
Statistica Sinica 14(2004), 1057-1067

SOME ALGORITHMIC ASPECTS OF THE EMPIRICAL

LIKELIHOOD METHOD IN SURVEY SAMPLING

Changbao Wu

University of Waterloo

Abstract: Recent development of the empirical likelihood method in survey sam-

pling has attracted attention from survey statisticians. Practical considerations

for using the method in real surveys depend largely on the availability of sim-

ple and efficient algorithms for computing the related weights for the maximum

empirical likelihood estimators. In this article we briefly describe the modified

Newton-Raphson procedure of Chen, Sitter and Wu (2002) for non-stratified sam-

pling designs and show that under suitable reformulation the algorithm can also be

used to handle stratified sampling, the most commonly used design in survey prac-

tice. The idea of the q-weighted empirical likelihood approach is briefly introduced

and the related algorithms are discussed. The proposed algorithms are tested in a

limited simulation study and are shown to perform well.
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1. Introduction

Since Owen’s pioneering work (1988, 1990), the empirical likelihood (EL)
method has emerged in the past decade as a powerful inference tool with promis-
ing applications in many areas of statistics. Historically, however, the first appli-
cation of the concept behind empirical likelihood was suggested by Hartley and
Rao (1968) in survey sampling. Under simple random sampling, they developed
the so-called scale-load estimator based on the multinomial likelihood function
and showed that known auxiliary information can be incorporated through con-
strained maximum likelihood estimation. The first formal application of the
EL method in survey sampling, following the work of Owen, was presented by
Chen and Qin (1993) where the log-likelihood function under independent ob-
servations, i.e., l1.1(p) =

∑
i∈s log(pi), was used for simple random sampling

with or without replacement. Here p represents {pi, i ∈ s}. Zhong and Rao
(1996) considered stratified random sampling and used the log-likelihood func-
tion l1.2(p) =

∑
h

∑
i∈sh

log(phi), where sh is the set of sampled units from stra-
tum h, and

∑
i∈sh

phi = 1, h = 1, . . . ,H. In this case p denotes {phi, i ∈ sh,
h = 1, . . . ,H}. Since the stratum samples sh are independent, this is a true
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empirical log-likelihood function if the sh are drawn by simple random sampling
with replacement.

Generalization of the EL method under unequal probability sampling designs
was proposed by Chen and Sitter (1999) using a pseudo empirical likelihood
approach. For non-stratified sampling design, they recommended use of the so-
called pseudo empirical (log) likelihood function l2.1(p) =

∑
i∈s di log(pi), where

di = 1/πi are the basic design weights, and πi = P (i ∈ s) are the inclusion
probabilities. They justified the use of l2.1(p) as a likelihood function by noting
that under the probability sampling design E{l2.1(p)} =

∑N
i=1 log(pi), the log-

likelihood function one would use at the population level if one views the entire
finite population as an independent sample from a superpopulation. The pseudo
empirical likelihood function l2.1(p) can be viewed as a design-based estimate for
that total likelihood function. Also note that, under simple random sampling
where di = N/n, l2.1(p) differs from l1.1(p) only by a multiplying constant.

The pseudo empirical likelihood function l2.1(p) can also be motivated
through the well-known Kullback-Leibler divergence widely used in informa-
tion theory. Let d∗i = di/

∑
i∈s di. The KL divergence measure between d∗ =

{d∗i , i ∈ s} and p = {pi, i ∈ s} is defined as DKL(d∗,p) =
∑

i∈s d∗i log(d∗i ) −∑
i∈s d∗i log(pi). Maximizing l2.1(p) is equivalent to minimizing DKL(d∗,p) with

respect to p, a criterion often used for model selection.
Under stratified sampling with arbitrary sampling design within each stra-

tum, the pseudo empirical likelihood function is defined as l2.2(p) =
∑

h

∑
i∈sh

dhi

log(phi), where dhi = 1/πhi, and the πhi are the stratum inclusion probabilities.
Note that l2.2(p) is a design-based estimate for the total likelihood

∑H
h=1

∑Nh
i=1

log(phi), where Nh are the stratum sizes. It is interesting to observe that under
stratified random sampling where dhi = Nh/nh, l2.2(p) does not reduce to l1.2(p)
unless the stratum sample sizes nh are allocated proportional to the stratum sizes
Nh.

The empirical likelihood method in survey sampling is primarily focused on
the use of auxiliary information to construct point estimators for various finite
population quantities. Estimation of general parameters defined through esti-
mating equations can be handled as well. Empirical likelihood ratio confidence
intervals are usually difficult to use under complex sampling designs due to the
lack of limiting distributions. See Zhong and Rao (2000) for an example un-
der stratified random sampling. In all cases the method involves constrained
maximization of the empirical likelihood function.

One of the major objectives of this article is to present simple and efficient
algorithms for computing the weights for the maximum pseudo empirical likeli-
hood estimators under a general probability sampling design. Section 2 provides
a short review of the modified Newton-Raphson algorithm of Chen, Sitter and Wu
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(2002) for non-stratified sampling. It is shown in Section 3 that this algorithm
can be adapted to handle stratified sampling through suitable reformulation of
the problem. The idea of the q-weighted empirical likelihood approach is briefly
introduced and the related algorithms are discussed in Section 4. The proposed
algorithms are tested in Section 5 through a limited simulation study. We con-
clude with some remarks in Section 6.

2. The Modified Newton-Raphson Algorithm for Non-Stratified Sam
pling

Let s be the set of sampled units under a non-stratified sampling design
with first order inclusion probabilities πi, and di = 1/πi be the basic design
weights. Let X̄ = N−1∑N

i=1 xi be the known vector-valued population means
of auxiliary variables x. The maximum pseudo empirical likelihood estimator
for the population mean Ȳ = N−1∑N

i=1 yi of the study variable y is defined
as ˆ̄Y PEL =

∑
i∈s p̂iyi, where the weights p̂i maximize the pseudo empirical log-

likelihood function l2.1(p) =
∑

i∈s di log(pi) subject to

∑
i∈s

pi = 1 (pi > 0) and
∑
i∈s

pixi = X̄ . (2.1)

The second part of constraint (2.1),
∑

i∈s pixi = X̄ , is often referred to as a
benchmark constraint. By using the usual Lagrange multiplier method it can be
shown that the solution to the above constrained maximization problem is given
by p̂i = d∗i /(1 + λ′ui), where d∗i = di/

∑
i∈s di, ui = xi − X̄, and the Lagrange

multiplier λ is the solution to

g(λ) =
∑
i∈s

d∗i ui

1 + λ′ui
= 0 . (2.2)

It can be shown that, with probability tending to one as the sample size goes to
infinity, there exists a unique solution to (2.2). For a given sample s, the set of
feasible values of λ such that p̂i > 0 is given by A = {λ : 1 + λ′ui > 0, i ∈ s}
which is a convex set. Another key observation leading to the proposed algorithm
is that maximizing l2.1(p) subject to (2.1) is a dual problem of maximizing the
concave function l̃(λ) =

∑
i∈s d∗i log(1 + λ′ui) with respect to λ over the convex

set A, since ∂l̃(λ)/∂λ = g(λ). If the unique solution to (2.2) exists, it can be
found through the following modified Newton-Raphson algorithm of Chen, Sitter
and Wu (2002).
Step 0: Let λ0 = 0. Set k = 0, γ0 = 1 and ε = 10−8.
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Step 1: Calculate ∆(λk) where

∆(λ) =
{

∂

∂λ
g(λ)

}−1

g(λ) =

{
−
∑
i∈s

d∗i uiu
′
i

(1 + λ′ui)2

}−1∑
i∈s

d∗i ui

1 + λ′ui
.

If ‖∆(λk)‖ < ε, stop the algorithm and report λk; otherwise go to
Step 2.

Step 2: Calculate δk = γk∆(λk). If 1 + (λk − δk)′ui ≤ 0 for some i or l̃(λk −
δk) < l̃(λk), let γk = γk/2 and repeat Step 2.

Step 3: Set λk+1 = λk − δk, k = k + 1 and γk+1 = (k + 1)−1/2. Go to Step 1.

The modification step 2 ensures that at each iteration the value of λ is still
inside the feasible range A and that the concave function l̃(λ) is moving towards
its maximum point. The algorithm is simple and efficient, and convergence is
guaranteed. It can easily be programmed using any popular statistical software
such as SAS or R/Splus.

3. Algorithms for Stratified Sampling

Let yhi and xhi be the values of the y and the x variables for the ith unit in
stratum h, respectively, with h = 1, . . . ,H and i = 1, . . . , Nh. Let Wh = Nh/N

be the stratum weights where N =
∑

H

h=1 Nh is the population size. Let dhi be
the basic design weights for stratum h. The maximum pseudo EL estimator of
Ȳ = N−1∑

h

∑Nh
i=1 yhi is defined as ˆ̄Y PEL =

∑
H

h=1 Wh
∑

i∈sh
p̂hiyhi, where the

weights p̂hi maximize l2.2(p) =
∑

H

h=1

∑
i∈sh

dhi log(phi) subject to constraints
∑
i∈sh

phi = 1 (phi > 0) , h = 1, · · · ,H , (3.1)

H∑
h=1

Wh

∑
i∈sh

phixhi = X̄ . (3.2)

The sub-normalization of weights within each stratum (i.e., constraints (3.1))
is practically important since the strata means Ȳh = N−1

h

∑Nh
i=1 yhi are often

themselves of interest and can be estimated by ˆ̄Y h =
∑

i∈sh
p̂hiyhi. This can

also be justified by noting that the sh are independent samples from each of the
strata. The benchmark constraints (3.2) are used due to two possible reasons:
the surveyor is only interested in benchmarking at the population level and/or
the stratum means X̄h = N−1

h

∑Nh
i=1 xhi are not available. If X̄h are known and

the benchmark constraints are imposed at the stratum level, the problem then
reduces to separate maximum EL estimation within each of the strata.

Maximizing l2.2(p) subject to (3.1) and (3.2) is not a trivial task. The
algorithm of Chen, Sitter and Wu (2002) is not directly applicable under stratified
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sampling. While the objective function l2.2(p) and the benchmarking constraints
(3.2) are both at the population level (double summations), the normalization
constraints (3.1) are imposed at the stratum level (single summation). Two
possible strategies can be used: (i) set an arbitrary benchmark constraint for
each stratum and find the intermediate solution under that constraint, and then
seek for the final solution through profile likelihood method, see Section 3.1; (ii)
try to reformulate the constraints to put everything on the population level so
that the algorithm of Section 2 can directly be applied, see Section 3.2.

3.1. An existing algorithm for stratified sampling

Chen and Sitter (1999) presented an algorithm for computing the p̂hi through
the profile likelihood method. This algorithm was also introduced by Zhong and
Rao (2000). To start, let θh, h = 1, . . . ,H be a group of vectors such that∑

H

h=1 Whθh = X̄. We first maximize l2.2(p) subject to restrictions
∑

i∈sh
phi = 1

and
∑

i∈sh
phixhi = θh for fixed θh, h = 1, . . . ,H. This amounts to finding

maximum EL estimators for each of the strata. The algorithm of Section 2 can
now be used. The solution is given by phi = dhi/{dh + λ′

h(xhi − θh)}, with
dh =

∑
i∈sh

dhi, and λh satisfying

∑
i∈sh

dhi(xhi − θh)
dh + λ′

h(xhi − θh)
= 0 , h = 1, . . . ,H . (3.3)

By omitting a constant, the resulting likelihood function for the given set of θh

is given by

l(θ1, . . . ,θH) = −
H∑

h=1

∑
i∈sh

dhi log[dh + λ′
h(xhi − θh)] .

We further maximize l(θ1, . . . ,θH) with respect to θh under the restriction∑
H

h=1 Whθh = X̄. It can be shown that the final choice of θh satisfies

∑
i∈sh

dhi(xhi − θh)
dh + Wht′(xhi − θh)

= 0 , h = 1, . . . ,H (3.4)

for some vector-valued t. Theoretically one can search for the final solution
through profile analysis: for each possible value of t, solve (3.4) to get θh, and
determine the set of θh that maximize l(θ1, . . . ,θH), then use the final θh to
compute p̂hi.

This algorithm is most efficient when the x variable is univariate, since in
this case one can search for the final solution by increasing or decreasing the value
of t, which is also one dimensional, to find the maximum point of l(θ1, . . . ,θH).
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When the x variables are high dimensional, however, computing p̂hi through the
profile likelihood method involves repeatedly solving the high dimensional non-
linear systems (3.3) and (3.4), and is not practically achievable. An alternative
approach is required.

3.2. The adapted algorithm

The real computational difference between stratified sampling and non-stra-
tified sampling comes from the first set of restrictions, i.e.,

∑
i∈s pi = 1 versus

(3.1). Note that we can rewrite (3.1) in an equivalent form as

H∑
h=1

Wh

∑
i∈sh

phi = 1 , (3.5)

∑
i∈sh

phi = 1 , h = 1, . . . ,H − 1 . (3.6)

If we keep (3.5) separate and combine (3.6) together with (3.2), then the struc-
tural difference in terms of constraints between the two classes of sampling de-
signs disappears (it is just a matter of single or double summation!). This can be
achieved by augmenting the x variable to include the first H − 1 strata indicator
variables. More specifically, suppose xhi = (xhi1, . . . , xhik)′ is of dimension k, let

z1i = (1, 0, . . . , 0, x1i1, . . . , x1ik)′ ,
z2i = (0, 1, . . . , 0, x2i1, . . . , x2ik)′ ,

...

z(H−1)i = (0, 0, . . . , 1, x(H−1)i1, . . . , x(H−1)ik)
′ ,

zHi = (0, 0, . . . , 0, xHi1, . . . , xHik)′

and Z̄ = (W1, . . . ,WH−1, X̄1, . . . , X̄k)′, where (X̄1, . . . , X̄k)′ = X̄. The two sets
of constraints (3.6) and (3.2) can be combined into a single set of constraints

H∑
h=1

Wh

∑
i∈sh

phizhi = Z̄ . (3.7)

Maximizing l2.2(p) under the restrictions (3.1) and (3.2) is equivalent to max-
imizing l2.2(p) subject to (3.5) and (3.7). By using the Lagrange multiplier
method we can show that the solution is p̂hi = d∗hi/(1 + λ′uhi), where d∗hi =
dhi/{Wh

∑
H

h=1

∑
i∈sh

dhi}, uhi = zhi − Z̄, and the Lagrange multiplier λ is the
solution to

H∑
h=1

∑
i∈sh

dhiuhi

1 + λ′uhi
= 0 . (3.8)
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It is immediately evident that (3.8) is computationally identical to (2.2).
The algorithm of Chen, Sitter and Wu (2002) described in Section 2 can directly
be used for solving (3.8) and is guaranteed to converge to the unique solution if
such a solution exists. The key to the above reformulation is to use only H − 1
indicator variables and keep (3.5) separate, otherwise the problem will not reduce
to the non-stratified case.

Practical issues may arise when the total number of strata, H, is too large,
since the augmented variable z contains H − 1 indicator variables. The effect of
large H depends on the capacity of the software and hardware systems used in
handling high dimensional matrix manipulations. The indicator variables alone
will not create ill-conditioned matrices during the updating process of the algo-
rithm. See the comments at the end of Sections 4 and 5 for more discussion on
this issue. When H is very large but x is of low dimension, one may choose to
use the algorithm of Chen and Sitter (1999). The adapted algorithm, however,
is generally applicable. It is simple and yet efficient, and requires solving a non-
linear system only once using the well-developed algorithm of Chen, Sitter and
Wu (2002). The proposed reformulation brings a unified approach to computing
maximum empirical likelihood estimators under both stratified and non-stratified
sampling designs.

4. Algorithms for the Q-weighted Empirical Likelihood Method

It has been shown by Chen and Sitter (1999) that the maximum pseudo em-
pirical likelihood estimator ˆ̄Y PEL is asymptotically equivalent to the calibration
estimator ˆ̄Y C = N−1∑

i∈s wiyi, where the calibrated weights wi minimize the
chi-squared distance measure Φs =

∑
i∈s(di − wi)2/di between the wi and the

basic design weights di subject to
∑

i∈s wixi = X , with X =
∑N

i=1 xi being the
known population totals.

Deville and Särndal (1992) presented a general class of calibration estimators
and demonstrated that calibration estimators obtained by using different dis-
tance measures are asymptotically equivalent to those from using a chi-squared
distance measure Φ∗

s =
∑

i∈s(di −wi)2/(diqi) with certain choice of the q-weights
in defining Φ∗

s. Obviously the EL estimator corresponds to qi ≡ 1. An interesting
question arises from this context: can a calibration estimator with an arbitrary
distance measure (or arbitrary q-weights) be achieved through the empirical like-
lihood approach? The q-weighted empirical likelihood estimator defined in the
sequel does exactly that. Some theoretical properties of this approach have been
investigated by Wu (2003). We focus here on the computational aspect of the
method.

Let d∗i = di/
∑

i∈s di be normalized design weights for the given sample under
a non-stratified sampling scheme. The q-weighted empirical likelihood function
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is defined as l∗2.1(p) =
∑

i∈s q−1
i {d∗i log(pi) − pi}. The weighted maximum em-

pirical likelihood estimator of Ȳ is computed as ˆ̄Y WEL =
∑

i∈s p̂iyi, where the
p̂i maximize l∗2.1(p) subject to the same set of constraints (2.1). This weighted
EL approach reduces to the usual EL method under the uniform weights qi = 1,
since in this case l∗2.1(p) = l2.1(p) − 1 under the constraint

∑
i∈s pi = 1.

There are two algorithmic aspects involved here which are different from
those of Section 2. First, the Lagrange multiplier corresponding to

∑
i∈s pi = 1

cannot be eliminated under the current context. We need to combine
∑

i∈s pi = 1
and

∑
i∈s pixi = X̄. This can be done by augmenting the x variables to include

1 as the first component. Secondly, the centered variables ui = xi − X cannot
be used in the combined constraints, and the convex duality discussed in Section
2 is no longer the case, as shown below.

Let x∗
i = (1,x′

i)
′ and X̄

∗ = (1, X̄ ′)′. The set of constraints (2.1) is equivalent
to
∑

i∈s pix
∗
i = X̄

∗. Using a straightforward Lagrange multiplier argument it can
be shown that p̂i = d∗i /(1 + λ′x∗

i qi) for i ∈ s, where the Lagrange multiplier λ is
the solution to

g∗(λ) =
∑
i∈s

d∗i x∗
i

1 + λ′x∗
i qi

− X̄
∗ = 0 . (4.1)

It is the term −X̄
∗ in g∗(λ) that destroys the convex duality discussed in the

modified Newton-Raphson algorithm. The algorithm, however, can still be used
to solve (4.1) under minor modifications. At Step 1, one needs to compute

∆(λ)=
{

∂

∂λ
g∗(λ)

}−1

g∗(λ)=

{
−
∑
i∈s

qid
∗
i x

∗
i (x

∗
i )

′

(1+λ′x∗
i qi)2

}−1(∑
i∈s

d∗i x
∗
i

1+λ′x∗
i qi

−X̄
∗
)

.

At Step 2, one only checks if 1 + (λk − δk)′x∗
i qi ≤ 0 for some i.

Under stratified sampling, the q-weighted empirical likelihood function is de-
fined as l∗2.2(p)=

∑
h Wh

∑
i∈sh

q−1
hi {d∗hi log(phi) − phi}, where d∗hi =dhi/

∑
i∈sh

dhi

and qhi are prespecified q-weights. The use of stratum weights Wh in defining
l∗2.2(p) is to bring certain consistency between l2.2(p) and l∗2.2(p): when qi = 1
and N̂h =

∑
i∈sh

dhi = Nh, the above defined l∗2.2(p) reduces to l2.2(p) if one
ignores a trivial constant term.

The adapted algorithm described in Section 3.2 can be modified to handle
the current situation. Note that the Lagrange multiplier corresponding to (3.5)
cannot be eliminated, we now need to augment the xhi variable to include all
H stratum indicator variables, denoted by zhi. Let Z̄ = (W1, . . . ,WH , X̄

′)′.
It follows that the two sets of constraints (3.1) and (3.2) are equivalent to∑

H

h=1 Wh
∑

i∈sh
phizhi = Z̄. The weighted maximum empirical likelihood estima-

tor is computed as ˆ̄Y WEL =
∑

H

h=1 Wh
∑

i∈sh
p̂hiyhi, where p̂hi = d∗hi/(1+λ′zhiqhi)
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and the Lagrange multiplier λ is the solution to

g∗(λ) =
H∑

h=1

∑
i∈sh

Whd∗hizhi

1 + λ′zhiqhi
− Z̄ = 0 . (4.2)

The solution to (4.2) can be found using an algorithm similar to the one for
solving (4.1).

It should be noted that algorithms presented in this section can be used
to compute the usual unweighted EL estimators by simply setting qi = 1. It
is easy to argue in this context that the total number of strata, H, has little
impact on the performance of the adapted algorithm for stratified sampling, as
long as the high dimensional matrices involved can be handled by the computing
facilities used. The key step of the algorithm involves the inversion of the matrix
M =

∑∑
Whqhid

∗
hizhiz

′
hi(1 + λ′zhiqhi)−2. The H × H submatrix in the upper-

left corner of M is diagonal and is bounded away from zero.

5. A Simulation

We test our proposed algorithms through a limited simulation study. Six
stratified finite populations are generated from the regression model yhi = αh +
βhxhi + γhxa

hiεhi, i = 1, . . . , Nh, h = 1, 2, 3, 4, where αh = 2h, βh = h and
γh = rh. The stratum sizes are chosen as Nh = 2000−400h for h = 1, 2, 3, 4. The
covariates xhi are generated from χ2(2h). Two different types of distributions are
used to generate the error terms εhi: the skewed standard log-normal distribution
LN(0, 1), and the symmetric standard normal distribution N(0, 1). The six finite
populations correspond to the parameter setting a = 0.0, 0.5 and 1.0 for each of
the two error distributions. The control parameter r used in γh = rh is chosen
such that the finite population correlation coefficient between y and x is 0.80.

For each fixed finite population, a stratified random sample under propor-
tional allocation is drawn where the stratum sample sizes are given by nh = 100−
20h for h = 1, 2, 3, 4. For each simulated sample, the unweighted estimator (PEL)
and the q-weighted estimators (WEL) are computed. The weighting schemes used
are qhi = x−2a

hi . Performance of these estimators is evaluated in terms of Relative
Bias (RB) and Relative Efficiency (RE) defined as RB = B−1∑B

b=1{ ˆ̄Y (b)−Ȳ }/Ȳ
and RE = MSE( ˆ̄Y 0)/MSE( ˆ̄Y ), where MSE( ˆ̄Y ) = B−1∑B

b=1{ ˆ̄Y (b)− Ȳ }2, ˆ̄Y (b)
is the estimator ˆ̄Y under study computed from the bth simulated sample, and
ˆ̄Y 0 =

∑
h Whȳh is the stratified mean estimator used for baseline comparison.

The process is independently repeated B = 1, 000 times.
Table 1 presents the simulated relative efficiencies (RE) for estimators under

investigation. The absolute values of relative biases (RB) for all cases are less
than 0.2% and are not reported here. Under non-stratified sampling it has been
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observed by Wu (2003) that the two estimators PEL and WEL have similar
performance under large samples, but the weighted estimator WEL performs
much better when the sample size is small or moderate. Given that the overall
sample size is 200 here, our results seem to support a similar argument under
stratified sampling.

Table 1. Simulated Relative Efficiency (RE).

ε ∼ LN(0, 1) ε ∼ N(0, 1)
a PEL WEL PEL WEL

0.0 2.06 2.06 1.79 1.79
1.0 1.92 1.94 1.85 1.86
2.0 1.87 1.80 1.80 1.76

The simulation study was conducted using algorithms described in Sections
3 and 4 and programmed in R/Splus. The R codes are available from the author.
Non-convergence never occurred for the unweighted EL estimators. A few cases
of singular matrices occurred during the process of updating the gradient ∆(λk)
for the q-weighted EL estimator, and the related samples were dropped from the
simulation.

We also examined the proposed algorithms under another scenario where
only a few elements are sampled from each stratum but the total number of strata
is large. We generated stratified finite populations using a similar regression
model as before, but in this case each stratum consisted of ten clusters, with
each cluster having four elements. A stratified single stage cluster sampling
scheme was used to select two psu (clusters) per stratum. For a population with
H strata, the population size is 40H and the overall sample size is 8H. Using a
dual process Sun Unix workstation with 768 megabytes of memory, the adapted
algorithm programmed in R can handle H as large as 400. In most cases the
algorithm converges within six iterations regardless of the value of H.

6. Concluding Remarks

The most commonly used method for the analysis of large scale surveys by
many statistical agencies is the generalized regression estimator or, equivalently,
the calibration estimator under the chi-squared distance measure. It is an effec-
tive way of achieving the goal of benchmarking and yet is relatively simple in
terms of computation. The weights produced through the generalized regression
method, however, can take negative values. This drawback has long been rec-
ognized. Ad hoc adjustments to this problem have been proposed but none of
them is universally accepted. The empirical likelihood method is an attractive
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alternative approach. In addition to its clear maximum likelihood interpreta-
tion, it can also be viewed as a calibration approach with desirable features such
as high efficiency and intrinsic positive weights. The computational algorithms
presented in this article make the method easily implementable in practice and,
perhaps, more popular among survey statisticians.
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