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Abstract: The relationship between the shape of a fitness landscape and the under-

lying gene interactions, or epistasis, has been extensively studied in the two-locus

case. Gene interactions among multiple loci are usually reduced to two-way inter-

actions. We present a geometric theory of shapes of fitness landscapes for multiple

loci. A central concept is the genotope, which is the convex hull of all possible allele

frequencies in populations. Triangulations of the genotope correspond to different

shapes of fitness landscapes and reveal all the gene interactions. The theory is

applied to fitness data from HIV and Drosophila melanogaster. In both cases, our

findings refine earlier analyses and reveal previously undetected gene interactions.

Key words and phrases: Convex polytope, epistasis, fitness landscape, gene inter-
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1. Introduction

The term “epistasis” was coined by Bateson (1909) to describe the inter-

actions among individual genes. The concept was introduced in the setting of

Mendelian genetics, where epistasis gives rise to distorted Mendelian ratios of

genotypes. In the context of statistical genetics, epistasis was originally called

“epistacy” by Fisher (1918). Here, it arises when mapping discrete genotypes to

continuous traits and refers to contributions to the phenotype that are not linear

in the average effects of the single genes. The phenotypic trait of an organism

that drives the evolution of the population is the reproductive fitness of individu-

als, i.e., the expected number of offspring. For this trait, the genotype–phenotype

mapping is called a fitness landscape (Gavrilets (2004) and Wright (1931)), and

epistasis is a property of that landscape.

For a genetic system of two biallelic loci, there is only one type of interaction,

illustrated by the landscapes in Figure 1.1, and epistasis refers unambiguously

to this interaction. However, the situation is more complex for more than two

loci, because new interaction patterns arise. The current language for describing

gene interactions does not reflect this diversity (Phillips (1998)). Indeed, the

common approach of investigating epistasis by analysis of variance (ANOVA)

and expressing epistatic effects as the residuals of a linear regression of fitness on
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the genotypes (Cordell (2002)) does not account for the intrinsic combinatorial

geometry of fitness landscapes, which is the topic to be explored in this paper.

Figure 1. The possible shapes of fitness landscapes on two biallelic loci. The

genotope is the square. Its two triangulations correspond to negative and

positive epistasis.

For a specified set of genotypes that may involve multiple loci, we charac-

terize all possible interactions among them. Our characterization is based on a

geometric object, the genotope, which is the convex hull of the possible allele

frequency vectors. The regular triangulations (De Loera, Rambau and Santos

(2006)) of the genotope encode the genotype interactions in the fitness land-

scape. The biological problem of studying genotype interactions for a fitness

landscape is thus equivalent to the combinatorial problem of finding the shape

of the fitness landscape, i.e., the triangulation of the genotope that is induced by

the fitness landscape.

In Sections 2 to 4, the mathematical concepts are introduced and illustrated

in several examples. For simplicity, we focus primarily on the case of a population

of haploid individuals (or, equivalently, of homozygous diploids). Nevertheless, as

shown in Example 2.5, our concepts and algorithms are not limited to haploids.

In Section 5, we discuss the three-locus two-allele system, which amounts to

classifying the 74 triangulations of the 3-cube. Table 5.1 is the direct generaliza-

tion of the list of possible shapes for two biallelic loci; see Figure 1.1.

In Sections 6 and 7, we apply our method to two published fitness land-

scapes. Section 6 deals with a biallelic three-locus system in HIV (Segal, Bar-

bour and Grant (2004)) and emphasizes the modeling of measurement error.

Section 7 revisits the five-locus system in Drosophila melanogaster studied by

Whitlock and Bourguet (2001). We show that the shape of their Drosophila fit-

ness landscape is a triangulation of the 5-dimensional cube (the genotope) into

110 simplices.

The discussion in Section 8 compares our approach with other studies of

fitness landscapes. It also raises the challenge of determining the human genotope
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and its biologically relevant triangulations from suitable haplotype data.

2. Populations and the Genotope

We fix a finite alphabet Σ of size l, which labels the l different alleles at

a genetic locus of interest. The elements of Σ may correspond to variants of

a gene, to the nucleotides at a genome position (Σ = {A, C, G, T}, l = 4), or

to the amino acids at a codon position in a gene (l = 20). The biallelic case

(Σ = {0, 1}, l = 2) arises frequently in genomics, where it is known that most

SNPs (single nucleotide polymorphisms) have two types.

The allele frequencies at a certain locus define a probability distribution on

the alphabet Σ. The set of all probability distributions on Σ is identified with

the (l − 1)-dimensional standard simplex

∆Σ =
{

(p1, p2, . . . , pl) ∈ [0, 1]l : p1 + p2 + · · · + pl = 1
}

.

We now consider n loci. We could introduce distinct alphabets Σ1, . . . ,Σn, but

we here use the same alphabet Σ at each locus. This simplifies the exposition.

We denote by Σn the set of sequences of length n over Σ. The elements of Σn are

identified with the vertices of the n-fold direct product of simplices ∆n
Σ = (∆Σ)n.

This product is a convex polytope (Ziegler (1995)) of dimension ln−n having ln

vertices. In particular, in the binary case, ∆n
{0,1} is the n-dimensional cube.

A genotype space is any subset G of Σn. In this paper, G always refers

to the actual genotype space, i.e., to those genotypes that are observed in a

population, as opposed to the possible genotype space, which includes all possible

allele combinations regardless of their actual appearance. For a given genotype

space G, let ΠG be the convex hull of all vertices in ∆n
Σ that are indexed by

sequences in G. The set ΠG is a subpolytope of ∆n
Σ. We call ΠG the genotope.

A point v in the genotope is an n-tuple of allele frequencies. To be precise, if

v = (v1, . . . , vn) ∈ ΠG then vi ∈ ∆Σ represents the allele frequencies at locus i.

Example 2.1.(Genotype lattices) In the study of directed evolution in

(Beerenwinkel, Eriksson and Sturmfels (2006)) the alphabet is Σ = {0, 1} and

the genotype space G is the distributive lattice induced by an event poset E with

n elements. The genotope ΠG is the order polytope of the poset E . If the event

poset E is empty then G = {0, 1}n, the genotope ΠG is the n-dimensional cube.

The case n = 2 is Example 2.4. The case n = 3 is discussed in detail in Section 4.

For an example of a non-empty event poset consider n = 3 and E = {3 < 2},

meaning that the third event has to occur before the second event can happen.

The induced genotype lattice has six genotypes,

G = { 000, 001, 011, 100, 101, 111 }, (2.1)
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and the corresponding genotope ΠG is a triangular prism.

Figure 2.2. A three-dimensional genotope from the HIV data of Section 6.

Example 2.2.(A genotope from HIV fitness data) Consider the genotype space

G = { 000, 110, 011, 100, 101, 111 }, (2.2)

which differs from the one in (2.1) only by the second genotype. This G does not
form a distributive lattice, so it does not arise in the setting of (Beerenwinkel et al.

(2006)). The genotope ΠG has six triangular faces and one square face (Figure

2.2). This genotope appears in our analysis of the HIV data in Section 6.

By a population on G we mean any probability distribution p on the set

G. For any genotype g ∈ G, the coordinate pg of p represents the fraction of the

population that is of genotype g. A population is a point in the population simplex

∆G. The population simplex and the genotope are related via the marginalization

map ρ, which maps a population p to its n-tuple of allele frequencies,

ρ : ∆G → ΠG ⊂ ∆n
Σ , (pσ1...σn

)σ∈Σn 7→

(

(

∑

σ:σi=τ

pσ1...σn

)

τ∈Σ

)

i=1,...,n

.

If the population p consists of a single genotype g, then p is the unit vector whose

coordinates are pg = 1 and ph = 0 for all h ∈ G\{g}. Its allele frequency vector

ρ(g) is a list of n unit vectors, each of length l. The unit vector ρ(g)i is the

vertex of the simplex ∆Σ indexed by the i-th allele of the genotype g. Thus ρ(g)

is a vertex of the genotope ΠG , and all vertices arise in this manner. Since the

marginalization map ρ is linear, we have the following.

Proposition 2.3. The genotope ΠG is the set of all possible n-tuples of allele

frequencies that may arise from a population on the genotype space G.
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Example 2.4.(Tetrahedron maps onto square) Let n = 2, Σ = {0, 1}, and

consider the genotype space G = {00, 01, 10, 11}. The set ∆G of probability

distributions on G is a tetrahedron in 4-space,

∆G =
{

(p00, p01, p10, p11) ∈ [0, 1]4 | p00 + p01 + p10 + p11 = 1
}

.

The genotope ΠG is the square ∆Σ × ∆Σ. A population p is a point in the

tetrahedron whose allele frequencies are given by the marginalization map

ρ(p00, p01, p10, p11) = ((p00 + p01, p10 + p11), (p00 + p10, p01 + p11)) .

This map takes the tetrahedron ∆G onto the square ΠG ; see Figure 2.3.

Figure 2.3. Population simplex and genotope for one diploid biallelic locus.

Example 2.5.(From haploids to diploids) The mathematical set-up introduced

so far is for haploids only. It can be extended to diploids using either of the

following two equivalent approaches. The allele frequencies of diploid populations

can be modeled by scaling each simplex in ∆n
Σ by a factor of two, so that the

genotope sits inside (2∆Σ)n. Alternatively, we could replace n by 2n and then

restrict to symmetric populations in ∆2n
Σ .

To illustrate both approaches, we consider a single biallelic locus (l = 2, n =

1) with genotypes aa,AA, aA,Aa, where we identify Aa with aA. The population

simplex is a triangle, and the genotope 2∆Σ is a line segment whose end points

are labeled aa and AA, and whose midpoint is labeled by Aa = aA. This picture

arises from ∆Σ2 → ∆2
Σ by intersecting with a plane. The genotope is the diagonal
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segment in the square of Example 2.4, and the population triangle is a cross-

section of the tetrahedron, as in Figure 2.3. A point in the population triangle

has three coordinates (paa, paA, pAA) where paa is the frequency of genotype aa,

pAA that of genotype AA, and 2paA that of genotype Aa = aA.

Returning to the general haploid model, we give an interpretation of the

fiber of a point in the genotope ΠG under the the marginalization map ρ. The

fiber over v ∈ ΠG is the following polytope inside the population simplex:

ρ−1(v) =
{

p ∈ ∆G : ρ(p) = v
}

. (2.3)

Remark 2.6. If v is any n-tuple of allele frequencies then its fiber ρ−1(v) consists

of all populations p which have the specified allele frequencies v.

If all coordinates of v are non-zero, then ρ−1(v) is a polytope of dimension

c(G) = dim(∆G) − dim(ΠG) = |G| − dim(ΠG) − 1. (2.4)

For the full genotype space G = Σn we have c(G) = ln − n − 1. In particular, in

Example 2.4 the dimension is one, and in Example 2.2 the dimension is two.

Since the fibers (2.3) over the genotope ΠG characterize populations with

constant allele frequency vectors, we can restrict our attention to these fibers

whenever the allele frequencies are fixed. For example, if evolution acts on the

genotype space by recombination, but without mutation and selection, then the

allele frequencies of the population are constant for every generation. Hence,

such evolutionary dynamics can be modeled by a dynamical system on ρ−1(v).

Our geometric theory is adapted to the fact that, in biological systems, the

set G of observed genotypes is usually significantly smaller than the number ln

of possible genotypes. Specifically, for binary data (l = 2) on many loci (say,

n ≥ 20), the genotope is never an n-cube, and its dimension is smaller than

n due to phenomena such as linkage. Thus, the dimensions of actual genotype

spaces and their fitness landscapes do not increase exponentially in the sequence

length. Even for large data sets, the complexity of the genotope ΠG can be

expected to be in the tractable range of polyhedral algorithms.

3. Fitness Landscapes and Interaction Coordinates

A fitness landscape on a genotype space G is a function w : G → R. Each co-

ordinate wg of w denotes the logarithm of the reproductive fitness of genotype g.

The space of all fitness landscapes is the |G|-dimensional R-vector space R
G.

In the study of gene interactions one considers linear combinations of the

measured coordinates wg. These linear combinations express epistatic effects.

Certain collections of such linear forms play the role of interaction coordinates
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on R
G . Both the sign and the magnitude of these interaction coordinates are of

interest when examining the fitness landscape w of a biological system.

Example 3.7.(Two triangles over a square) As in Example 2.4, let G = {0, 1}2 =

{00, 01, 10, 11}, so the genotope ΠG is a square. A fitness landscape w is specified

by four numbers w00, w01, w10, and w11, which we visualize as heights over the

vertices of the square ΠG . The interaction between the two loci is measured by

the epistasis u = w00 + w11 − w01 − w10.

This defines three equivalence classes in the space of fitness landscapes ac-

cording to whether the epistasis u is positive, negative, or zero. This trichotomy

is depicted in Figure 1.1. This geometric view of genotype interaction leads us

(in Section 4) to a natural concept of shapes of fitness landscapes for n > 2 loci.

Let LG be the subspace of R
G consisting of all fitness landscapes w which have

no interaction. Mathematically, w is in LG if there is an affine-linear function

on the genotope ΠG whose values at the vertices are the wg. We define the

interaction space IG as the vector space dual to the quotient of R
G modulo LG:

IG :=
(

R
G
/

LG

)∗
.

An element of the interaction space IG is a linear form in the unknowns wg which

vanishes identically on the subspace LG. In Example 2.4, the space R
G is four-

dimensional, its subspace LG is three-dimensional, and IG is the one-dimensional

space spanned by u = w00 + w11 − w01 − w10. In general, the dimension of the

interaction space IG is the quantity c(G) defined in Equation 2.4.

The interaction space IG is spanned (redundantly) by a canonical set of linear

forms which are known as the circuits. These are the linear forms whose support

(i.e., the wg which appear with non-zero coefficient) is non-empty but minimal

with respect to inclusion. The circuits in IG are unique up to scaling. Their

number is usually larger than c(G) but it is bounded above by
( |G|
c(G)−1

)

.

Example 3.8. Let G be the genotype space in Example 2.2 and Figure 2.2. We

have |G| = 6 and c(G) = 2, so our bounds say that the number of circuits is

between two and six. In fact, this example has precisely four circuits:

f = w100 − w101 − w110 + w111,

g = w000 − w011 − w100 + w111,

n = w011 + w101 + w110 − w000 − 2w111,

s = w000 + w101 + w110 − w011 − 2w100.

The names f , g, n, and s are consistent with the discussion in Example 3.9. The

signs of these four circuits characterize interactions in a fitness landscape on G.
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Only 8 of the 16 possible sign patters can occur, since the linear forms f , g, n,

and s lie in the two-dimensional space IG . See also Figure 6.6.

For certain genotype spaces G, the interaction space IG will have a distin-

guished basis consisting of interaction coordinates. The choice of interaction

coordinates depends on the genotope ΠG and on the situation of interest. A

natural choice exists in the case of the n-cube, where l = 2 and G = {0, 1}n.

Consider any binary string i1i2 · · · in which has at least two entries that are 1.

For such a string i1i2 · · · in we introduce the following element of IG :

ui1i2···in :=
1

2n−1
·

1
∑

j1=0

1
∑

j2=0

· · ·

1
∑

jn=0

(−1)i1j1+i2j2+···+injn · wj1j2···jn
.

The number of these linear forms equals c(G) = 2n −n−1, and they form a basis

of IG . We call the ui1i2···in the interaction coordinates for the n-cube.

The linear transformation above is the Fourier transform for the group (Z2)
n.

It has appeared frequently in the mathematical biology literature. For instance,

Feldman, Franklin and Thomson (1974) and Karlin and Feldman (1970) used it

to study equilibria of dynamical evolutionary systems on two and three binary

loci. It appears in linkage analysis (Hallgŕımsdóttir (2005)), and in phylogenetics,

where it gives rise to Hadamard conjugation (Hendy and Charleston (1993)).

Example 3.9.(The 3-cube) We discuss the interaction space for the three-

dimensional cube (n = 3, l = 2). The four interaction coordinates are

u110 = (w000 + w001) + (w110 + w111) − (w010 + w011) − (w100 + w101)

u101 = (w000 + w010) + (w101 + w111) − (w001 + w011) − (w100 + w110)

u011 = (w000 + w100) + (w011 + w111) − (w001 + w101) − (w010 + w110)

u111 = (w000 + w011 + w101 + w110) − (w100 + w010 + w001 + w111).

These four linear forms form a natural basis for the interaction space I{0,1}3 .

The interaction coordinate u110 measures the marginal epistasis between locus 1

and locus 2, and similarly for u101 and u011. The last interaction coordinate u111

measures the three-way interaction among the loci.

The 3-cube has twenty circuits in three symmetry classes. We abbreviate

the circuits of the 3-cube by the first twenty letters of the alphabet. The first

six circuits corresponds to the six faces of the 3-cube, and they measure the
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conditional epistasis between two loci when the allele at the third locus is fixed:

a := u110 + u111 = w000 − w010 − w100 + w110

b := u110 − u111 = w001 − w011 − w101 + w111

c := u101 + u111 = w000 − w001 − w100 + w101

d := u101 − u111 = w010 − w011 − w110 + w111

e := u011 + u111 = w000 − w001 − w010 + w011

f := u011 − u111 = w100 − w101 − w110 + w111.

The second class of circuits relates marginal epistases of two pairs of loci:

g := u110 + u101 = w000 − w011 − w100 + w111

h := u110 − u101 = w001 − w010 − w101 + w110

i := u110 + u011 = w000 − w010 − w101 + w111

j := u110 − u011 = w001 − w011 − w100 + w110

k := u101 + u011 = w000 − w001 − w110 + w111

l := u101 − u011 = w010 − w011 − w100 + w101.

Geometrically, the six circuits g, h, i, j, k and l correspond to squares formed by

vertices of the 3-cube that slice the 3-cube into two triangular prisms.

The last class consists of eight circuits which relate the three-way interaction

to the total two-way epistasis, where signs are taken into consideration:

m := −u011 − u101 − u110 − u111 = w001 + w010 + w100 − w111 − 2w000

n := −u011 − u101 − u110 + u111 = w011 + w101 + w110 − w000 − 2w111

o := u011 + u101 − u110 − u111 = w010 + w100 + w111 − w001 − 2w110

p := u011 + u101 − u110 + u111 = w000 + w011 + w101 − w110 − 2w001

q := u011 − u101 + u110 − u111 = w001 + w100 + w111 − w010 − 2w101

r := u011 − u101 + u110 + u111 = w000 + w011 + w110 − w101 − 2w010

s := −u011 + u101 + u110 + u111 = w000 + w101 + w110 − w011 − 2w100

t := −u011 + u101 + u110 − u111 = w001 + w010 + w111 − w100 − 2w011.

Geometrically, these correspond to the eight bipyramids in the 3-cube.

The sign of the interaction coordinate u in the two-locus case of Example 3.7

determines the nature of the epistatic interaction. In the three-locus case, one

may wish to record the signs of each of the twenty circuits a, b, . . ., t. For

instance, the signs of a, b, c, d, e, and f specify all the conditional epistases

of the fitness landscape w. The signs of the bipyramidal circuits m, n, . . ., t

describe a three-way interaction which does not have a two-locus interpretation.

The complete list of the twenty signs characterizes all the interactions among the

genotypes, and also determines (but is not equivalent to) the shape of the fitness

landscape. This is made precise in Proposition 4.12.
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While the detailed study of the n-cube for small values of n provides a

useful tool for data analysis, we wish to recall that biological genotopes may not

be cubes. In such cases, there may not be any choice of interaction coordinates

which is as nice and canonical as that coming from the Fourier transform. Fixing

a basis for the interaction space will be a matter of choice and preference. What

remains canonical and natural is the full collection of all circuits of the genotope.

4. The Shapes of Fitness Landscapes

We have defined fitness landscapes as discrete objects that assign one fitness

value to each individual genotype g ∈ G. However, in order to speak about

“shape” or “curvature” of w : R → G, one needs a continuous object. This

dilemma is resolved by considering populations p ∈ ∆G rather than individuals.

The fitness of a population p is defined as the average fitness of all individuals

in the population. Since the individuals are grouped into classes of identical

genotypes, the population fitness can be written as the dot product

w · p =
∑

g∈G

wg · pg.

This notion of population fitness leads to an extension of a discrete landscape

w : G → R to a function w̃ on the full genotope ΠG . The continuous landscape

w̃ : ΠG → R derived from w assigns to each point v in the genotope the maximum

fitness among all populations p with these allele frequencies. We define

w̃(v) := max
{

p · w : p ∈ ρ−1(v)
}

for all v ∈ ΠG . (4.1)

We emphasize that in general there are many different populations (genotype

frequencies) p with the same allele frequencies v. The population fitness p · w

varies over the fiber ρ−1(v) in Equation 2.3 precisely because of the functional

gene interactions underlying the fitness landscape w. The limitations of the

concept of “statistical epistasis,” which is based on allele frequencies, as compared

to “functional epistasis” have been highlighted by Weinreich, Watson and Chao

(2005).

Computing the fitness value w̃(v) amounts to solving a c(G)-dimensional lin-

ear programming problem, namely, to maximizing the linear functional p 7→ p ·w

over the fiber ρ−1(v). The continuous landscape w̃ is the smallest convex func-

tion which has the same values as w on the vertices of ΠG . It is continuous and

piecewise linear. Our classification of landscapes rests on the following remark.

Remark 4.10. The domains of linearity of the piecewise linear function w̃ are

the cells in a regular polyhedral subdivision ΠG [w] of the genotope ΠG .
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We refer to the book of De Loera et al. (2006) for an introduction to the

geometry of polyhedral subdivisions. Remark 4.10 appears in (De Loera et al.

(2006, Chap. 2)). We call the induced polyhedral subdivision ΠG [w] the shape of

the fitness landscape w. For almost all fitness landscapes w ∈ R
G, the subdivision

ΠG [w] will be a regular triangulation, i.e., a subdivision all of whose cells are

simplices. We call such landscapes generic fitness landscapes.

The simplices in the triangulation ΠG [w] have a natural interpretation in

terms of populations. For any n-tuple of allele frequencies v ∈ ΠG , there is

a unique fittest population p with ρ(p) = v. The genotypes that occur in this

fittest population are the vertices of the simplex of ΠG [w] which contains v. Thus,

knowing the shape of a fitness landscape w is equivalent to knowing all the fittest

populations for w. For instance, in Example 3.7, if w has positive epistasis, then

01 and 10 cannot coexist in a fittest population, so any fittest population consists

either of genotypes in the triangle {00, 01, 11} or of genotypes in {00, 10, 11}.

The number of shapes of fitness landscapes on a fixed genotype space G is

finite. If G has few elements (say, less than twenty), then a complete list of

all generic shapes can be compiled using the software TOPCOM (Rambau (2002))

which enumerates triangulations. For instance, the number of generic shapes

of fitness landscapes on the cube {0, 1}n is two if n = 2, and it is 74 if n = 3

(Table 5.1). In Section 5, we discuss the 74 shapes of fitness landscapes on {0, 1}3.

In order to classify all shapes of fitness landscapes on a genotype space

G, we need to list all polyhedral subdivisions of the genotope ΠG . This set of

subdivisions is represented by the secondary polytope ΣG (De Loera et al. (2006,

Chap. 5)). The secondary polytope ΣG has dimension c(G), it lives in the space

dual to R
G , and its vertices are in bijection with the generic shapes. The higher-

dimensional faces of the secondary polytope ΣG correspond to non-generic shapes.

Thus, the secondary polytope of a genotype space G represents all shapes of

fitness landscapes on G and their neighborhood relations. In Example 3.7, the

secondary polytope ΣG is a line segment. Its two vertices correspond to the two

generic shapes, and the segment itself corresponds to the flat shape.

In general, the secondary polytope can be defined as follows. Consider the

average fitness of the fittest populations over all n-tuples of allele frequencies:

F(w) =
1

vol(ΠG)
·

∫

ΠG

w̃(v) dv.

This integral is a piecewise linear function in the unknown fitness landscape

w ∈ R
G. Two landscapes w and w′ have the same generic shape precisely when

they lie in a common domain of linearity of this piecewise-linear function. Thus

for each generic shape, the function F is represented by a linear functional on

R
G, i.e., by a vector F in the dual space (RG)∗. The coordinate Fg of this vector
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with respect to the standard basis on (RG)∗, is the probability that the genotype

g appears in a fittest population. The secondary polytope ΣG is the convex hull

in (RG)∗ of these vectors F , one for each generic shape.

Example 4.11. Let G = {000, 011, 100, 101, 110, 111} be the genotype space

in Example 2.2 and Figure 2.2. The two interaction coordinates are

x = w100 + w111 − w101 − w110,

y = w000 + w111 − w011 − w100.

The average fitness F(w) is the piecewise-linear function in the six fitness values

w000, w011, w100, w101, w110, and w111. The function F(w) equals

1

4
· max























2w000 + 4w011 + 4w100 + 2w101 + 2w110 + 2w111,

2w000 + 4w011 + 3w100 + 3w101 + 3w110 + w111,

3w000 + 3w011 + w100 + 4w101 + 4w110 + w111,

4w000 + 2w011 + w100 + 3w101 + 3w110 + 3w111,

4w000 + 2w011 + 2w100 + 2w101 + 2w110 + 4w111























.

Using the interaction coordinates, the average fitness can be rewritten as

F(w) =
1

4
· max{ 0, x, 2x − y, x − 2y, −2y }

+w011 + w100 +
1

2
(w000 + w101 + w110 + w111).

The five cases in this maximum correspond to the five possible shapes of the

fitness landscape. The corresponding triangulations of ΠG are

{

{101, 111, 100, 011}, {110, 111, 100, 011}, {101, 000, 100, 011}, {110, 000, 100, 011}
}

{

{101, 000, 100, 011}, {110, 000, 100, 011}, {110, 101, 100, 011}, {110, 101, 111, 011}
}

{

{110, 101, 111, 011}, {110, 101, 000, 100}, {110, 101, 000, 011}has volume 2
}

{

{110, 101, 000, 100}, {110, 101, 000, 111}, {101, 000, 111, 011}, {110, 000, 111, 011}
}

{

{101, 000, 111, 100}, {110, 000, 111, 100}, {101, 000, 111, 011}, {110, 000, 111, 011}
}

.

The secondary polytope ΣG is a pentagon whose vertices are labeled by the five

triangulations. It is represented geometrically as the pentagon in the interaction

space IG whose directed edges are x, x − y, −x − y, −x, and 2y. See Figure 6.6

for an illustration of the pentagon ΣG in the context of HIV fitness data.

We now explain the relationship between the shapes of fitness landscapes on

G and the circuits in the interaction space IG. We define the circuit sign pattern

of a fitness landscape w ∈ R
G to be the list which records the sign (positive, zero

or negative) of the numerical value of each circuit at w.
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Proposition 4.12. The shape ΠG [w] of a fitness landscape w ∈ R
G is determined

by its circuit pattern, but the converse generally does not hold.

Proof. Both the circuit sign patterns and the shapes define a subdivision of

R
G into cones which fit together to form a fan. This ensures that we need only

consider the generic case when all circuits are either positive or negative at w.

Each such linear inequality can be written in the form

∑

g∈G1

αgwg >
∑

g∈G2

βgwg,

where G1 and G2 are disjoint subsets of G, and the αg and βg are positive reals.

The genotypes in G2 cannot coexist in a fittest population, since they can be

replaced by the genotypes in G1, thus increasing population fitness while keeping

the allele frequencies unchanged. Containing such a replaceable set G1 is the only

obstruction to being a simplex in the triangulation ΠG [w]. In other words, the sets

G1 derived from circuits as above are the minimal non-faces of the triangulation

ΠG [w]. This proves that ΠG [w] is determined by the circuit sign patterns at w.

The second part of the proposition follows from Figure 6.6, There are pre-

cisely four circuits, namely, x, y, x+y, x−y, and hence eight possible {+/−}-sign

patterns. The eight sign patters map correspond to only five distinct shapes.

5. Three-way Interactions

We illustrate our generalization of the classical two-locus two-allele situation

(Figure 1.1) by examining the possible fitness shapes for three biallelic loci. Here,

the genotype space is G = {000, 001, 010, 011, 100, 101, 110, 111}, and the possible

fitness shapes are exactly the 74 triangulations of the 3-cube (Table 5.1).

Each triangulation is uniquely represented by its GKZ vector (De Loera et al.

(2006)), which is the vector F ∈ (RG)∗ introduced prior to Example 4.11. The

GKZ vector indicates for each vertex g ∈ G the sum of the normalized volumes

of all tetrahedra in the given triangulation that contain g. Equivalently, if the

allele frequency vector is chosen uniformly at random from ΠG , then the g-th

entry of the GKZ vector is the probability that genotype g appears in the fittest

population. We refer to the shape of a fitness landscape for a three-locus two-

allele system by its number (1 to 74) as appearing in the first column of Table 5.1.

The 74 shapes label the vertices of the secondary polytope ΣG of the 3-cube

and are listed in Table 5.1. As an example consider the 17th vertex of ΣG:

17/3 23346114 3e28g51b54d.

This says that shape 17 has the GKZ vector (2, 3, 3, 4, 6, 1, 1, 4). The third column

says that shape 17 is adjacent to the shapes 3, 28, 51 and 54. The letters a, b, . . .,
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Table 5.1. The 74 shapes of fitness landscapes of the three-locus two-allele
system. The first column specifies the shape number and interaction type,
the second column the GKZ vector, and the third column the out-edges in
the secondary polytope.

#/T GKZ Out-edges #/T GKZ Out-edges

1/1 15515115 3t4q5o6m 38/4 31355313 39l44g51c59d

2/1 51151551 7s8r9p10n 39/4 31533513 38l44i53e60f

3/2 14436114 1t11b13d17e 40/4 33155133 42j45g54a61b

4/2 14614314 1q12b14f18c 41/4 33511533 43h46i55a62b

5/2 16414134 1o15d16f19a 42/4 35133153 40j45k57e63f

6/2 34414116 1m28e29c31a 43/4 35311353 41h46k58c64d

7/2 41163441 2s20a22c26f 44/4 51333315 38g39i65b68a

8/2 41341641 2r21a23e27d 45/4 53133135 40g42k66d69c

9/2 43141461 2p24c25e30b 46/4 53311335 41i43k67f70e

10/2 61141443 2n32f33d34b 47/5 13356222 11d13b35f71e

11/3 13446213 3b12l47d51e 48/5 13623522 12f14b36d72c

12/3 13624413 4b11l48f53c 49/5 16323252 15f16d37b73a

13/3 14346123 3d15j47b54e 50/5 22265331 20c22a35e71f

14/3 14613423 4f16h48b55c 51/5 22356213 11e17b38c71d

15/3 16324143 5d13j49f57a 52/5 22532631 21e23a36c72d

16/3 16413243 5f14h49d58a 53/5 22623513 12c18b39e72f

17/3 23346114 3e28g51b54d 54/5 23256123 13e17d40a71b

18/3 23613414 4c29i53b55f 55/5 23612523 14c18f41a72b

19/3 26313144 5a31k57d58f 56/5 25232361 24e25c37a73b

20/3 31264431 7a21l50c59f 57/5 26223153 15a19d43e73f

21/3 31442631 8a20l52e60d 58/5 26312253 16a19f43c73d

22/3 32164341 7c24j50a61f 59/5 31265322 20f26a38d71c

23/3 32431641 8e25h52a62d 60/5 31532622 21d27a39f72e

24/3 34142361 9c22j56e63b 61/5 32165232 22f26c40b71a

25/3 34231461 9e23h56c64b 62/5 32521632 23d27e41b72a

26/3 41164332 7f32g59a61c 63/5 35132262 24b30c42f73e

27/3 41431632 8d33i60a62e 64/5 35221362 25b30e32d73c

28/3 43324116 6e17g65c66a 65/5 52323216 28c29e44b74a

29/3 43413216 6c18i65e67a 66/5 53223126 28a31e45d74c

30/3 44131362 9b34k63c64e 67/5 53312226 29a31c46f74e

31/3 44313126 6a19k66e67c 68/5 61232325 32d33f44a74b

32/3 61142334 10f26g68d69b 69/5 62132235 32b34f45c74d

33/3 61231434 10d27i68f70b 70/5 62221335 33b34d46e74f

34/3 62131344 10b30k69f70d 71/6 22266222 47e50f51d54b59c61a

35/4 13355331 36l37j47f50e 72/6 22622622 48c52d53f55b60e62a

36/4 13533531 35l37h48d52c 73/6 26222262 49a56b57f58d63e64c

37/4 15333351 35j36h49b56a 74/6 62222226 65a66c67e68b69d70f
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t refer to the list of circuits in Example 3.9. The GKZ vector (2, 3, 3, 4, 6, 1, 1, 4)

differs from the GKZ vector of shape 3 by the circuit

e = u011 + u111 = w000 − w001 − w010 + w011 = (1,−1,−1, 1, 0, 0, 0, 0).

Similarly, shape 17 differs from shape 28 by the circuit −g = −u110 − u101,

from shape 51 by the circuit b = u110 − u111, and from shape 54 by the circuit

d = u101 − u111. The circuits e, b, and d measure conditional epistasis between

two loci when the third is fixed, so the secondary polytope tells us, for example,

that shapes 17 and 51 differ only by such a conditional epistasis interaction.

In the first column of Table 5.1, one more number of interest is displayed

after the shape number and separated by a slash, namely the interaction type.

Shapes of the same interaction type differ only in the labeling of the vertices

of the cube; in other words, they correspond to the same combinatorial type of

triangulation. The six interaction types correspond to the six symmetry classes

of triangulations of the 3-cube. These six classes are depicted in (De Loera et al.

(2006, Fig. 1)) and in (Grier, Huggins, Sturmfels and Yu (2006, Fig. 1)), and we

refer to these references for further mathematical background and generalizations

to higher dimensions.

Table 5.1 specifies all the shapes of fitness landscapes for three biallelic loci.

It is useful to examine the six interaction types, and to consider their biological

meaning. The two triangulations of type 1 are obtained if the three-way interac-

tion u111 is either very large or very small. It consists of a central tetrahedron of

volume two and four adjacent tetrahedra of volume one. The central tetrahedron

can either use the genotypes with an even number of mutations, or those with

an odd mutation count. Fitness landscapes of this type are linear on the central

tetrahedron and on the adjacent tetrahedra. The curvature is such that fitness

decreases more strongly than expected toward any of the genotypes that are not

part of the central tetrahedron. These four genotypes are “sliced off”, and the

fittest populations avoid these genotypes whenever possible. Thus, the shape be-

ing of type 1 means that the fittest populations include either all genotypes with

an even number of mutations, or all genotypes with an odd number of mutations.

Type 6 landscapes can be regarded as opposite to type 1. The four trian-

gulations of this type are indexed by the four different diagonals of the 3-cube.

Each diagonal induces a triangulation that consists of six tetrahedra arranged

around the diagonal in such a way that each tetrahedron has exactly two adja-

cent tetrahedra. Fitness landscapes of this type are linear on each tetrahedron

and the curvature is such that any of the six tetrahedra has a higher fitness than

expected from its two neighbors. No single genotypes are sliced off, as all entries

of the GKZ vector are bigger than 1. For example, shape 74 uses the diagonal

through 000 and 111. Hence the vertices of the tetrahedra correspond to different
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accumulative mutational pathways of length four from 000 to 111. For example,

000 → 001 → 101 → 111 is one such pathway. Thus, the fittest populations

involve all genotypes from exactly one of the six possible pathways.

Types 1 and 6 represent the two extreme types of three-way interaction.

Type 1 emphasizes the number of mutations irrespective of the particular context

or pathway in which they occur. By contrast, type 6 emphasizes the mutational

pathway. Type 1 fitness shapes occur when intermediate types are fitter than

expected irrespective of the specific intermediate genotype. Likewise, we expect

type 6 fitness shapes whenever higher fitness values than expected occur only

in specific genotypic contexts. The remaining interaction types (2 to 5) are

intermediate and share features from both type 1 and type 6.

The third column in Table 5.1 gives the minimal set of linear inequalities

that characterize the robustness cone for each of the 74 shapes. These cones

consist of all fitness landscapes that have the given shape. For instance, shape 74

is characterized by the inequalities a, b, c, d, e, f > 0 which says that conditional

epistasis is positive for any fixation of one of the three loci. While type 6 requires

six inequalities, each of the other five types requires only four inequalities.

For the four-locus two-allele system (G = {0, 1}4), it was shown by Grier et al.

(2006) that the number of shapes is 87, 959, 448, and that these fall into 235, 277

interaction types. A table analogous to Table 5.1, listing one representative shape

from each type, is available at http://bio.math.berkeley.edu/4cube/.

6. Positive Epistasis in HIV?

In this section, we characterize the fitness landscape of HIV-1. We use the

data published in (Segal et al. (2004)), which is also described in (Bonhoeffer et al.

(2004)). The data consists of 288 genotype–fitness pairs. The reported genotype

is the HIV protein sequence composed of positions 4 to 99 of the protease (PRO)

and positions 38 to 223 of the reverse transcriptase (RT). Fitness was measured

as the number of offspring in a single replication cycle and was reported rela-

tive to the fixed wild type strain NL4-3 on a logarithmic scale. Univariate and

multivariate analyses show that mutation L90M in the protease, and mutations

M184V and T215Y in the RT are the major determinants of fitness in this data

set. The notation L90M means that at position 90, the amino acid leucine (L)

is replaced by methionine (M). We therefore analyze the fitness shape of this

three-locus two-allele system. We identify the eight subsets of {L90M, M184V,

T215Y} with binary strings of length three. For instance, the string 010 in the

third row in Table 6.2 is the genotype carrying only mutation M184V.

The fitness values were measured for different viruses, some of which share

a mutational pattern on the three selected loci. Thus, instead of a single fitness

value for each genotype, we have a distribution. A random fitness landscape on a
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genotype space G is a collection of |G| continuous random variables W = (Wg)g∈G .

We think of a realization of W as a real-valued function w : G → R on the

genotype space. Thus, W takes values in R
G. In general, stochastic fluctuations

in W can arise from measurement noise in assessing the reproductive fitness

experimentally, and from biological variation that is not linked to the n genetic

loci. The HIV random fitness landscape is summarized in Table 6.2.

Table 6.2. HIV random fitness landscape on the three amino acid mutations

PRO L90M, RT M184V, and RT T215Y. The mean values (in bold) are used

for significance testing.

Genotype Count Min. 1st Qu. Median Mean 3rd Qu. Max.

000 214 0.1917 1.4770 1.6410 1.5800 1.7910 2.0530

001 5 0.5344 0.6990 1.1880 1.1950 1.7710 1.7850
010 8 –0.3355 1.1440 1.2960 1.1330 1.4870 1.5310

011 8 1.0000 1.2500 1.5150 1.4300 1.6360 1.7240

100 7 0.4771 1.3470 1.4650 1.4410 1.7890 1.8750

101 13 0.3010 0.8673 1.3420 1.2320 1.5840 1.8870

110 11 0.6021 1.1610 1.3700 1.2940 1.5370 1.6920
111 22 –0.4771 0.9472 1.1790 1.0450 1.3850 1.7900

Following Bonhoeffer et al. (2004) and Sanjuán, Moya and Elena (2004), we

first examine the total marginal two-way epistasis

E = u110 + u101 + u011,

with uijk defined in Example 3.9. Computing E means pooling epistasis esti-

mates obtained from the three pairs of loci. We use randomized fitness values to

estimate E under the null hypothesis of no epistasis. Unlike in Bonhoeffer et al.

(2004), we do not find the observed positive value of Ê = 0.025 to be significantly

greater than zero (p > 0.35). This discrepancy may reflect the limited statistical

power of our analysis, which is based on a smaller data set and on only three

loci, although Bonhoeffer et al. found positive epistasis to be more pronounced

when restricting to the most influential sequence positions.

Rather than marginalizing, we next determine the pattern of epistasis for

each pair of loci in the context of the third locus. This amounts to computing

the circuits a, b, c, d, e and f defined in Example 3.9 that encode conditional

epistasis. Figure 6.4. shows the empirical null distributions (grey histogram

bars) and the empirical distributions of the circuits a, . . . , f (clear histogram

bars). The distributions of circuits are obtained by resampling fitness values

for the same genotype. They reflect the uncertainty in the shape of the fitness

landscape due to multiple discordant measurements.
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Figure 6.4. Conditional two-way epistasis in HIV, grouped according to
circuits a, . . . , f .

Comparing the mean of the empirical circuit distribution (black dot in Fig-

ure 6.4) to the null, we find, for each of the three pairs, positive epistasis condi-

tioned on the wild type allele at the remaining position, and negative conditional

epistasis otherwise (Table 6.3). Two out of six comparisons reached statistical

significance, including one case of negative epistasis. This finding shows that the

HIV fitness landscape on the three selected loci is only insufficiently described

as “positively epistatic”. Instead of testing all circuits for deviation from zero,

which involves a multiple comparison problem, we suggest considering the shape

of the fitness landscape directly.

Table 6.3. Conditional 2-way epistasis in HIV. The p-value denotes the
fraction of epistasis values in the bootstrap sample that are lower (in the case
of negative epistasis) or higher (in the case of positive epistasis) than the
observed mean conditional epistasis. Circuits are labeled as in Example 3.9.

Circuit Pair Context Cond. epist. p-value

a 90–184 T215 0.300 0.110
b 90–184 215Y –0.421 0.059

c 90–215 M184 0.175 0.230

d 90–215 184V –0.545 0.013

e 184–215 L90 0.682 0.008

f 184–215 90M –0.039 0.410
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(a) HIV data

(b) randomized HIV data

(c) randomly generated data

Figure 6.5. Three-way epistasis in HIV, analyzed using the 74 shapes in
Table 5.1. Shape distribution of (a) the HIV random fitness landscape on
mutations PRO L90M, RT M184V, and RT T215Y; (b) the same fitness
values randomly assigned to genotypes; and (c) a random landscape in which
fitness values are identically and uniformly distributed.

We characterize the shape of the HIV fitness landscape by estimating the
distribution on the 74 shapes in Table 5.1 induced by the data in Table 6.2.
The distribution of W is obtained by drawing 1,000 bootstrap samples of size
288 each from the data, and computing the mean fitnesses per genotype. The
distribution of ΠG [W ] is shown in Figure 6.5(a). The dominant shapes are #7
(frequency 20.9%), #2 (20.7%), #26 (15%), and #61 (11.3%). In Figure 6.5,
we randomized the fitness values. Comparing the two histograms shows that the
observed shape distribution is very different from a randomly chosen landscape
using the same values. The histogram in Figure 6.5(c) results from sampling
fitness values uniformly at random from [0, 1] and is similar to the one in subfigure
(b). Figure 6.5 can be used to detect differences in fitness shape between random
landscapes, and to identify single shapes that appear with high probability.
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The dominant shapes of the HIV fitness landscape are very similar and have

certain features in common. For example, the GKZ vectors that correspond

to shapes 2, 7, 10, 26 and 32 all share a coordinate 1 in the second and third

positions. These five shapes account for 61.5% of the probability mass. They all

slice off the two genotypes 001 and 010, which correspond to the single mutants

{M184V} and {T215Y}, respectively. Both mutations are known to reduce the

fitness of HIV. Indeed, M184V develops shortly after initiation of therapy with

the antiviral drug lamivudine in most patients. Although M184V carrying viruses

are resistant to lamivudine, administration of the drug is often continued in order

to maintain the mutation and its fitness impairing effect (Wainberg (2004)).

Figure 6.6. The secondary polytope of the genotope in Figure 2.2. It appears

as a face of the secondary polytope of the 3-cube and its vertices and edges

are labeled as in Table 5.1. The underlying genotype space is defined in

Example 2.2 and represents the HIV fitness landscape shapes that slice off

the single mutants {M184V} and {T215Y}.

This suggests restricting our analysis to the fitness landscape on the subset

G = {000, 110, 011, 100, 101, 111}. The secondary polytope of G is a pentagon

whose vertices are the shapes 2, 7, 10, 26 and 32, i.e., the five triangulations of the

genotope in Example 2.2 and Figure 2.2. Figure 6.6 shows this pentagon. Vertices

and edges are labeled as in Table 5.1. The pentagon reveals that shapes 26 and

7, and 32 and 10, differ only by the circuit f . This circuit represents conditional

epistasis between the two RT loci 184 and 215 in the context of the protease

mutation 90M (Table 6.3, Figure 6.4f). The other edges are the circuits g, n,
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and s. The circuit g relates the marginal epistasis of the two pairs (PRO 90, RT

184) and (PRO 90, RT 215). The circuit n compares the total two-way epistasis

E to the three-way interaction u111, and s compares the epistasis in (RT 184,

RT 215) to the remaining pairs plus the three-way interaction.

In summary, analysis of the HIV fitness data reveals a specific pentagon in

the boundary of the (four-dimensional) secondary polytope of the 3-cube. The

three dominant shapes 7, 2, and 26 in the random fitness landscape are adjacent

on the pentagon, and they correspond to three of the five triangulations of the

genotope in Figure 2.2. This geometric characterization of the fitness landscape

captures more adequately the interactions underlying the HIV fitness data.

7. Synergistic Epistasis in Drosophila

Turning to a higher-dimensional genetic system, this section illustrates our

concepts and methods with the fitness data for Drosophila melanogaster reported

by Whitlock and Bourguet (2001). Those authors considered five genetic loci,

denoted px/sp, b, ca, e/sr and h, for which they created a set of 32 = 25 ho-

mozygous lines fixed for all the possible different combinations of mutations. We

characterize the shape of the fitness landscape they measured, and we discuss

their statistical analysis in light of our findings. Here, l = 2 and the geno-

type space is G = {0, 1}5. The binary strings g ∈ G represent the subsets of

{px/sp, b, ca, e/sr, h}. For instance, 01011 represents the mutant {b, e/sr, h}.

In what follows, we list the elements of G in the order

00000 10000 01000 00100 00010 00001 11000 10100

10010 10001 01100 01010 01001 00110 00101 00011

11100 11010 11001 10110 10101 10011 01110 01101

01011 00111 11110 11101 11011 10111 01111 11111.

The first column in (Whitlock and Bourguet (2001, Tab. 1)) consists of the fitness

values wijklm which measure the relative reproductive fitness of each strain:

−0.232 −0.850 −0.312 −0.214 −0.847 0.507 −0.238 −0.490

−1.030 0.232 −0.968 −1.338 −0.034 −1.47 −0.739 0.2176

−0.712 −1.820 −0.529 −0.786 −0.195 −0.641 −1.945 −0.047

0.0264 −1.296 −2.446 −1.973 −1.180 −1.024 −1.856 −4.560.

These values define the fitness landscape w : G → R, e.g., w01100 = −0.968.

Whitlock and Bourguet’s analysis of epistasis begins with an examination of

the ten two-way interactions. They find that 6 of the 10 pairs show significant

interaction. In all of them the direction of the effect is negative (synergistic

epistasis). As we show below, each of the two-way interactions depends on the

genotypes at the remaining loci, and a refined analysis provides more information.
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The shape ΠG [w] of the Drosophila fitness landscape is a triangulation of the

5-cube ΠG . It consists of the 110 maximal simplices listed in the supplementary

material. Although this set of simplices does not convey an intuitive image

of the shape, it precisely characterizes the interactions. For verification, we

computed the triangulation twice, once using the algebra software Macaulay 2

(Grayson and Stillman (1999)), and once using the geometry software Polymake

(Gawrilow and Joswig (2001)), both in less than one second running time on a

standard PC.

Returning to the question of synergistic epistasis, we examine each pair of

loci when we fix the values (0 or 1) at the remaining three loci. For example, the

first pair of loci (1, 2) (i.e., (px/sp, b)) has positive epistasis twice, namely when

there is either no other mutation, or only the mutation 3 (ac). However, as soon

as either of mutations 4 (e/sr) or 5 (h) occurs, the epistasis between px/sp and

b becomes negative. Algebraically, if we write

α∗∗klm = w00klm + w11klm − w01klm − w10klm,

then α∗∗000 = 0.692 and α∗∗100 = 0.532 are positive while the other six epistatic

interactions have negative numerical values:

α∗∗001 = −0.220 α∗∗010 = −0.299 α∗∗011 = −0.3478

α∗∗101 = −2.470 α∗∗110 = −1.185 α∗∗111 = −2.976.

Biologically, this analysis confirms the negative total marginal two-way epista-

sis described in (Whitlock and Bourguet (2001)), however it also reveals precise

information about the conditional epistasis. Geometrically, an analysis of all two-

way interactions involves examining the 80 two-dimensional faces of the 5-cube.

Of these 80 squares, we find that precisely 26 have positive epistasis. We list the

numerical values of the 26 positive interactions grouped by pairs of loci:

(1,2) α∗∗000 = 0.692, α∗∗100 = 0.532,

(1,3) α∗0∗00 = 0.342, α∗0∗01 = 0.819, α∗0∗10 = 0.867, α∗0∗11 = 1.1306, α∗1∗00 =

0.182,

(1,4) α∗00∗0 = 0.435, α∗01∗0 = 0.960,

(1,5) α∗000∗ = 0.343, α∗010∗ = 0.820,

(2,3) α0∗∗01 = 1.233, α0∗∗10 = 0.016,

(2,4) α0∗0∗1 = 0.3498, α0∗1∗0 = 0.279, α1∗0∗1 = 0.222,

(2,5) α0∗01∗ = 0.2998, α0∗10∗ = 1.446, α1∗01∗ = 0.251,
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(3,4) α01∗∗0 = 0.049, α10∗∗1 = 0.044,

(3,5) α01∗0∗ = 0.643,

(4,5) α000∗∗ = 0.3256, α001∗∗ = 0.699, α010∗∗ = 1.0864, α110∗∗ = 0.931.

Considering that 1 − 26/80 = 0.675 is higher than the fraction 0.6 of negative

two-way interactions identified by Whitlock and Bourguet, and that many of the

positive epistatic interactions are very small, one can argue a stronger case for

synergistic epistasis. Importantly, our analysis also reveals exactly which pairs of

loci can have positive or negative epistasis, and how this depends on the patterns

at the other loci. The pair (1, 3) (i.e., (px/sp, ca)) has the largest number of

positive epistasis patterns, namely five, while the pair (3, 5) (i.e., (ca, h)) has

only one. In order to assess the statistical significance of these interactions, it is

imperative to have replicates of the fitness measurements (cf. Section 6).

The shape of the fitness landscape also reveals information about the fittest

population. To see this, we appeal to the geometry of the triangulation ΠG [w]

(see online Supplementary Material). The two genotypes 10000 and 11111 are

“sliced off” in this triangulation, i.e., each of them lies in only one maximal

simplex. The GKZ vector of ΠG [w] is 1/120 times

(12, 1, 21, 46, 13, 13, 64, 17,

12, 35, 7, 10, 3, 7, 2, 51,

33, 7, 7, 83, 30, 7, 15, 64,

80, 9, 12, 5, 24, 22, 7, 1 ).

Recall that the entry of this vector indexed by genotope g ∈ G is the probability

that g appears in the fittest population for a randomly chosen allele frequency

vector. For instance, for the strain 10110 = {px/sp, ca, e/sr} that probability

is 83/120 = 69.2%. The triangulation ΠG [w] can also be written in a way which

is complementary to the list of 110 maximal simplices. Namely, there are 332

minimal non-faces of ΠG [w], 31 non-triangles, and the one non-tetrahedron

{00100, 00010, 11000, 01011}.

The shape of the fitness landscape implies that these four Drosophila mutants

cannot coexist in a maximally fit population, though any three of them can.

8. Discussion

Our description of the shape of fitness landscapes in terms of triangulations

of the genotope directly reveals information about all the interactions among

the genotypes. This provides a foundation for the development of statistical

methods for determining the significance of interaction among genotypes based
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on measurements of a phenotype landscape. In particular, the circuits of the

genotope provide information about interactions among genotypes which refine

the classical analysis of variance statistics. The development of significance tests

for interaction based on circuit measurements is an interesting problem which is

beyond the scope of this paper.

In the case of many organisms, including humans, polymorphism occurs at

single nucleotides in the genome (SNPs), and is usually of two types. Thus, even

though humans are diploid, and in principle there could be 16 possible alleles at

a polymorphic site, there are usually only l = 2. It is important to note that

even though the number of SNPs is in the millions, the human genotope is deter-

mined only by the genotypes occurring in the population. The linkage disequilib-

rium structure of the human population (The International HapMap Consortium

(2005)) suggests that the dimension of this genotope is far smaller than would

be suggested by the number of SNPs. We are currently in the process of com-

puting the human genotope and hope that in the future this will be a useful tool

for describing the shapes of landscapes associated to measurements of pheno-

types across populations Huggins, Pachter and Sturmfels (2007). In the mean-

time, the mathematics we have developed will be useful for studying interac-

tions among genotypes in small mutation studies, such as the one described in

Beerenwinkel, Pachter, Sturmfels, Elena and Lenski (2007). For example, in a

related ongoing project, the shapes of fitness landscapes for the diploid biallelic

two-locus system are being determined Hallgrimsdottir and Yuster (2006).

Another interpretation of the triangulations of the genotope is in terms of

the genotypes that can occur in maximally fit populations. Such populations

must consist of genotypes that label one simplex in the triangulation. In other

words, the description of the shape of fitness landscapes that we have provided

is fundamental for understanding the genotypes of populations that evolve by

recombination but without mutation. In the case of populations that evolve

with mutation, but without recombination, a complementary analysis of fitness

landscapes in terms of linear extensions of the genotope (viewed as a poset) is

provided by Weinreich (2005). An understanding of the relationship between

these approaches will lead to a deeper understanding of populations that evolve

by recombination and mutation. We are currently investigating the evolutionary

dynamics of the biallelic three-locus system as a function of the fitness shape.

What our study and Weinreich’s have in common is that, unlike pre-

vious work on fitness landscapes such as (Karlin and Feldman (1970) and

Kondrashov and Kondrashov (2001)), they are not based on a priori assump-

tions about the landscape. In particular, our analysis of the data in Sections 6

and 7 is not based on any choice of model for w. On the other hand, the geome-

try of the secondary polytope interfaces well with Bayesian statistics, since any



EPISTASIS AND SHAPES OF FITNESS LANDSCAPES 1341

family of distributions on R
G induces a family of distributions on the finite set

of possible shapes.
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