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Abstract: A barrier option is a derivative contract that is activated or extinguished

when the price of the underlying asset crosses a certain level. Most models assume

continuous monitoring of the barrier. However in practice most, if not all, barrier

options traded in markets are discretely monitored. Unlike their continuous coun-

terparts, there is essentially no closed form solution available, and even numerical

pricing is difficult. This paper extends an approximation by Broadie, Glasserman

and Kou (1997) for discretely monitored barrier options by covering more cases and

giving a simpler proof. The techniques used here come from sequential analysis,

particularly Siegmund and Yuh (1982) and Siegmund (1985).
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1. Introduction

A barrier option is a financial derivative contract that is activated (knocked
in) or extinguished (knocked out) when the price of the underlying asset (which
could be a stock, an index, an exchange rate, an interest rate, etc.) crosses a
certain level (called a barrier). For example, an up-and-out call option gives the
option holder the payoff of a European call option if the price of the underly-
ing asset does not reach a higher barrier level before the expiration date. More
complicated barrier options may have two barriers (double barrier options), and
may have the final payoff determined by one asset and the barrier level deter-
mined by another asset (two-dimensional barrier options). Taken together, they
are among the most popular path-dependent options traded in exchanges world-
wide and also in over-the-counter markets. This paper focuses exclusively on
one-dimensional, single barrier options, which include eight possible types: up
(down)-and-in (out) call (put) options.

An important issue of pricing barrier options is whether the barrier crossing is
monitored in continuous time. Most models assume continuous monitoring of the
barrier. In other words, in the models a knock-in or knock-out occurs if the barrier
is reached at any instant before the expiration date, mainly because this leads to
analytical solutions; see, for example, Merton (1973), Heynen and Kat (1994a,
1994b) and Kunitomo and Ikeda (1992) for various formulae for continuously
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monitored barrier options under the classical Brownian motion framework; see
Kou and Wang (2001) for continuously monitored barrier options under a jump-
diffusion framework.

However in practice most, if not all, barrier options traded in markets are dis-
cretely monitored. In other words, they specify fixed times for monitoring of the
barrier (typically daily closings). Besides practical implementation issues, there
are some legal and financial reasons why discretely monitored barrier options are
preferred to continuously monitored barrier options. For example, some discus-
sions in trader’s literature (“Derivatives Week”, May 29th, 1995) voice concern
that, when the monitoring is continuous, extraneous barrier breach may occur in
less liquid markets while the major western markets are closed, and may lead to
certain arbitrage opportunities.

Although discretely monitored barrier options are popular and important,
pricing them is not as easy as that of their continuous counterparts for three
reasons. (1) There are essentially no closed solutions, except using m-dimensional
normal distribution functions (m is the number of monitoring points), which can
hardly be computed easily if, for example, m > 5; see Reiner (2000). (2) Direct
Monte Carlo simulation or standard binomial trees may be difficult, and can take
hours or even days to produce accurate results; see Broadie, Glasserman and
Kou (1999). (3) Although the Central Limit Theorem asserts that, as m → ∞,
the difference between the discretely and continuously monitored barrier options
should be small, it is well known in the trader’s literature that numerically the
difference can be surprisingly large, even for large m.

To deal with these difficulties, Broadie, Glasserman and Kou (1997) propose
a continuity correction for the discretely monitored barrier option, and justify
the correction both theoretically and numerically (Chuang (1996) independently
suggests the approximation in a heuristic way). The resulting approximation,
which only relies on a simple correction to the Merton (1973) formula (thus trivial
to implement), is nevertheless quite accurate and has been used in practice; see,
for example, the textbook by Hull (2000). The idea goes back to a classical
technique in “sequential analysis,” in which corrections to normal approximation
are used to adjust for the “overshoot” effects when a discrete random walk crosses
a barrier; see, for example, Chernoff (1965), Siegmund (1985a) and Woodroofe
(1982). Therefore, from a statistical point of view, it is an interesting application
of sequential analysis to a real life problem.

The goal of the current paper is twofold. (1) A new and shorter proof of
Broadie, Glasserman and Kou (1997) is given, which makes the link between the
sequential analysis and the barrier correction formula more transparent. (2) The
new proof covers all eight cases of the barrier options, while the proof in the
original paper covers only four of them. This is made possible by the results of
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Siegmund and Yuh (1982) and Siegmund (1985a, pp. 220-224), and a change of
measure argument via a simple discrete Girsanov theorem.

While this paper was under the review in 2001, an independent work by
Hörfelt (2003) was brought to the author’s attention, in which a similar method
is proposed. However, the two methods lead to slightly different barrier correction
formulae.

The mathematical formulation of the problem and the main result are stated
in the next section, while the proof is deferred to Section 3. Discussion is given
in the last section.

2. Main Result

We assume the price of the underlying asset S(t), t ≥ 0, satisfies

S(t) = S(0) exp {µt + σB(t)} ,

where under the risk-neutral probability P∗, the drift is µ = r − σ2/2, r is
the risk-free interest rate and B(t) is a standard Brownian motion under P∗.
In the continuously monitored case, standard finance theory implies that the
price of a barrier option will be the expectation, taken with respect to the risk-
neutral measure P∗, of the discounted (with the discount factor being e−rT , T
the expiration date of the option) payoff of the option. For example, the price of
a continuous up-and-out call option is given by

V (H) = E∗(e−rT (S(T ) − K)+I(τ(H,S) > T )),

where K ≥ 0 is the strike price, H > S(0) is the barrier and, for any process
Y (t), the notation τ(x, Y ) means that τ(x, Y ) := inf{t ≥ 0 : Y (t) ≥ x}; the price
of a continuous down-and-in put option is given by

V (H) = E∗(e−rT (K − S(T ))+I(τ̃(H,S) ≤ T )),

where H < S(0) is the barrier, and τ̃(x, Y ) = inf{t ≥ 0 : Y (t) ≤ x}. The other
six types of the barrier options can be priced similarly. In the Brownian motion
framework, all eight types of the barrier options can be priced in closed forms;
see Merton (1973).

In the discretely monitoring case, under the risk neutral measure P∗, at the
n-th monitoring point, n∆t, with ∆t = T/m, the asset price is given by

Sn = S(0) exp

{
µn∆t + σ

√
∆t

n∑
i=1

Zi

}
= S(0) exp(Wnσ

√
∆t), n = 1, . . . ,m,

where the random walk Wn is defined by

Wn :=
n∑

i=1

(
Zi +

µ

σ

√
∆t

)
,
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the drift is given by µ = r−σ2/2, and the Zi’s are independent standard normal
random variables. By analogy, the price of the discrete up-and-out-call option is
given by

Vm(H) = E∗(e−rT (Sm − K)+I(τ ′(H,S) > m))

= E∗{e−rT (Sm − K)+I{τ ′(a/(σ
√

T ), W ) > m}},

where a := log(H/S(0)) > 0, τ ′(H,S) = inf{n ≥ 1 : Sn ≥ H}, τ ′(x,W ) =
inf{n ≥ 1 : Wn ≥ x

√
m}. Note that in this case, we have a first passage problem

for the random walk Wn, with small drift ((µ/σ)
√

∆t → 0, as m → ∞), to cross
a high boundary (a

√
m/(σ

√
T ) → ∞, as m → ∞). The other seven types of

discrete barrier options can be represented similarly. Since there is essentially no
closed form solution for the discrete barrier options, the following result provides
an approximation for the prices.

Theorem 2.1. Let V (H) be the price of a continuous barrier option, and Vm(H)
be the price of an otherwise identical barrier option with m monitoring points.
Then for any of the eight discrete monitored regular barrier options, we have the
approximation

Vm(H) = V (He±βσ
√

T/m) + o(1/
√

m), (2.1)

with + for an up option and − for a down option, where the constant β =
−(ζ(1/2)/

√
2π) ≈ 0.5826, ζ the Riemann zeta function.

Remark. The above result was proposed in Broadie, Glasserman and Kou
(1997), where it is proved for four cases: down-and-in call, down-and-out call,
up-and-in put, and up-and-out put. We cover all eight cases with a simpler
proof. It may be worth commenting briefly why this is possible. To compute
the option price, one can approximate the expectation directly via an integration
of some asymptotic expansion of the probability, as Broadie, Glasserman and
Kou (1997) have done. However, the asymptotic expansion breaks down when
the integration is performed towards (rather than away from) the boundary, as
in the four cases not covered in that paper; see Siegmund (1985b) for another
discussion of this technical difficulty in the context of sequential analysis. Here
we avoid the problem by using a discrete Girsanov theorem to transform the
computation of the expectation to the computation of a probability under a new
measure; in fact, no integration is required after the transformation.

To give a feel for the accuracy of the approximation, Table 2.1 is taken from
Broadie, Glasserman and Kou (1997). The numerical results suggest that, even
for daily monitored discrete barrier options, there can still be big differences
between the discrete prices and the continuous prices. The improvement from
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using the approximation, which shifts the barrier from H to He±βσ
√

T/m in the
continuous time formulae, is significant.

Table 2.1. Up-and-Out Call Option Price Results, m = 50 (daily monitor-
ing). This table is taken from Table 2.6 in Broadie, Glasserman and Kou
(1997). The option parameters are S(0) = 110, K = 100, σ = 0.30 per year,
r = 0.1, and T = 0.2 year, which represents roughly 50 trading days.

Corrected Relative error
Continuous Barrier of eq. (2.1)

Barrier Barrier eq. (2.1) True (in percent)
155 12.775 12.905 12.894 0.1
150 12.240 12.448 12.431 0.1
145 11.395 11.707 11.684 0.2
140 10.144 10.581 10.551 0.3
135 8.433 8.994 8.959 0.4
130 6.314 6.959 6.922 0.5
125 4.012 4.649 4.616 0.7
120 1.938 2.442 2.418 1.0
115 0.545 0.819 0.807 1.5

3. Proof of Theorem 2.1

We first prove the case of the discrete up-and-out call option case (of course
with H ≥ K and H > S(0)). Note that this case is not covered by the theorem
in Broadie, Glasserman and Kou (1997). The following results are needed in the
proof.

Proposition 3.1. (Discrete Girsanov Theorem). For any probability measure
P, let P̂ be defined by

dP̂

dP
= exp

{
m∑

i=1

aiZi − 1
2

m∑
i=1

a2
i

}
,

where the ai, i = 1, . . . , n, are arbitrary constants, and the Zi’s are standard
normal random variables under the probability measure P. Then under the prob-
ability measure P̂, for every 1 ≤ i ≤ m, Ẑi := Zi − ai is a standard normal
random variable.

The proof of this follows easily by checking the likelihood ratio identity; see
Karatzas and Shreve (1991, p.190).

Proposition 3.2. (Rescaling Property). For Brownian motions with drifts αµ
and µ, and standard deviation 1,

P (Wαµ(1) ≥ x, τ(c,Wαµ) > 1) = P
(
Wµ(α2) ≥ xα, τ(αc,Wµ) > α2

)
,
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where the notation Wc(t) means a Brownian motion with drift c and standard
deviation 1.

Proof. This holds because the process W (t) = αµt + B(t) has the same joint
distribution as that of the process

αµt +
B(α2t)

α
=

α2µt + B(α2t)
α

.

For a standard Brownian motion B(t), define some stopping times for discrete
random walk and for continuous-time Brownian motion as

τ ′(b, U) := inf{n ≥ 1 : Un ≥ b
√

m}, τ̃ ′(b, U) := inf{n ≥ 1 : Un ≤ b
√

m},
τ(b, U) := inf{t ≥ 0 : U(T ) ≥ b}, τ̃(b, U) := inf{t ≥ 0 : U(T ) ≤ b}.

Here U(t) := vt + B(t) and Un is a random walk with a small drift (as m → ∞),

Un :=
n∑

i=1

(
Zi +

v√
m

)
,

where the Zi’s are independent standard normal random variables.

Theorem 3.1 (Siegmund-Yuh (1982), Siegmund (1985a, pp. 220-224)). For any
constants b ≥ y and b > 0, as m → ∞,

P
(
Um <y

√
m, τ ′(b, U)≤m

)
=P(U(1)≤y, τ(b+β/

√
m,U)≤1)+o(1/

√
m), (3.1)

where β = −(ζ(1/2)/
√

2π).

The constant β was calculated in Chernoff (1965).

Corollary 3.1. For any constants b ≥ y and b > 0,

P
(
Um≥y

√
m, τ ′(b, U)>m

)
=P(U(1)≥y, τ(b+β/

√
m,U)>1)+o(1/

√
m). (3.2)

Note that the range of Um in (3.2) includes the boundary b, while the range
of Um in (3.1) excludes the boundary b.

Proof. Simple algebra yields

P
(
Um ≥ y

√
m, τ ′(b, U) > m

)
= P

(
τ ′(b, U) > m

)− P
(
Um < y

√
m, τ ′(b, U) > m

)
= P

(
Um < b

√
m, τ ′(b, U) > m

)− P
(
Um < y

√
m, τ ′(b, U) > m

)
= P

(
Um < b

√
m
)− P

(
Um < b

√
m, τ ′(b, U) ≤ m

)− P
(
Um < y

√
m
)

+P
(
Um < y

√
m, τ ′(b, U) ≤ m

)
.
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Since by Theorem 3.1,

P
(
Um < b

√
m, τ ′(b, U) ≤ m

)
= P

(
U(1) ≤ b, τ(b + β/

√
m,U) ≤ 1

)
+ o(1/

√
m),

P
(
Um < y

√
m, τ ′(b, U) ≤ m

)
= P

(
U(1) ≤ y, τ(b + β/

√
m,U) ≤ 1

)
+ o(1/

√
m),

we have

P
(
Um ≥ y

√
m, τ ′(b, U) > m

)
= P (U(1) ≤ b) − P

(
U(1) ≤ b, τ(b + β/

√
m,U) ≤ 1

)− P (U(1) ≤ y)

+P
(
U(1) ≤ y, τ(b + β/

√
m,U) ≤ 1

)
+ o(1/

√
m)

= P
(
τ(b + β/

√
m,U) > 1

)− P
(
U(1) ≤ y, τ(b + β/

√
m,U) > 1

)
+ o(1/

√
m)

= P(U(1) ≥ y, τ(b + β/
√

m,U) > 1) + o(1/
√

m),

from which the corollary is proved.

Corollary 3.2. For any constants b ≤ y and b < 0, as m → ∞,

P
(
Um >y

√
m, τ̃ ′(b, U)≤m

)
= P(U(1)≥y, τ̃(b−β/

√
m,U)≤1)+o(1/

√
m), (3.3)

P
(
Um≤y

√
m, τ̃ ′(b, U)>m

)
= P(U(1)≤y, τ̃(b−β/

√
m,U)>1)+o(1/

√
m). (3.4)

Proof. This follows easily by using −U and −Um in (3.1) and (3.2).

Proof of Theorem 2.1 for the Case of the Up-and-Out Call Option.
Note that

E∗(e−rT (Sm − K)+I(τ ′(H,S) > m))

= E∗(e−rT (Sm − K)I(Sm ≥ K, τ ′(H,S) > m))

= E∗(e−rT SmI(Sm ≥ K, τ ′(H,S) > m)) − Ke−rT P∗(Sm ≥ K, τ ′(H,S) > m)

= I − Ke−rT · II (say).

Using the discrete Girsanov theorem in Proposition 3.1, with ai = σ
√

∆t, we
have that the first term is given by

I = E∗
(

e−rT S(0) exp

{
µm∆t + σ

√
∆t

m∑
i=1

Zi

}
I(Sm ≥ K, τ ′(H,S) > m)

)

= S(0)E∗
[
exp

{
−1

2
σ2T + σ

√
∆t

m∑
i=1

Zi

}
I(Sm ≥ K, τ ′(H,S) > m)

]

= S(0)Ê(I(Sm ≥ K, τ ′(H,S) > m))

= S(0)P̂(Sm ≥ K, τ ′(H,S) > m).
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Under P̂, log Sm has a mean µm∆t + σ
√

∆t ·mσ
√

∆t = (µ + σ2)T instead of µT
under the measure P∗. Therefore, the price of a discrete up-and-out-call option
is given by

Vm(H) = S(0)P̂
(

Wm ≥ log(K/S(0))
σ
√

∆t
, τ ′(a/(σ

√
T ),W ) > m

)

−Ke−rT P∗
(

Wm ≥ log(K/S(0))
σ
√

∆t
, τ ′(a/(σ

√
T ),W ) > m

)
,

where under P̂, Wm =
∑m

i=1(Ẑi + {{(µ + σ2)/σ}√T/m}) and under P∗, Wm =∑m
i=1(Zi +{(µ/σ)

√
T/m}), where Ẑi and Zi being standard normal random vari-

ables under P̂ and P∗, respectively.
Now using (3.2) in Corollary 3.1 with

y =
log(K/S(0))

σ
√

T
, b =

a

σ
√

T
=

log(H/S(0))
σ
√

T
≥ y,

yields, as m → ∞,

Vm(H) = S(0)P
(

W (µ+σ2)
√

T

σ

(1) ≥ log(K/S(0))
σ
√

T
, τ(b + β/

√
m,W (µ+σ2)

√
T

σ

) > 1
)

−Ke−rT P

(
Wµ

√
T

σ

(1) ≥ log(K/S(0))
σ
√

T
, τ(b + β/

√
m,Wµ

√
T

σ

) > 1
)

+o(1/
√

m),

where the notation Wc(t) means a Brownian motion with drift c and standard
deviation 1. By Proposition 3.2, we get

Vm(H) = S(0)P
(

Wµ+σ2

σ

(T ) ≥ log(K/S(0))
σ

, τ(b
√

T + β
√

T/m,Wµ+σ2

σ

) > T

)

−Ke−rT P

(
Wµ

σ
(T ) ≥ log(K/S(0))

σ
, τ(b

√
T + β

√
T/m,Wµ

σ
) > T

)
+o(1/

√
m).

Since τ(b
√

T +β
√

T/m,W ) = τ(a/σ+β
√

T/m,W ) = τ(Heβσ
√

T/m, S), we have

Vm(H) = S(0)P
(

S(0)e(µ+σ2)T+σB(T ) ≥ K, τ(Heβσ
√

T/m, S) > T

)

−Ke−rTP

(
S(0)eµT+σB(T )≥K, τ(Heβσ

√
T/m, S)>T

)
+o(1/

√
m). (3.5)

Similarly, by using the continuous time Girsanov theorem, the continuous time
price V (H) can be written as

V (H) = S(0)P
(
S(0)e(µ+σ2)T+σB(T ) ≥ K, τ(H,S) > T

)
−Ke−rT P

(
S(0)eµT+σB(T ) ≥ K, τ(H,S) > T

)
. (3.6)
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Comparing (3.5) and (3.6) yields Vm(H) = V (Heβσ
√

T/m) + o(1/
√

m), from
which the result of the up-and-out call option is proved.

The results for the other seven options can be derived easily. (1) The case of
up-and-in put follows by using (3.1) directly in the above proof instead of using
(3.2). (2) The case of down-and-in call follows by using (3.3) in the above proof.
(3) The case of down-and-out put follows by using (3.4) in the above proof. (4)
The cases of the up-and-in call, up-and-out put, down-and-out call, and down-
and-in put follow readily, because the sum of two otherwise identical in- and out-
put (call) options is a regular put (call) option.

Now all eight cases of barrier options have been proved.

4. Discussion

This paper simplifies the proof in Broadie, Glasserman and Kou (1997) pa-
per, and generalizes the result to include more cases of discrete barrier options.
The method used in this paper can be applied to study other problems. For ex-
ample, in a forthcoming paper with Menghui Cao, the method here, along with
those in Broadie, Glasserman and Kou (1997), is used to derive barrier correction
formulae for two-dimensional barrier options and partial barrier options.
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