̄m) = E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 1)− E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 0).

This represents the average difference in the potential outcome Y (∞) between

those with Am = 1 and those with Am = 0 for the subgroup of patients with

L̄m and Ām−1 = 0̄. Thus, the selection bias function measures the impact of

unmeasured confounders of Am on the difference in the potential outcome be-

tween the treated and untreated patients at each month, given the past treatment

and covariate history. Under the assumption of No Unmeasured Confounding,

g(L̄m) = 0.

The observed data carry no information about selection bias on unmeasured

confounders. Its presence, direction, and magnitude are important for modeling,

but the data at hand cannot determine them. Therefore, the selection bias on



SENSITIVITY ANALYSIS OF NO UNMEASURED CONFOUNDING 1709

unmeasured confounders should be pre-specified based on the modeler’s belief,

and its magnitude should be explored over a wide range in a sensitivity analysis.

Let g(L̄m; η) be a correct model of g(L̄m), where η is regarded as the sensitivity

parameter. We parametrize g so that g(L̄m; 0) = 0, η = 0 indicating the ab-

sence of unmeasured confounders. The functional form of the nuisance models

can be selected on the basis of the available data, as well as the literature and

subject knowledge specific to the application setting. Later, we provide a specific

illustration for our example.

Equation (2.5) is the key for estimation under the assumption of No Unmea-

sured Confounders. Since this assumption may not hold, (2.5) is not necessarily

true. We would like to adjust the previously defined mimicking outcome Hψ so

that a similar relationship to (2.5) holds for the adjustments.

Definition 1 (Adjustments). For 0 ≤ m ≤ K,

Ha
m,(ψ,η) = Hψ −

K−1∑
k=m

Pr(1−Ak|L̄k, Āk−1 = 0̄)(2Ak − 1)g(L̄k; η)1Āk−1=0̄. (3.1)

The superscript “a” stands for the adjustment. The proof of the following

theorem is presented in the Appendix, showing that (3.1) replaces the role of

(2.5) for estimation.

Theorem 1. Under the Consistency assumption, if γψ is a correctly specified

model for the treatment effect γ, g(L̄m, Am; η) is a correctly specified selection

bias function due to unmeasured confounding with pre-determined value for η,

for Ha
m in (3.1) and 0 ≤ l ≤ m ≤ K, we have

E(Ha
l,(ψ,η)|L̄m, Ām−1 = 0̄, Am) = E(Ha

l,(ψ,η)|L̄m, Ām−1 = 0̄). (3.2)

Theorem 2 (Unbiased Estimating Equation Under Unmeasured Confounding).

Under the Consistency assumption, if γψ is a correct model for the treatment

effect γ, g(L̄m, Ām; η) is a correctly-specified selection bias function due to un-

measured confounding with pre-determined value for η; for Ha
m in (3.1), the

estimating function

U(ψ) = PnG(ψ,η,q), (3.3)

with

G(ψ,η,q) =

K∑
m=0

q(L̄m){Ha
m,(ψ,η) − E(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄)}

× {Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}1Ām−1=0̄, (3.4)

is unbiased for any q(L̄m).
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The proof of Theorem 2 is given in the Appendix. Theorem 2 leads to a large

number of unbiased estimating equations for ψ. To facilitate optimal estimation,

we identify the optimal set of q, qopt, that satisfies

E

{
∂G(ψ,η,q)

∂ψT

}
= E{G(ψ,η,q)G

T
(ψ,η,qopt)} (3.5)

for any q. With this qopt, the resulting estimator from (3.3) is most efficient

(Newey and McFadden (1994)).

Theorem 3 (Optimal estimation). If E{Ha
m,(ψ,η)H

a
l,(ψ,η)|L̄m, Ām} does not de-

pend on Am for 0 ≤ l ≤ m ≤ K, then,

qopt(L̄m)T = {V ar(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄)}−1

×
{
E

(
∂

∂ψT
Hψ|L̄m, Ām−1 = 0, Am = 1

)
− E

(
∂

∂ψT
Hψ|L̄m, Ām = 0̄

)}
, (3.6)

where Hψ is defined in (2.3) and Ha
m,(ψ,η) is defined in (3.1).

The proof of Theorem 3 is given in the Appendix. The assumption here is

an organic extension of (3.2). It does not affect the consistency of the estimator,

but the efficiency.

Remark 1. Estimating equations (3.3) with (3.6) are not well posed for estima-

tion since they involve unknown population quantities E(Ha
m,(ψ,η)|L̄m, Ām−1 =

0̄), E(∂Hψ/∂ψ|L̄m, Ām−1 = 0̄, Am), and V ar(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄). If Hψ is

linear in ψ, then E(∂Hψ/∂ψ|L̄m, Ām−1 = 0̄, Am = 1) − E(∂Hψ/∂ψ|L̄m, Ām =

0̄) does not depend on ψ; however, one still needs the true unknown distri-

bution to compute these conditional expectations. To obtain estimators with

good efficiency properties we approximate the unknown functions with esti-

mators of them under some working model. We propose the following algo-

rithm: (i) obtain a consistent preliminary estimator of ψ, denote it by ψ̂p; (ii)

approximate E(∂Hψ/∂ψ|L̄m, Ām) by regression models E(∂Hψ/∂ψ|L̄m, Ām; ξ̂),

where ξ̂ is the estimated parameters in the regression models; (iii) approximate

E(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄) by regression outcome models E(Ha

m,(ψ̂p,η)
|L̄m, Ām−1

= 0̄; ξ̂); and (iv) replace unknown population quantities in the estimating equa-

tions with estimators of them under the regression models, and solve the resulting

estimating equation for ψ. The resulting estimator is locally optimal under these

nuisance models. The 95% bootstrap confidence interval for ψ can be constructed

using the 2.5% and 97.5% percentiles of 500 bootstrap realizations of ψ̂.

Remark 2 (Double robustness). In the estimating equations (3.3), the true

treatment initiation model is unknown. We replace it with Pr(Am = 1|L̄m, Ām−1
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= 0̄; α̂), where α̂ is the maximum likelihood estimator of α. The resulting estima-

tor of ψ solves (3.3) with this replacement equivalent to the estimator of ψ solving

(3.3) and the estimating equation for α. Although (3.3) depends on two sets of

nuisance models, E(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄; ξ) and Pr(Am = 1|L̄m, Ām−1 =

0̄;α), it does not require both specifications to be correct, which renders the

estimator doubly robust. See the Appendix for the proof.

4. Censoring

Because of the time-dependent nature, the longitudinal data are often sub-

ject to censoring due to loss to follow up. When the censoring mechanism is

informative in the sense that censoring may depend on time-varying covariates,

e.g. sicker patients drop out of the study with higher probabilities than healthier

patients, therefore the patients remaining in the study are a biased sample of the

full population.

Following Robins, Rotnitzky and Zhao (1995) and Lok and DeGruttola

(2012), we use inverse probability of censoring weighting (IPCW) to accommo-

date patients lost to follow up. We assume that the censoring process is ignorable

in the sense that censoring only depends on the past observed covariate history

but not the future unobserved covariates and outcomes. Its heuristic idea is

to redistribute the weight of censored patients among the “similar” remaining

uncensored patients. Let Cm be the censoring indicator at month m: Cm = 1

if the patient is censored at month m and 0 otherwise. We assume a para-

metric model for the censoring process given the observed covariates history as

Pr(Cm+1 = 0|L̄m, Ām−1, Cm = 0) = Pr(Cm+1 = 0|L̄m, Ām−1, Cm = 0;β), e.g. a

pooled logistic regression model.

Define the IPCW version of estimating functions as

GIPCW
(ψ,η,q) =

K∑
m=0

q(L̄m){Ha
m,(ψ,η) − E(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄)}

× {Am − Pr(Am = 1|L̄m, Ām−1 = 0̄; α̂)}1C̄K+1=0̄Wm,

withWm = 1/{
∏K+1
p=m+1 Pr(Cp = 0|L̄p−1, Āp−1, C̄p−1 = 0̄; β̂)}. Here, PnG

IPCW
(ψ,η,q) =

0 is an unbiased estimating equation if the censoring model is correctly specified.

5. Application to Initiating ART in HIV-Positive Patients

We conducted a sensitivity analysis of estimating the effect of ART initiation

time on mean CD4 count at year 2 after estimated date of infection in HIV-
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positive patients, based on the AIEDRP database described in Section 2.1.

We considered the true treatment effect model to be γm,ψ(l̄m) = (ψ1 +

ψ2m)(K + 1 − m). Yang and Lok (2016) showed that this model may be ad-

equate using an overidentification restrictions test. In the estimation procedure,

the treatment initiation model and the censoring model were fitted by pooled lo-

gistic regression models, and the nuisance regression outcome models were fitted

by linear models, adjusting for a rich set of covariates based on the HIV literature

and clinical knowledge (Lok and Griner (2014)).

In the sensitivity analysis, we considered three specifications for g(L̄m; η): (i)

η0; (ii) η0+η1×m; and (iii) η0+η1×CD4m. Table 1 shows the results of the sensi-

tivity analysis. In scenario (i), g(L̄m; η) = η0 with η0 ∈ {−100,−75, . . . , 75, 100}.
For interpretation, for example with η0 < 0, the untreated individuals tend

to be healthier than the treated at month m, uniformly across months, even

after controlling for measured confounders. As the magnitude of η increases,

ψ̂1 and ψ̂2 increase, which makes sense since the more the uncontrolled con-

founding is assumed, the further the adjusted estimator increases. Moreover,

the confidence intervals of ψ̂1 and ψ̂2 are larger with larger η, which suggests

that more unmeasured confounding would further obscure the treatment effect.

In scenario (ii), g(L̄m; η) = η0 + η1 × m, the effect of uncontrolled confound-

ing changes linearly with m. We considered η0 ∈ {−100,−75, . . . , 75, 100} and

η2 ∈ {−5, 5}. For interpretation, consider for example g(L̄m; η) = −100 − 5m,

the untreated individuals tend to be healthier than the treated at month m,

and the effect of uncontrolled confounding increases with m. For η2 = 5, as

η1 increases from −100 to 100, ψ̂1 and ψ̂2 decrease, and ψ̂2 remains negative

but statistically insignificant. For η2 = −5, as η1 increases from −100 to 100,

ψ̂1 and ψ̂2 decrease, and ψ̂2 remains positive but statistically insignificant. In

scenarios (iii), g(L̄m; η) = η0 + η1 × CD4m, the effect of uncontrolled confound-

ing changes linearly with CD4, we considered η0 ∈ {−100,−75, . . . , 75, 100} and

η2 ∈ {−0.02, 0.02}. As η1 increases from −100 to 100, ψ̂1 and ψ̂2 decrease. ψ̂2

remains negative; however, the 95% bootstrap confidence interval of ψ̂2 remains

statistically insignificant. In summary, we conducted a comprehensive sensitivity

analysis for the AIEDRP study considering different forms of the selection bias

function and different values of the coefficients. After accounting for possible

uncontrolled confounding, treatment is beneficial under a wide range of plausible

scenarios, and the effect of the initiation time is insignificant.
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Table 1. Results of the sensitivity analysis in AIEDRP: optimal estimates and 95%
confidence intervals (CIs).

g(L̄m; η) η0 η1 ψ̂1 (CI) ψ̂2 (CI)

−100 0 43.33 (39.35, 47.39) −0.305 (−1.973, 0.883)
−75 0 38.33 (34.79, 43.08) −0.340 (−1.635, 0.826)
−50 0 36.42 (27.13, 39.11) −0.396 (−1.771, 0.795)
−25 0 31.06 (25.54, 33.46) −0.411 (−1.856, 0.785)

η0 0 0 24.71 (21.37, 28.47) −0.426 (−1.944, 0.654)
25 0 20.64 (16.37, 25.10) −0.617 (−2.071, 1.190)
50 0 16.30 (12.75, 20.78) −0.727 (−2.131, 0.401)
75 0 11.86 (7.82, 16.54) −0.814 (−2.296, 0.519)

100 0 7.43 (2.66, 11.29) −0.891 (−2.277, 0.833)

−100 5 42.72 (37.36, 49.17) −1.243 (−3.763, 1.729)
−75 5 38.42 (31.86, 42.71) −1.408 (−3.317, 1.648)
−50 5 35.51 (28.67, 38.00) −1.481 (−3.642, 1.215)
−25 5 29.17 (25.07, 33.89) −1.512 (−3.381, 0.950)

0 5 25.20 (18.87, 30.67) −1.846 (−3.977, 0.932)
25 5 21.34 (14.68, 27.25) −2.157 (−4.272, 1.351)
50 5 17.76 (12.17, 24.13) −2.355 (−5.024, 0.768)
75 5 12.40 (6.42, 19.78) −2.419 (−6.199, 0.706)

η0 + η1m 100 5 7.92 (1.57, 19.96) −2.606 (−9.637, 0.587)
−100 −5 42.03 (32.37, 53.61) 1.660 (−5.197, 6.836)
−75 −5 37.82 (29.47, 47.70) 1.465 (−1.896, 6.007)
−50 −5 33.63 (27.58, 42.98) 1.218 (−3.831, 3.908)
−25 −5 29.36 (22.89, 37.24) 1.000 (−2.444, 4.158)

0 −5 24.82 (19.11, 30.19) 0.806 (−1.333, 3.453)
25 −5 20.61 (16.07, 26.51) 0.564 (−2.486, 2.538)
50 −5 16.27 (12.76, 20.85) 0.432 (−1.861, 1.504)
75 −5 11.91 (8.62, 16.03) 0.316 (−1.187, 1.454)

100 −5 7.54 (3.45, 11.60) 0.202 (−1.249, 1.703)

−100 0.02 41.23 (36.85, 45.51) −0.341 (−1.950, 0.697)
−75 0.02 36.54 (31.35, 40.42) −0.375 (−2.115, 0.779)
−50 0.02 31.97 (26.12, 36.99) −0.429 (−2.751, 1.158)
−25 0.02 27.65 (23.74, 30.96) -0.544 (−2.253, 0.531)

0 0.02 22.54 (18.74, 27.05) −0.419 (−1.938, 0.845)
25 0.02 18.54 (14.92, 21.90) −0.629 (−1.659, 0.415)
50 0.02 14.20 (8.61, 18.77) −0.741 (−2.444, 1.452)
75 0.02 9.76 (3.98, 13.87) −0.833 (−2.046, 1.101)

η0 + η1CD4m 100 0.02 5.24 (0.55, 9.54) −0.916 (−3.100, 0.630)
−100 −0.02 45.71 (41.11, 49.71) −0.283 (−1.301, 1.141)
−75 −0.02 40.95 (37.06, 44.83) −0.335 (−1.406, 0.683)
−50 −0.02 36.35 (32.25, 39.68) −0.415 (−1.633, 0.706)
−25 −0.02 32.28 (28.20, 35.18) −0.635 (−1.764, 0.526)

0 −0.02 26.87 (23.62, 32.52) −0.428 (−2.876, 0.617)
25 −0.02 22.74 (19.55, 26.74) −0.607 (−2.779, 0.284)
50 −0.02 18.40 (14.34, 22.95) −0.716 (−1.929, 0.628)
75 −0.02 13.97 (9.93, 17.47) −0.799 (−1.950, 0.497)

100 −0.02 9.47 (3.99, 14.50) −0.869 (−2.487, 1.033)
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6. Discussion

We have introduced a new sensitivity analysis method that uses modified

G-estimators to assess the effect of possible uncontrolled confounding in longitu-

dinal observational studies. If strong prior information is available, appropriate

functional forms for the selection bias function due to unmeasured confounding

can be directly imposed. We suggest varying the coefficients over a set of plau-

sible values, determined on the basis of available data, literature, and subject

matter knowledge. As with its application to HIV research, the new method

can easily be adopted to provide valuable insight on the impact of uncontrolled

confounding.

An extensive literature has assumed that there is one binary unmeasured con-

founder U , and the association of U and Y has been considered as the sensitivity

parameter (see e.g. Schlesselman (1978) and Rosenbaum and Rubin (1983)).

The advantage of this approach is that the sensitivity parameter is easy to inter-

pret; however, this approach can be restrictive, since in practice the unmeasured

confounder can be of any type and may be multi-dimensional. Modeling the asso-

ciation of a multivariate U with Y is not straightforward. A major advantage of

our approach is that it can be used to explore sensitivity to multiple unmeasured

confounders simultaneously. The connection between the two approaches has

not been established. In simple cases where there is one unmeasured confounder,

modeling the relationship between the unmeasured confounder and the observed

variables can provide insight for specifying the selection bias function and inter-

preting the sensitivity parameters. In the Appendix, we explore the connection

between the two approaches in the context of our application to initiating ART in

HIV-positive patients. In future work, we plan to evaluate and compare the per-

formance of the two modeling approaches under various scenarios. We will also

extend the work to longitudinal settings with repeated measurements, survival

data, continuous treatments, and dynamic optimal treatments.
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Appendix

Appendix A. Proof of Theorem 1

First we show that

E(Y (∞)|L̄m, Ām−1 = 0̄, Am)− E(Y (∞)|L̄m, Ām−1 = 0̄)

= Pr(1−Am|L̄m, Ām−1 = 0̄)(2Am − 1)g(L̄m; η)

= Pr(1−Am|L̄m, Ām−1 = 0̄){E(Y (∞)|L̄m, Ām−1 = 0̄, Am)

− E(Y (∞)|L̄m, Ām−1 = 0̄, 1−Am)}. (A.1)

To do so, we need to show (A.1) holds for both Am = 0 and 1. Consider

(A.1) for Am = 0,

LHS = E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 0)− E(Y (∞)|L̄m, Ām−1 = 0̄)

= E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 0)

−E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 0)Pr(Am = 0|L̄m, Ām−1 = 0̄)

−E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 1)Pr(Am = 1|L̄m, Ām−1 = 0̄)

= Pr(Am = 1|L̄m, Ām−1 = 0̄)× {E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 0)

−E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 1)} = RHS.

Consider (A.1) for Am = 1,

LHS = E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 1)− E(Y (∞)|L̄m, Ām−1 = 0̄)

= E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 1)

−E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 0)Pr(Am = 0|L̄m, Ām−1 = 0̄)

−E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 1)Pr(Am = 1|L̄m, Ām−1 = 0̄)

= Pr(Am = 0|L̄m, Ām−1 = 0̄)× {E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 1)

−E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 0)} = RHS.

Therefore, (A.1) follows. For k > m, since

E{Pr(1−Ak|L̄k, Āk−1=0̄)(2Ak − 1)1Āk−1=0̄g(L̄k; η)|L̄m, Ām−1=0̄, Am=1}=0,

E{Pr(1−Ak|L̄k, Āk−1=0̄)(2Ak − 1)1Āk−1=0̄g(L̄k; η)|L̄m, Ām−1=0̄, Am=0}

= E[E{Pr(1−Ak|L̄k, Āk−1 = 0̄)(2Ak − 1)|L̄k, Āk−1 = 0̄}
× 1Āk−1=0̄g(L̄k; η)|L̄m, Ām = 0̄]

= E[E{Pr(Ak = 1|L̄k, Āk−1 = 0̄)Pr(Ak = 0|L̄k, Āk−1 = 0̄)

+ Pr(Ak = 0|L̄k, Āk−1 = 0̄)Pr(Ak = 1|L̄k, Āk−1 = 0̄)

× (−1)}1Āk−1=0̄g(L̄k; η)|L̄m, Ām = 0̄] = 0,
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we have

E{Pr(1−Ak|L̄k, Āk−1 = 0̄)(2Ak − 1)1Āk−1=0̄g(L̄k; η)|L̄m, Ām−1 = 0̄, Am}

= E{Pr(1−Ak|L̄k, Āk−1 = 0̄)(2Ak − 1)1Āk−1=0̄g(L̄k; η)|L̄m, Ām−1 = 0̄} = 0.

(A.2)

For l < m, since

E{Pr(1−Al|L̄l, Āl−1 = 0̄)(2Al − 1)1Āl−1=0̄g(L̄l; η)|L̄m, Ām−1 = 0̄, Am}

= Pr(Al = 0|L̄l, Āl−1 = 0̄)(−1)1Āl−1=0̄g(L̄l; η),

which does not depend on Am, we have

E{Pr(1−Al|L̄l, Āl−1 = 0̄)(2Al − 1)1Āl−1=0̄g(L̄l; η)|L̄m, Ām−1 = 0̄, Am}

= E{Pr(1−Al|L̄l, Āl−1 = 0̄)(2Al − 1)1Āl−1=0̄g(L̄l; η)|L̄m, Ām−1 = 0̄}. (A.3)

Now we consider, for l ≤ m,

E(Ha
l,(ψ,η)|L̄m, Ām−1 = 0̄, Am)

= E(Hψ|L̄m, Ām−1 = 0̄, Am)− Pr(1−Am|L̄m, Ām−1 = 0̄)(2Am − 1)g(L̄m; η)

−E

{
K−1∑
k=m+1

Pr(1−Ak|L̄k, Āk−1=0̄)(2Ak−1)1Āk−1=0̄g(L̄k; η)|L̄m, Ām−1=0̄, Am

}

−E

{
m−1∑
k=l

Pr(1−Ak|L̄k, Āk−1=0̄)(2Ak−1)1Āk−1=0̄g(L̄k; η)|L̄m, Ām−1=0̄, Am

}
= E(Y (∞)|L̄m, Ām−1 = 0̄, Am)− E(Y (∞)|L̄m, Ām−1 = 0̄, Am)

+E(Y (∞)|L̄m, Ām−1 = 0̄)− 0

= E(Y (∞)|L̄m, Ām−1 = 0̄)− E

{
m−1∑
k=l

Pr(1−Ak|L̄k, Āk−1 = 0̄)(2Ak − 1)

×1Āk−1=0̄g(L̄k; η)|L̄m, Ām−1 = 0̄

}
,

where by convention
∑t

k=sX = 0 for t < s, the first equality follows from

the definition of Ha
l,(ψ,η), and the second equality follows from equations (2.4)

and (A.1), (A.2), and (A.3). Therefore, E(Ha
l,(ψ,η)|L̄m, Ām−1 = 0̄, Am) does not

depend on Am and (3.2) in Theorem 1 follows.

Appendix B. Proof of Theorem 2

For each 0 ≤ m ≤ K − 1,
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E[q(L̄m){Ha
m,(ψ,η) − E(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄)}

× {Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}1Ām−1=0̄]

= E[q(L̄m){E(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄, Am)− E(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄)}

× {Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}1Ām−1=0̄]

= E[q(L̄m){E(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄)− E(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄)}

× {Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}1Ām−1=0̄] = 0,

where the second equality follows from (3.2). Therefore, E(G(ψ,η,q)) = 0, proving

the result.

Appendix C. proof of double robustness

If Pr(Am = 1|L̄m, Ām−1 = 0̄; θ) is correctly specified,

E{G(ψ,η,q)}

= E

[
K∑
m=0

q(L̄m){E(Ha
m,(ψ,η)|L̄m, Ām−1=0̄, Am)−E(Ha

m,(ψ,η)|L̄m, Ām−1=0̄; ξ)}

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄; θ)}1Ām−1=0̄

]

= E

[
K∑
m=0

q(L̄m){E(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄)− E(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄; ξ)}

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄; θ)}1Ām−1=0̄

]

= E

[
K∑
m=0

q(L̄m){E(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄)− E(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄; ξ)}

×{E(Am|L̄m, Ām−1 = 0̄)− Pr(Am = 1|L̄m, Ām−1 = 0̄; θ)}1Ām−1=0̄

]

= E

[
K∑
m=0

q(L̄m){E(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄)−E(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄; ξ)} ×

0× 1Ām−1=0̄

]
= 0,

where the second equality follows from (3.2) and the forth equality follows from

the assumption that Pr(Am = 1|L̄m, Ām−1 = 0̄; θ) is correctly specified. If



1718 YANG AND LOK

E(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄; ξ)} is correctly specified,

E{G(ψ,η,q)}

= E

[
K∑
m=0

q(L̄m){E(Ha
m,(ψ,η)|L̄m, Ām−1=0̄, Am)−E(Ha

m,(ψ,η)|L̄m, Ām−1=0̄; ξ)}

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄; θ)}1Ām−1=0̄

]

= E

[
K∑
m=0

q(L̄m){E(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄)− E(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄; ξ)}

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄; θ)}1Ām−1=0̄

]

= E

[
K∑
m=0

q(L̄m){E(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄)− E(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄; ξ)}

×{E(Am|L̄m, Ām−1 = 0̄)− Pr(Am = 1|L̄m, Ām−1 = 0̄; θ)}1Ām−1=0̄

]

= E

[
K∑
m=0

q(L̄m)× 0× {E(Am|L̄m, Ām−1 = 0̄)− Pr(Am = 1|L̄m, Ām−1 = 0̄; θ)}

×1Ām−1=0̄

]
= 0,

where the second equality follows from (3.2) and the forth equality follows from

the assumption that E(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄; ξ)} is correctly specified. There-

fore, G(ψ,η,q) is an unbiased estimating function if either Pr(Am = 1|L̄m, Ām−1 =

0̄; θ) is correctly specified or E(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄; ξ)} is correctly specified.

Appendix D. Proof of Theorem 3

The left hand side of (3.5) is

E

{
∂

∂ψ
G(ψ,η,q)

}
= E

[
K∑
m=0

q(L̄m)

{
∂

∂ψ
Hψ − E

(
∂

∂ψ
Hψ|L̄m, Ām−1 = 0̄

)}

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}1Ām−1=0̄

]
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= E

[
K∑
m=0

q(L̄m)

{
E

(
∂

∂ψ
Hψ|L̄m, Ām−1=0̄, Am

)
−E

(
∂

∂ψ
Hψ|L̄m, Ām−1=0̄

)}

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}1Ām−1=0̄

]

= E

[
K∑
m=0

q(L̄m)

{
E

(
∂

∂ψ
Hψ|L̄m, Ām−1=0̄, Am=1

)
−E

(
∂

∂ψ
Hψ|L̄m, Ām=0̄

)}

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}21Ām−1=0̄

]

= E

[
K∑
m=0

q(L̄m)

{
E

(
∂

∂ψ
Hψ|L̄m, Ām−1=0̄, Am=1

)
−E

(
∂

∂ψ
Hψ|L̄m, Ām=0̄

)}

×{1− Pr(Am = 1|L̄m, Ām−1 = 0̄)}Pr(Am = 1|L̄m, Ām−1 = 0̄)1Ām−1=0̄

]
,

where the last equality follows by applying E(Y |A) = {(E(Y |A = 1)−E(Y |A =

0)}{A− Pr(A = 1)} to E(∂Hψ/∂ψ|L̄m, Ām−1 = 0̄, Am). The right hand side of

(3.5) is

E
{
G(ψ,η,q)G

T
(ψ,η,qopt)

}
= E

[
K∑
m=0

K∑
l=0

q(L̄m){Ha
m,(ψ,η) − E(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄)}

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}1Ām−1=0̄

×qopt(L̄l)
T {Ha

l,(ψ,η) − E(Ha
l,(ψ,η)|L̄l, Āl−1 = 0̄)}

×{Al − Pr(Al = 1|L̄l, Āl−1 = 0̄)}1Āl−1=0̄

]

= E

[
K∑
m=0

q(L̄m)qopt(L̄m)TV ar(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄, Am)2

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}21Ām−1=0̄

]

= E

[
K∑
m=0

q(L̄m)qopt(L̄m)TV ar(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄)2

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}21Ām−1=0̄

]
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= E

(
K∑
m=0

q(L̄m)qopt(L̄m)TV ar(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄)2

×E[{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}21Ām−1=0̄|L̄m, Ām−1 = 0̄]

)

= E

[
K∑
m=0

q(L̄m)qopt(L̄m)TV ar(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄)21Ām−1=0̄

×{1− Pr(Am = 1|L̄m, Ām−1 = 0̄)}Pr(Am = 1|L̄m, Ām−1 = 0̄)

]
, (A.4)

where the expectations of the cross terms in the first equality are zero by the

following argument. It suffices to show that for m > l,

E[q(L̄m)qopt(L̄l)
TE(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄)E(Ha
l,(ψ,η)|L̄l, Āl−1 = 0̄)

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}
×{Al − Pr(Al = 1|L̄l, Āl−1 = 0̄)}1Ām−1=0̄]

= E[q(L̄m)qopt(L̄l)
TE(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄)E(Ha
l,(ψ,η)|L̄l, Āl−1 = 0̄)

×{E(Am|L̄m, Ām−1 = 0̄)− Pr(Am = 1|L̄m, Ām−1 = 0̄)}
×1Ām−1=0̄{Al − Pr(Al = 1|L̄l, Āl−1 = 0̄)}] = 0,

E[q(L̄m)qopt(L̄l)
THa

m,(ψ,η)E(Ha
l,(ψ,η)|L̄l, Āl−1 = 0̄)1Ām−1=0̄

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}{Al − Pr(Al = 1|L̄l, Āl−1 = 0̄)}]
= E[q(L̄m)qopt(L̄l)

TE(Ha
m,(ψ,η)|L̄m, Ām−1 = 0̄)E(Ha

l,(ψ,η)|L̄l, Āl−1 = 0̄)

×{E(Am|L̄m, Ām−1 = 0̄)− Pr(Am = 1|L̄m, Ām−1 = 0̄)}
×1Ām−1=0̄{Al − Pr(Al = 1|L̄l, Āl−1 = 0̄)}] = 0,

E[q(L̄m)qopt(L̄l)
TE(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄)Ha
l,(ψ,η)1Ām−1=0̄

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}{Al − Pr(Al = 1|L̄l, Āl−1 = 0̄)}]
= E[q(L̄m)qopt(L̄l)

TE(Ha
m,(ψ,η)|L̄m, Ām−1=0̄)E{Ha

l,(ψ,η)|L̄m, Ām−1=0̄, Am}
×{Am−Pr(Am=1|L̄m, Ām−1=0̄)}1Ām−1=0̄{Al−Pr(Al=1|L̄l, Āl−1=0̄)}]

= E[q(L̄m)qopt(L̄l)
TE(Ha

m,(ψ,η)|L̄m, Ām−1 = 0̄)E{Ha
l,(ψ,η)|L̄m, Ām−1 = 0̄}

×{E(Am|L̄m, Ām−1 = 0̄)− Pr(Am = 1|L̄m, Ām−1 = 0̄)}
×1Ām−1=0̄{Al − Pr(Al = 1|L̄l, Āl−1 = 0̄)}] = 0,

where the second equality follows from (3.2).

E[q(L̄m)qopt(L̄l)
THa

m,(ψ,η)H
a
l,(ψ,η)1Ām−1=0̄



SENSITIVITY ANALYSIS OF NO UNMEASURED CONFOUNDING 1721

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}{Al − Pr(Al = 1|L̄l, Āl−1 = 0̄)}]
= E[q(L̄m)qopt(L̄l)

TE{Ha
m,(ψ,η)H

a
l,(ψ,η)|L̄m, Ām}1Ām−1=0̄

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}{Al − Pr(Al = 1|L̄l, Āl−1 = 0̄)}]
= E[q(L̄m)qopt(L̄l)

TE{Ha
m,(ψ,η)H

a
l,(ψ,η)|L̄m, Ām−1}1Ām−1=0̄

×{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}{Al − Pr(Al = 1|L̄l, Āl−1 = 0̄)}]
= E[q(L̄m)qopt(L̄l)

TE{Ha
m,(ψ,η)H

a
l,(ψ,η)|L̄m, Ām−1}1Ām−1=0̄

×E[{Am − Pr(Am = 1|L̄m, Ām−1 = 0̄)}1Ām−1=0̄|L̄m, Ām−1]

×{Al − Pr(Al = 1|L̄l, Āl−1 = 0̄)}] = 0,

where the third equality follows assuming E{Ha
m,(ψ,η)H

a
l,(ψ,η)|L̄m, Ām} =

E{Ha
m,(ψ,η)H

a
l,(ψ,η)|L̄m, Ām−1}. Since (A.4) equals (A.4) for any q, the solution

of qopt is (3.6), proving Theorem 3.

Appendix E. Exploring the connection between the two approaches to

sensitivity analysis

The approach of Schlesselman (1978) and Rosenbaum and Rubin (1983) can

be used to motivate the specification of the selection bias function. Assume that

there is one unmeasured confounder U , and we have no unmeasured confounding

if U is taken into account. For 0 ≤ m ≤ K,

Am
∐

Y (∞)|L̄m, Ūm, Ām−1,

which implies that

E(Y (∞)|L̄m, Ūm, Ām−1 = 0̄, Am = 1) = E(Y (∞)|L̄m, Ūm, Ām = 0̄).

To motivate the selection bias function g(L̄m) due to the unmeasured confounder

U , assuming that we have E(Y (∞)|L̄m, Ūm, Ām−1 = 0̄) = β0 + βTLLm + βUUm +

ψ(K −m), note that in this case,

g(L̄m) = E(Y (∞)|L̄m, Ām−1 = 0̄, Am = 1)− E(Y (∞)|L̄m, Ām = 0̄)

= E{E(Y (∞)|L̄m, Ūm, Ām−1 = 0̄, Am = 1)|L̄m, Ām−1 = 0̄, Am = 1}
−E{E(Y (∞)|L̄m, Ūm, Ām−1 = 0̄, Am = 0)|L̄m, Ām−1 = 0̄, Am = 0}

= E{E(Y (∞)|L̄m, Ūm, Ām−1 = 0̄)|L̄m, Ām−1 = 0̄, Am = 1}
−E{E(Y (∞)|L̄m, Ūm, Ām−1 = 0̄)|L̄m, Ām−1 = 0̄, Am = 0}

= βU{E(Um|L̄m, Ām−1 = 0̄, Am = 1)− E(Um|L̄m, Ām−1 = 0̄, Am = 0)}.

Considering U to be a variable like a measured confounder inspires the spec-

ification of E(Um|L̄m, Ām−1 = 0̄, Am = 1) − E(Um|L̄m, Ām−1 = 0̄, Am = 0),
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and therefore of g(L̄m). For example, in our application, it could be that

E(Um|L̄m, Ām−1 = 0̄, Am = 1)−E(Um|L̄m, Ām−1 = 0̄, Am = 0) = α0 +α1CD4m,

which corresponds to the third scenario for specification of g(L̄m) in Section 5.
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