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Abstract: For a set of sequences, related by a binary tree, that have evolved ac-

cording to the Thorne-Kishino-Felsenstein model, a Gibbs sampler is presented for

simulating the ancestral sequences and their alignments. The updating step con-

sists in updating the ancestral sequence and its three alignments within a 3-star

tree. We compare the Gibbs sampler with the algorithm suggested recently by

Holmes and Bruno.
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1. Introduction

In this paper we describe a Markov Chain Monte Carlo method for sampling

multiple sequence alignments within the Thorne, Kishino and Felsenstein (1991)

model (TKF-model) on a binary tree. We use a Gibbs sampler where in each step

an ancestral sequence and its alignments with the three neighbours is simulated

conditional on the three neighbouring sequences. While developing the method

described in this paper the article by Holmes and Bruno (2001) appeared. In

that paper a Gibbs sampler is given that is computationally simpler than the one

described in this paper. In each step Holmes and Bruno (2001) either update

the alignment between two sequences given the two sequences, or update the

ancestral sequence given its alignments with the three neighbours while allowing

the insertion of new letters in the ancestral sequence that are not aligned to any

of the letters in the three neighbours (see Appendix A below). We compare our

method with that of Holmes and Bruno (2001) in terms of mixing properties and

efficiency.

The aim of the present method is to use a simple stochastic model to ob-

tain a distribution of alignments and a likelihood function. The traditional

optimization-based methods rely on a score function and a heuristic algorithm.

These methods have been improved over decades, but are limited in ignor-

ing the stochastic nature of the evolutionary process. In Section 5 we con-

sider a data example and compare the output from the CLUSTAL W program
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(www.ebi.ac.uk/clustalw) with the information that can be obtained from the

method in this paper.

A forerunner to the present statistical alignment is Zhu, Liu and Lawrence

(1998), where a posterior distribution on the set of alignments of input sequences

is produced. Their method gives a uniform prior distribution on alignments

with k (possibly longer than one nucleotide/amino acid) insertion-deletions, and

then uses a PAM score matrix to give a likelihood of each alignment within this

set. Their method is restricted to a pair of sequences, uses an arbitrary (non-

evolutionary) prior on alignments, and finally includes an evolutionary modelling

for the substitution process only, not for the insertion-deletion process.

1.1. TKF-model

In the TKF-model (Thorne, Kishino and Felsenstein (1991)), each letter in

a sequence develops independently of the other letters according to a birth and

death process with birth rate λ and death rate µ > λ. When a new letter is

born it is inserted to the right of the letter giving birth. The new letter is chosen

according to a distribution π. At the very left end of the sequence is a birth

process with rate λ (immigration) so that the sequence will not eventually die

out. While a letter is alive it is subject to a Markovian substitution process

with stationary probabilities given by π, and with the transition probability of a

change from w1 to w2 within a time span τ given by f(w2|w1; τ). The stationary

distribution of a sequence S of length L is given by

P (S) = (1 − γ)γL
L

∏

i=1

π(S[i]), γ =
λ

µ
, (1)

where S[i] is the ith element in the sequence.

If a sequence S1 evolves into S2 during a time span τ we can summarise the

evolution in terms of the alignment of some of the letters in S1 with some of the

letters in S2 (survival of these letters), in terms of deletions (deaths) of some of

the letters, in terms of insertions (births), and finally in terms of substitutions

for the aligned letters. The TKF-model for this summary information can be

reformulated as a hidden Markov model (Durbin, Eddy, Krogh and Mitchison

(1998) and Hein (2001)). The three basic states for the underlying Markov chain

are match (M), deletion (D), and insertion (I), where M is the alignment of a

letter in sequence one with a letter in sequence two, D is a letter in sequence

one that did not survive, and I is the birth of a letter in sequence two. Apart

from the three states above there is also an end state (E) in order to model the

random lengths of the sequences. We use the symbol # to denote the presence

of a letter (nucleotide or amino acid) and the symbol − to denote the absence of
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a letter. To give the transition probabilities in the Markov chain, we define for
notational convenience

γ =
λ

µ
and β =

1 − exp(−(µ− λ)τ)

1 − γ exp(−(µ− λ)τ)
,

and introduce the terms

b(#,#) = γβ, b(#,−) = 1 − b(#,#),

b(−,#) = 1 −
β

1 − exp(−µτ)
, b(−,−) = 1 − b(−,#), (2)

s(#) = exp(−µτ), s(−) = 1 − s(#),

where b(·,#) has the interpretation of the probability of a birth, b(·,−) is the
probability of no birth, and s(#) is the probability of survival. The transition

probabilities are then

M D I E

M b(#,−)γs(#) b(#,−)γs(−) b(#,#) b(#,−)(1 − γ)

D b(−,−)γs(#) b(−,−)γs(−) b(−,#) b(−,−)(1 − γ)

I b(#,−)γs(#) b(#,−)γs(−) b(#,#) b(#,−)(1 − γ)

(3)

The state M emits a letter in both sequences and the distribution of the two let-
ters (w1, w2) is π(w1)f(w2|w1; τ). The deletion state D emits a letter in sequence
one only, and the insertion state I emits a letter in seqeunce two only, in both
cases the distribution of the letter is π(·).

The immigration part of the model is incorporated by saying that the Markov
chain starts in the state I that has the same transition probabilities as the match
state M , and the initial state I does not emit any letters (also called the immortal
state).

In Hein, Jensen and Pedersen (2003) a detailed description is given of how
to formulate the TKF-model on a binary tree as a hidden Markov model. We

use this below for the special case of a 3-star tree.

1.2. Notation and Gibbs idea

We have η observed sequences S1, . . . , Sη, one for each leaf of a binary tree
with ν = η − 2 interior nodes. The unobserved sequences at the inner nodes
are denoted Tη+1, . . . , Tη+ν . The root of the tree is taken as the interior node

numbered η+ ν. Any interior node η+1 ≤ i < η+ ν has an ancestor a(i) among
the interior nodes i + 1, . . . , η + ν and two descendants d1(i) and d2(i) among
the interior nodes η + 1, . . . , η + i− 1 and the leaves. For the root the ancestor
a(η + ν) is replaced by a descendant; for a leaf j the ancestor a(j) is among the
interior nodes. An example of a tree with 4 observed sequences is given in Figure

1, and an example with 7 observed sequences is given in Figure 2.
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Figure 1. A tree with four observed sequences.

The branch from the node a(j) to the node j is numbered j so that the set

of branches is j = 1, . . . , η + ν − 1. Branch number j has a length τj and an

alignment A(a(j), j) consisting of a sequence with terms M , D, and I.
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Figure 2. A tree with seven observed sequences.

The TKF-model gives the joint probability of all the sequences (Tη+1, . . .

,Tη+ν), (S1, . . . , Sη), and all the alignments A(a(j), j). In this paper we consider

simulation of Tη+1, . . . , Tη+ν and the alignments A(a(j), j), conditionally on the

value of the observed sequences (S1, . . . , Sη). Each step in the simulation consists

in simulating a 3-star tree conditionally on the sequences at the three leaves. Thus

for each r = η+1, . . . , η+ν, we consider the 3-star with interior node r and leaves

a(r), d1(r), d2(r), and simulate a new value of the sequence Tr and the alignments
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A(r, a(r)), A(r, d1(r)) and A(r, d2(r)) from the conditional distribution given the

sequences at the three leaves. This conditional distribution is given in (11) below.

For the tree in Figure 1 we simulate the 3-star tree with node 5 being the interior

node and next the 3-star tree with node 6 being the interior node.

To get initial values of the interior sequences Tη+1, . . . , Tη+ν we use an al-

gorithm for simulating a 2-star tree equivalent to the one described below for a

3-star tree. In particular we have a formula equivalent to (11) for the sequential

simulation of an interior sequence. For r = η+1, . . . , η+ ν, we simulate Tr given

the sequences at d1(r) and d2(r).

2. 3-star Tree

2.1. States and transition probabilities

We consider a 3-star tree where we let T be the sequence at the interior

node and let S1, S2, S3 be the sequences at the three leaves. The evolutionary

time distances along the branches are τ1, τ2, τ3. In this section we describe the

TKF-model for the 3-star tree as a hidden Markov chain. There are two sets

of states. The first set of states correspond to having a letter in the ancestral

sequence T , and recording the set J of leaves at which the letter survives. Thus

j ∈ J means that the letter survided at this leaf, and j /∈ J means that the letter

did not survive at this leaf. We denote such a state by M(J), where J = ∅ is

also a possibility. The second set of states correspond to births (insertions) at a

subset J of the three leaves, and we denote such a state by I(J), where J 6= ∅.

As in the case with two sequences there is also an end state E . From a state

M(J) we can go to any other state. From a state I(J1) we can go to any other

state M(J2), but only to states I(J2) with J2 ⊆ J1. The set of 15 states of the

form M(J) or I(J) is denoted Ξ in the following.

To state the transition probabilities we define β(j), b(#,#; j), b(#,−; j),

b(−,#; j), b(−,−; j), s(#; j), and s(−; j) as in (2), with τ replaced by τj, j =

1, 2, 3. Furthermore, for a state x of the form M(J) or I(J) we define for j =

1, 2, 3, xj = # if j ∈ J and xj = − if j /∈ J . The transition probability p(x, y) of

going from the state x to the state y is then

y = M(J2) y = I(J2) y = E

x = M(J1) B(#,#)γ
(

∏3
j=1 s(yj; j)

)

B(#,−) B(#,#)(1 − γ)

x = I(J1) B(−,#)γ
(

∏3
j=1 s(yj; j)

)

B(−,−) B(−,#)(1 − γ)

(4)
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with

B(#,#) =
∏3

j=1 b(xj,−; j), B(#,−) =
∏3

j=1 b(xj , yj ; j),

B(−,#) =
∏

{j∈J1}
b(#,−; j), B(−,−) =

∏

{j∈J1}
b(#, yj ; j).

The initial state I corresponds to M({1, 2, 3}) and does not emit any letters.

A state M(J) emits a letter w0 at the interior node and emits letters wj

at the leafs j ∈ J . A state I(J) emits letters wj at the leafs j ∈ J only. The

emission probabilities are

p0
e(w|M(J)) = π(w0)

∏

{j∈J} f(wj |w0; τj),
(5)

p0
e(w|I(J)) =

∏

{j∈J} π(wj).

We will also be using the marginal probability of (w1, w2, w3) given the state,

obtained by summing over w0 in the previous expression,

pe(w|M(J)) =
∑

w0
π(w0)

∏

{j∈J} f(wj|w0; τj),
(6)

pe(w|I(J)) =
∏

{j∈J} π(wj).

2.2. Simulating a 3-star tree

We denote the length of the sequence Sj by Lj, j = 1, 2, 3. A subsequence

starting in a and ending in b is denoted Sj[a : b]. If a > b we interpret Sj[a : b]

as the empty set. For column vectors u and v with integer entries we let S[u : v]

denote the three subsequences Sj[uj : vj], j = 1, 2, 3. For a state x = M(J) we

define t(x) = 1 and a 3-dimensional vector l(x) with 1 at coordinates j ∈ J and

0 at the remaining coordinates. For a state x = I(J) we define t(x) = 0 and l(x)

as above.

The multiple alignment for a 3-star tree is given through the states x0,. . . , xN,

where x0 = I is the initial state that does not emit any letters, xi ∈ Ξ, i =

1, . . . , N , and xN+1 is the end state. Here N is random. Let

Li = l(x1) + · · · + l(xi), ti = t(x1) + · · · + t(xi).

Thus Li is the part of the sequences in S explained by the first i states of the

alignment. We can write the joint probability of the sequences and the alignment

as

P (N = n, x1, . . . , xn, T, S)

= p(xn, E)

n
∏

i=1

p(xi−1, xi)p0
e

(

T [ti−1 + 1 : ti], S[Li−1 + 1 : Li]
∣

∣xi
)

, (7)
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where n and x1, . . . , xn are such that Ln = l(x1) + · · · + l(xn) = L, with L being

the vector of lengths of the sequences. Note, that if we sum this expression over

the possible letters of the ancestral sequence T the term p0
e is replaced by the

term pe(S[Li−1 + 1 : Li]|xi).

To obtain the marginal probability of a part of the alignment we introduce

the function F (K|x0), where K is a column vector of integers and x0 is any state

among Ξ, given by

F (K|x0) (8)

=

∞
∑

n=0

∑

x1,...,xn∈Ξ:K+Ln=L

p(xn, E)

n
∏

i=1

p(xi−1, xi)pe(S[K + Li−1+1 : K + Li]|xi),

where the inner sum is zero if there is no x1, . . . , xn with K + Ln = L. In

particular, F (K|x) = 0 if there exists j with Kj > Lj . This function gives the

marginal probability of the sequences S[K + 1 : L] given that the initial state is

x0. In particular the marginal probability of the sequences at the three leaves is

P (S) = F (0|I). (9)

From (7) and (8) we find the following marginal probability

P
(

N ≥ k, x1, . . . , xk, T [1 : tk], S
)

=
{

k
∏

i=1

p(xi−1, xi)p0
e

(

T [ti−1 + 1 : ti], S[Li−1 + 1 : Li]
∣

∣xi
)

}

F (Lk|xk),

and using (9) we get

P (N ≥ k, x1, . . . , xk, T [1 : tk]|S) (10)

=
{

k
∏

i=1

p(xi−1, xi)p0
e

(

T [ti−1 + 1 : ti], S[Li−1 + 1 : Li]
∣

∣xi
)

}F (Lk|xk)

F (0|I)
.

Dividing (10) by the same expression with k replaced by k − 1 we obtain

P
(

N ≥ k, xk, T [tk−1 + 1 : tk]
∣

∣

∣
S,N ≥ k − 1, x1, . . . , xk−1, T [1 : tk−1]

)

(11)

= p(xk−1, xk)p0
e

(

T [tk−1 + 1 : tk], S[Lk−1 + 1 : Lk]
∣

∣

∣
xk

) F (Lk|xk)

F (Lk−1|xk−1)
.

From (11) we can sequentially simulate (x1, T [1 : t1]), (x2, T [t1 + 1 : t2]), . . . if

F (K|x) is known for any x and any K ≤ L.
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In order to calculate F (K|x) we make a recursion from (8). We do this

by separating the sum into the sum over x1 and the sum over the remaining

variables. For Kj ≤ Lj, j = 1, 2, 3, and Kj < Lj for at least one j, we get

F (K|x) =
∑

x∈Ξ

p(x, z)pe (S[K + 1 : K + l(z)] |x) F (K + l(z)|z), (12)

and for K = L we find

F (L|x) = p(x, E) + p(x,D0)F (L|D0), D0 = M(∅). (13)

The recursion (12) is solved in the following way. If F (K̃|x) has been found

for all x and all K̃ with K̃ ≥ K and K̃j > Kj for at least one j, we first find

F (K|D0) from

F (K|D0)(1− p(D0, D0))=
∑

z∈Ξ,z 6=D0

p(D0, z)pe (S[K + 1 : K + l(z)] |x) F (K + l(z)|z),

and next find F (K|x), x 6= D0, from (12). The start of the recursion is given by

F (L|D0) =
p(D0, E)

1 − p(D0, D0)
,

(14)
F (L|x) = p(x, E) + p(x,D0)F (L|D0), x 6= D0.

Note that when we have simulated the alignment x1, . . . , xN for the 3-star

with interior node r and leaves a(r), d1(r) and d2(r) we can immediately read

off the alignments A(r, a(r)), A(r, d1(r)) and A(r, d2(r)).

3. Complexity and mixing

3.1. Mixing

We first consider the problem of simulating the ancestor and the three align-

ments of a 3-star tree. Details of the simulation experiments are given in Ap-

pendix B. For a 3-star tree our algorithm is designed to simulate directly from

the conditional distribution given the three observed sequences. When simulating

according to the method of Holmes and Bruno (2001) (see Appendix A below for

a description), we find that the mixing is not fast. In the upper part of Figure 3

is a plot of the first 200 autocorrelations on a logarithmic scale based on 100,000

simulated values of the number of deletions that are not followed by an insertion

in branch 2 (one value corresponds to one round of updating the three alignments

and updating the ancestral sequence). The lower curve in the plot is for three

sequences of lengths around 75, and the upper curve is for three sequences of

lengths around 150. We see that, apart from an initial phase, there seems to be
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an exponential decrease of the autocorrelations. We have estimated the slope

using the correlations for lags 50 to 150. Based on the first 50 values and the

exponential decrease, we have also estimated the sum of the autocorrelations,
∑

k rk. When calculating the variance of the average x̄ =
∑n

i=1 xi based on n

simulated values, we have that nVar(x̄) ≈ 1 + 2
∑

k rk in the limit n→ ∞. If for

example 1 + 2
∑

k rk = 100, the interpretation is that we need to simulate 100n

observations in order to have the same precision as compared with the situation

of n independent values when n is large.
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Figure 3. Autocorrelations for the number of deletions along branch 2. In

the upper plot is the logarithm of the autocorrelations using the method

of Holmes and Bruno (2001) for a 3-star three with sequences of lengths

around 75 (short) and 150 (long), respectively. In the lower plot is the

autocorrelations for four sequences and using the method of this paper.

In Table 1 we have given the result for the algorithm of Holmes and Bruno

(2001) for a 3-star tree as well as for the tree in Figure 1 with four observed

sequences and for the tree in Figure 2 with seven observed sequences. The actual

numbers here of course depend on the choice of parameter values (see Appendix

B). However, the underlying dependency that influences most the properties of
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the algorithm is the one given in (3). So for a wide range of parameters we expect

the same qualitative features as those reported in this section. The exception is

when the time parameter τ is either very small or very large.

For the algorithm reported in this paper there is by construction no corre-

lation for the 3-star tree and in the other cases there is very little correlation.

An example is given in the lower part of Figure 3 where we consider a tree with

four observed sequences (see Figure 1). The autocorrelations are based on 1,000

simulated values, where each value corresponds to an updating of each of the two

3-star trees embedded in the tree in Figure 1.

Table 1. Correlations for the Holmes and Bruno (2001) algorithm.

Length 3-star, 75 3-star, 150 4-seq, 75 4-seq, 150 7-seq, 75

Slope on log scale -0.0101 -0.0064 -0.0061 -0.0061 -0.0055
1 + 2

∑

k rk 82 127 130 140 176

3.2. Complexity

Without any refinements our algorithm has complexity L3, where L is a typ-

ical length of a sequence, due to the calculation of F (K|x) via the recursion (12).

This can be reduced since F (K|x) will be practically zero outside a band around

a ‘typical alignment’. The latter can for example be taken as the maximum like-

lihood alignment or the best alignment within some other scoring system. In the

runs reported in this paper there are only few insertions and deletions and we

simply take a fixed band around a line in the three dimensional space. Similarly,

the algorithm of Holmes and Bruno (2001) has complexity L2 and this can be re-

duced by using a band only. For the runs with sequences of length approximately

75 we have used a band of width 20, and for the runs with sequences of length

approximately 150 we have used a band of width 30. With these band widths

we were not able to detect any difference in the marginal probability of the se-

quences (9) calculated without and with the use of a band. The band width will

generally depend on the separation of the sequences and theoretical calculations

can be made on the probability of large excursions. The use of corner cutting or

a band limited matrix is a standard technique in dynamical programming and

was used for instance by Ukkonen (1985). Hein et al. (2000) used this to achieve

a major acceleration for pairwise statistical alignment, and we refer to this pa-

per for further discussion of the technique. Using a band of width w, a rough

calculation gives the following complexity measures

Holmes and Bruno : k2 × 3 × L×w + k3 × L,

Ours : k3 × 15 × L× w × w,
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where k2 is the number of branches, and k3 is the number of interior nodes. The

numbers 3 and 15 are the number of states for aligning two sequences and for

aligning a 3-star tree, respectively. These complexity measures seem to be in

good agreement with the actual CPU times reported in Table 2. The CPU times

reported in Table 2 are based on 1,000 updatings for the Holmes and Bruno

algorithm and on 100 updatings for our algorithm. These CPU times are very

stable as to the number of updatings used.

Table 2. CPU running times in seconds for 100 rounds of updating of the
alignment. The bottom row gives the efficiency of the algorithm in this paper
as compared to the algorithm in Holmes and Bruno (2001), using values from
Table 1.

3-star,75 3-star,150 4-seq,75 4-seq,150 7-seq,75
w = 20 w = 30 w = 20 w = 30 w = 20

H & B 4.99 15.04 9.94 27.77 18.77
Ours 158.5 775.4 330.3 1524.0 830.2

Ratio 32 52 33 55 44

(1 + 2
∑

k rk)/Ratio 2.6 2.5 3.9 2.6 4.0

From the bottom row of Table 2 we see that in all the runs our algorithm

is more efficient for estimating mean values. Furthermore, if we can design a

version of the algorithm that uses a fixed band, irrespective of the lengths of the

sequences, then the efficiency of our algorithm as compared to that of Holmes

and Bruno (2001) will increase with the lengths of the sequences.

4. Maximum Likelihood Estimation

4.1. Full likelihood for sequences and the alignments

For two sequences S1 and S2 with an alignment A = {z1, . . . , zn}, where

zi is one of the states M , D, or I, the probability of the sequence S2 and the

alignment A given the sequence S1 is

P (S2, A|S1; τ)

= p̃(zn, E ; τ)
n

∏

i=1

p̃(zi−1, zi; τ)p̃c
e

(

S2[L
i−1
2 +1 : Li

2]
∣

∣S1[L
i−1
1 +1 : Li

1], z
i; τ

)

. (15)

Here L1 and L2 are the lengths of the sequences, p̃(·, ·; τ) is the transition prob-

ability from (3), and p̃c
e is a conditional emission probability

p̃c
e(w2|w1, z; τ) =







f(w2|w1; τ) z = M,

1 z = D,

π(w2) z = I.

(16)
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We can next state the full likelihood Lf (θ) for the multiple alignment on
the tree, that is, the joint probability of S1, . . . , Sη, Tη+1, . . . , Tη+ν , and all the
pairwise alignments A(a(j), j), as a function of the parameters θ defining the
model. Using the notation Sη+j = Tη+j we find

Lf (θ) = P (Tη+ν)

η+ν−1
∏

j=1

P
(

Sj , A(a(j), j)
∣

∣Ta(j); τj
)

, (17)

where P (Tη+ν) is calculated as in (1).
The marginal likelihood Lm(θ) based on the observed sequences Sr, r =

1, . . . , η, is obtained by summing Lf (θ) over the ancestral sequences and their
alignments. The ratio Lm(θ2)/Lm(θ1) can be calculated as a mean value

Lm(θ2)

Lm(θ1)
= Eθ1

(

Lf (θ2)

Lf (θ1)
|Sr, r = 1, . . . , η

)

. (18)

Thus we can use the Gibbs sampler from Section 3 to generate samples from the
conditional distribution given Sr, r = 1, . . . , η, and thereby approximate (18).
However, unless θ2 is close to θ1, the ratio Lf (θ2)/Lf (θ1) will have a variance
growing exponentially in the length of the sequences. Instead we use the EM-
algorithm described next.

4.2. Simulated EM-algorithm

The parameters of the model are the stationary frequencies π(·), the birth
rate λ, the death rate µ, the parameters of the substitution probabilities (in
our case ψ taking care of the difference between transversions and transitions),
and the times τi along the branches of the tree. It is quite natural to think of
the information in the data as consisting of two parts, one part is what can be
learned from the sequences concerning the marginal distribution of a sequence,
and the other part is what can be learned about the evoulutionary process when
considering the changes between two sequences. The marginal distribution con-
tains information on π and γ = λ/µ, whereas the changes between the sequences
mainly provides information on the times τi and the transversion/transition ra-
tio ψ.

Using this line of thinking we first estimate the stationary probabilities π
from the empirical frequencies in the observed sequences S1, . . . , Sη. Also we
estimate γ = λ/µ from the average length of the observed sequences

π̂(a) =

η
∑

j=1

Lj
∑

i=1

1(Sj [i] = a)/

η
∑

j=1

Lj,

(19)

γ̂ =
L̄

1 + L̄
, L̄ =

1

η

η
∑

i=1

Li.
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When π and γ have been fixed the full likelihood (17) can, apart form a data

dependent term, be written as

Lf (θ) =

η+ν−1
∏

j=1

{

b(#,#; j)N(#,#;j)b(#,−; j)N(#,−;j)

×b(−,#; j)N(−,#;j)b(−,−; j)N(−,−;j)s(#; j)N(#;j)s(−; j)N(−;j)

×
∏

w1,w2

f(w2|w1; j)
K(w1,w2;j)

}

, (20)

where θ = (µ, ψ, τj : j = 1, . . . , η + ν − 1), with ψ the parameters in the substi-

tution matrix. Here N(#,#; j) counts the number of times we have the term

b(#,#; j) in the transition probabilities (see (3)) in the alignment A(a(j), j). All

the other counts N(·) are defined similarly, and K(w1, w2; j) is the number of

substitutions of w1 by w2 along the branch j. To use the EM-algorithm we must

simulate the mean values of all the count statistics in the conditional distribu-

tion given the observed sequences and under the parameter value θ1, say. A new

value θ2 is then found by maximising (20) with the counts replaced by their mean

values.

We use an iterative procedure to maximize (20). We first find, with φ =

(µ, ψ),

τ̂j(φ), j = 1, . . . , η + ν − 1,

for a fixed value of φ, and next find a new value of φ by maximising

Lf (φ̃, τ̂(φ) : j = 1, . . . , η + ν − 1)

with respect to φ̃. The reason for this procedure is that finding τ̂j(φ) is a one

dimensional search problem, since Lf factorizes for a fixed value of φ.

We have tried the above method on a 3-star tree. For a 3-star tree we

can compare with the estimates obtained by maximising the likelihood function

directly. We have considered a situation with ψ fixed and thus we maximize with

respect to (µ, τ1, τ2, τ3). In Table 3 are the results from 30 steps of the simulated

EM-algorithm, where in each step we simulate the ancestral and its alignments

1,000 times. Included are also the averages l̄f of the full log likelihood function,

where lf = log(Lf ) with Lf given in (17), as well as the marginal log likelihood

lm based on the three observed sequences. The last column in Table 3 shows the

steady increase of the likelihood function during the EM-steps, and that we have

come close to the maximal value after 30 steps. The parameter estimates have

not yet come close to the maximum likelihood estimates, but this shows that the

likelihood function is very flat in a large region of the parameter space. This is
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not surprising since the expected number of substitutions and deletions are each
around 6 only.

Table 3. EM-algorithm for a 3-star tree.

µ τ1 τ2 τ3 l̄f lm
Start 0.100 0.80 0.80 0.80 19.41 -1.95

Iteration 5 0.085 1.15 0.87 1.21 -2.65 -0.43

Iteration 10 0.079 1.27 0.83 1.39 -6.58 -0.25
Iteration 15 0.078 1.32 0.76 1.48 -4.44 -0.17

Iteration 20 0.077 1.35 0.68 1.53 -1.82 -0.12

Iteration 25 0.077 1.38 0.63 1.57 -0.87 -0.09

Iteration 30 0.078 1.39 0.61 1.59 0.00 -0.08

MLE 0.106 1.55 0.28 1.62 0.00

For the tree in Figure 1 we also made 30 steps in the simulated EM-algorithm.
The results can be seen in Table 4.

Table 4. EM-algorithm for the tree in Figure 1.

µ τ1 τ2 τ3 τ4 τ5 l̄f
Start 0.100 0.80 0.80 0.80 0.80 0.80 -1.68

Iteration 5 0.101 0.94 0.79 0.71 0.72 0.75 4.83

Iteration 10 0.102 1.01 0.76 0.68 0.69 0.71 7.40

Iteration 15 0.107 1.09 0.72 0.70 0.67 0.67 3.58
Iteration 20 0.110 1.11 0.66 0.69 0.66 0.67 3.14

Iteration 25 0.113 1.14 0.64 0.70 0.66 0.67 1.34

Iteration 30 0.115 1.15 0.62 0.69 0.65 0.66 0.00

5. An Example

In this section we consider ten sequences of 5S RNA. These ten 5S RNA
are chosen very widely from the domain of life and their most recent common
ancestor probably existed more than 3 billion years ago. The total branch length
on the phylogeny relating these sequnces corresponds to observing evolution for
more than 10 billion years. Historically, 5S RNAs have been among the first
molecules to be used for phylogenies of the kingdoms of life since they are short
(about hundred nucleotides) and present in very diverse organisms. In the late
80s such sequences were at the limit that multiple optimisation alignments could
handle. Today the phylogenetic relationship of plants, animals, etc., are done
by comparing a large set of molecules that has representatives in the relevant
organisms. The evolutionary tree relating the ten sequences are shown in Figure
4. Due to the shortness of the ten molecules, some aspects of the tree are not
well determined. Thus, the edge between nodes 12 and 13 is so short that it is
not statistically different from zero.



GIBBS SAMPLER FOR MULTIPLE ALIGNMENT 903

P
S
fra

g
re

p
la

c
e
m

e
n
ts0

1

2 3

4

5

6

7

8

9

10
11

12

13

14

15

16

17 18

fungi

animals

plants

bacteria

chloroplasts

5
0

1
0
0

1
5
0

2
0
0

-0
.1

0
0
.0

0
-3

.0
-1

.5
0
.0

lag
sh

o
rt

lo
n
g

4
sequ

en
ces

correlation
log(correlation

)
H

&
B

,
3-star

Figure 4. The evolutionary tree for ten 5 S RNA sequences. The lengths

of the edges are proportional to the estimated time parameters τi. The ten

sequences are 1: Auricularia auricula-judae, 2: Auricularia edulis, 3: C.

elegans, 4: Gallus gallus, 5: Equisitum arvense, 6: Cycad revoluta, 7: Bacil-

lus brevis, 8: Bacillus firmus, 9: Jungermannia subulata,and 10: Dryopteris

acuminata.

We ran the simulated EM-algorithm as described above with γ and π esti-

mated directly from the observed sequences and with the transversion/transition

rate fixed at ψ = 0.4 (based on the results in Hein (1990)). We made ten steps in

the EM-algorithm where in each step the mean values were based on 100 updat-

ings of the complete tree. In Table 5 are the maximum of the log likelihood of the

alignment from the 100 updatings as well as the average of the 100 updatings.

As can be seen after ten iterations these values are stabilized. The estimated

time parameters τi have been used as the lengths of the edges in Figure 4.

Table 5. EM-algorithm for the tree in Figure 4. In each step of the

algorithm 100 updatings of the complete tree are used. The table gives

the maximum and the average of the 100 values of the log likelihood

of the alignments, with the value 1,386 added.

run 1 2 3 4 5 6 7 8 9 10

max 57.6 125.0 137.0 164.3 150.4 149.3 161.7 152.0 150.1 151.0

average 0.4 69.5 97.8 114.6 116.1 116.8 120.1 118.5 114.4 119.3

To illustrate how our method can be used we consider the alignment of the

ten sequences using the CLUSTAL W program (www.ebi.ac.uk/clustalw, default

settings being used). The alignment obtained by this method has 19 columns

that are conserved (the columns marked by an asterisk in Table 6). We want to

evaluate the reliability of the statement that a column is conserved. We can run

our algortihms to obtain samples from the posterior distribution of alignments

given the ten observed sequences and thereby estimate the probability of a par-

ticular column being conserved. Using the estimated parameter values from the

EM-algorithm we made 1,000 updates and calculated the fraction for which a

particular column was conserved. Many of the columns marked by an asterisk

are highly conserved (10 of these columns had a posterior probability greater

than 95%). Except for a few cases the probability of the column being conserved
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is bigger than 80%. In one case, though, the probability is quite low: column 16
out of the 19 columns marked by an asterisk has a posterior probability of being
conserved of around 16%. This kind of information cannot be obtained from a
alignment programme as CLUSTAL W and requires a probabilistic modelling of

the evolution and ways of calculating complicated posterior distributions.

Table 6. Alignment of ten 5 S RNA sequences. Columns marked by an
asterisk are conserved.

1: A----TCCACGGCCATAGGACTCTGAAAGCACTGCATCCCGT-CCGATCTGCAAAGTTAACCAGAG

2: A----TCCACGGCCATAGGACTGTGAAAGCACCGCATCCCGT-CTGATCTGCGCAGTTAAACACAG

3: G----CTTACGACCATATCACGTTGAATGCACGCCATCCCGT-CCGATCTGGCAAGTTAAGCAACG

4: G----CCTACGGCCATCCCACCCTGGTAACGCCCGATCTCGT-CTGATCTCGGAAGCTAAGCAGGG

5: GT---GGTGCGGTCATACCAGCGCTAATGCACCGGATCCCAT-CAGAACTCCGCAGTTAAGCGCGC

6: G----GGTGCGATCATACCAGCGTTAATGCACCGGATCCCAT-CAGAACTCCGCAGTTAAGCGCGC

7: T----CTGGTGATGATGGCGGAGGGGACACACCCGTTCCCATACCGAACACGGCCGTTAAGCCCTC

8: T----CTGGTGGCGATAGCGAGAAGGTCACACCCGTTCCCATACCGAACACGGAAGTTAAGCTTCT

9: T---TCTGGTGTCTCAGGCGTGGAGGAACCACACCAATCCATCCCGAACTTGGTGGTGAAACTCTA

10: T-ATTCTGGTGTCCCAGGCGTAGAGGAACCACACCGATCCATCTCGAACTTGGTGGTGAAACTCTG

11: A----TCCACGGCCATAGGACTCTGAAAGCACCGCATCCCGT-CCGATCTGCGAAGTTAAACACAG

12: G----CCTACGACCATACCACCCTGAAAGCACCCCATCCCGT-CCGATCTCGGAAGTTAAGCAGGG

13: G----CCTACGACCATACCACCCTGAAAGCACCCCATCCCGT-CCGATCTCGGAAGTTAAGCAGGG

14: G----GGTGCGATCATACCAGCGTTAATGCACCGGATCCCAT-CAGAACTCCGCAGTTAAGCGCGC

15: G----CGTGCGACCATACCAGCGTGAAAGCACCCGATCCCAT-CCGAACTCGGAAGTTAAGCGCGC

16: T----CTGGTGACGATGGCGGGGAGGTCACACCCGTTCCCATACCGAACACGGAAGTTAAGCTCGT

17: T----CTGGTGACGATGGCGGGGAGGTCACACCCGATCCCATACCGAACTCGGAAGTTAAACTCGT

18: T---TCTGGTGTCTCAGGCGTGGAGGAACCACACCAATCCATCCCGAACTTGGTGGTGAAACTCTA

* * * * * ** * * ** *

1: TACCGCC-CAGTTAG-TACCACGGTGGGGGACCACGCGGGAA-TCCTGGGTGCTG-T-GGT-T---

2: TGCCGCC-TAGTTAG-TACCATGGTGGGGGACCACATGGGAA-TCCTGGGTGCTG-T-GGT-T---

3: TTGAGTC-CAGTTAG-TACTTGGATCGGAGACGGCCTGGGAA-TCCTGGATGTTG-TAAGC-T---

4: TCGGGCC-TGGTTAG-TACTTGGATGGGAGACCTCCTGGGAA-TACCGGGTGCTG-TAGGCTT---

5: TTGGGCCAGAA-CAG-TACTGGGATGGGTGACCTCCCGGGAAGTCCTG-GTGCCG-CACCC-C---

6: TTGGGTTGGAG-TAG-TACTAGGATGGGTGACCTCCTGGGAAGTCCTA-ATATTG-CACCC-TT--

7: CAGCGCC-AA--TGG-TACTTGCTCCGCAGGGA-GCCGGGAG-AGTAGGACGTCGCCAGGC-----

8: CAGCGCC-GA--TGG-TAGTT-AGGGGCTGTCC-CCTGTGAG-AGTAGGACGCTGCCAGGC-----

9: TTGCGGT-GA--CGA-TACTGTAGGGGAAGCCC-GATGGAAA-AATAGCTCGACGCCAGGA---T-

10: CCGCGGT-AA--CCAATACTCGGGGGG-GGCCC-TGCGGAAA-AATAGCTCGATGCCAGGA---TA

11: TACCGCC-TAGTTAG-TACCATGGTGGGGGACCACATGGGAA-TCCTGGGTGCTG-T-GGT-T---

12: TTGCGCC-GAGTTAG-TACTTGGATGGGAGACCACATGGGAA-TCCTGGGTGCTG-TAGGC-T---

13: TTGCGCC-GAGTTAG-TACTTGGATGGGAGACCACATGGGAA-TCCTGGGTGCTG-TAGGC-T---

14: TTGGGCCAGAG-TAG-TACTGGGATGGGTGACCTCCTGGGAAGTCCTG-GTGCTG-CACCC-T---

15: TTGCGCC-GAG-TAG-TACTTGGATGGGAGACCACCTGGGAA-TCCTGGGTGCTG-CAGGC-T---

16: CAGCGCC-GA--TGG-TACTTGAGCGGCAGGCC-CCTGGGAG-AGTAGGACGCTGCCAGGC-----

17: CAGCGCC-GA--TGG-TACTTGAGTGGCAGGCC-CCTGGGAA-AATAGGGCGCTGCCAGGC-----

18: CTGCGGT-GA--CGA-TACTGTAGGGGAAGCCC-TATGGAAA-AATAGCTCGATGCCAGGA---T-

* ** * * * *
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The maximal value of the likelihood of the alignment obtained during the
1,000 simulated alignments was −1, 219.6 (= 166.4 − 1, 386, compare Table 5).
The corresponding alignment is given in Table 6. The columns marked by an
asterisk are the conserved columns and include the one mentioned above having
a low probability of being conserved.

6. Discussion

We have shown that it is feasible to simulate multiple alignments within the
TKF-model using a Gibbs sampler where in each step a 3-star tree is updated.
The Gibbs sampler seems to be mixing very rapidly. Contrary to this the algo-
rithm suggested in Holmes and Bruno (2001) seems to have long mixing times.
For the runs reported here the algorithm of Holmes and Bruno (2001) is less
efficient than the algorithm suggested in this paper. Via the EM-algorithm we
can obtain maximum likelihood estimates of the parameters of the model.

The Gibbs sampler suggested in this paper is not restricted to the exact
form of the TKF-model. A more general hidden Markov model simply implies
a different state space and different transition probabilities for the 3-star tree in
Section 2. In particular one may wish to include the possibility of going to the
immortal state instead of the end state. This will introduce an extra parameter
in the model so that γ = λ/µ is no longer determined by the lengths of the
sequences.

The algorithm produces samples from the conditional distribution of align-
ments and ancestral sequences given the observed sequences. One can therefore
estimate the probabilities of different evolutionary events. The algorithm does
not point to one particular alignment although, in a long run of the algorithm,
one can of course choose the alignment with the highest value of the full likelihood
function.

Appendix A. Holmes and Bruno algorithm

In Holmes and Bruno (2001) two different updating steps are used. The first
one is the ordinary simulation of an alignment of two sequences S1 and S2. This
means that a set of states x1, . . . , xN of the form M , D, or I is simulated. Here
the kth state xk is simulated from the distribution

P
(

xk
∣

∣

∣
S, x1, . . . , xk−1

)

= p̃(xk−1, xk)p̃e

(

S[Lk−1 + 1 : Lk]
∣

∣

∣
xk

) F̃ (Lk|xk)

F̃ (Lk−1|xk−1)
,

(21)
where p̃(·, ·) is the transition probability from (3), p̃e is the emission probability

p̃e

((

w1

w2

)

|x

)

=







π(w1)f(w2|w1; τ) x = M,

π(w1) x = D,

π(w2) x = I,
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and F̃ satisfies for K 6= L the recursion

F (K|x) =
∑

z,K+l(z)≤L

F̃ (K + l(z)|z)p̃(x, z)

×p̃e (S2[K2 + 1 : K2 + l2(z)] |S1[K1 + 1 : K1 + l1(z)], z) ,

where z is one of the states M , D, or I. The recursion is started by F̃ (L|x) =

p̃(x, E).

The second updating step in Holmes and Bruno (2001) can be explained

as follows. We consider a 3-star tree where we have an alignment along each

of the three branches. These three alignments are translated into an alignment

x̄1, . . . , x̄N̄ with states x̄i of the form M(J) or I(J). We first remove all those

x̄i that equal D0 from (13). This gives us the reduced set of states x1, . . . , xN .

Then we insert new states equal to D0 in between xi−1 and xi, the length mi of

the inserted states has distribution

P (mi = k) =



















p(xi−1, D0)p(D0, x
i)

p(xi−1, xi) + p(xi−1, D0)p(D0, xi)
k = 0,

p(xi−1, xi)(1 − p(D0, D0))

p(xi−1, xi) + p(xi−1, D0)p(D0, xi)
p(D0, D0)

k−1 k > 0.

Finally we update, for i = 1, . . . , N , the ancestral letter at the interior node

corresponding to the state xi. This means that if xi
0 = −, there is no letter to

update and if xi
0 = #, we choose a letter w0 according to the distribution

p(w0) ∝ π(w0)
∏

{j≥1:xi
j
=#}

f(Sj[L
i−1
j + 1]|w0; τj).

Appendix B. Details of simulation experiments

In the simulations we model sequences of nucleotides so that the possible

letters are A,G,C, T . The substitution process is described by the rate matrix

q(w1, w2) =
π(w2)ψ

1tv(w1,w2)

c
,

where 1tv is one if substituting w2 for w1 is a transversion and 1tv is zero oth-

erwise. The scaling constant c was taken to be π(G) + ψ(π(C) + π(T )), so that

there is a unit rate for a change of the letter A.

We considered the tree in Figure 1 with four observed sequences. We gener-

ated observed sequences from the TKF-model using the parameter settings µ =

0.1, λ = 0.099, ψ = 0.2, π = (0.2, 0.3, 0.2, 0.3) and τ1 = τ2 = τ3 = τ4 = τ5 = 0.8.

These values were chosen so as to be realistic in many situations. The stationary
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probabilities deviates to a moderate degree from the uniform distribution. The
death rate µ and the times τi are such that roughly 8% of the nucleotides will be
deleted. This is slightly bigger than the value found in Hein et al. (2000) when
studying α globin and β globin. The transition/transversion bias varies and is
especially pronounced in mitochondria. In mammalian nuclear genes a bias of 4
in favour of transitions is not unrealistic (Li (1997)).

For the investigation of the mixing properties we generated observed se-
quences of lengths (75, 74, 79, 79) and (156, 147, 145, 146), respectively. When
simulating the ancestral sequences and their alignments we took γ and π as
given in (19), used the true values of µ, ψ, and took the branch lengths to be
τ = 0.8. As the initial value for the ancestral sequences we simply took T5 = S1

and T6 = S4. When simulating from the tree in Figure 2, similar choices were
made.
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