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Abstract: In clinical trials, asymmetric designs are often used to reflect prior pref-

erence of treatments based on factors other than efficacy, such as toxicity and cost.

We consider the case where treatments have a linear order of prior preference, and

derive likelihood-based invariant procedures which select the most preferred treat-

ment among the equally most effective ones with a preassigned error probability

for normal errors, when the prior preference is solely reflected through a set of

hypotheses. Extensions are given for the case where different levels of error proba-

bilities are preassigned to the hypotheses. Application to binomial or exponential

data with random censoring is through large sample approximation.
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1. Introduction

In clinical trials, asymmetric designs are often used to reflect prior preference
of treatments based on factors other than efficacy, such as side effects, costs, and
convenience to patients. In a hypothesis-test setting to select between two treat-
ments, this can be done by careful specification of levels of error probabilities
and parameter subspaces for hypotheses. In a multi-armed trial, a simultane-
ous comparison procedure of Dunnett (1955) provides an overall protection for
a standard treatment. Without prior preference among the experimental treat-
ments, the procedures of Paulson (1952) and Dunnett (1984) can be used to select
the best treatment, while those of Gupta and Sobel (1958) can be used to select
a subset of treatments containing the best one, when the standard treatment is
rejected. Recently, Chen and Simon (1993, 1994) considered the case where treat-
ments have a linear order of prior preference and derived multi-step procedures
which select the most preferred treatment among equally most effective ones with
preassigned probabilities for normal errors. Chen and Simon (1993) developed
an extension of Dunnett’s (1955) one-step many-one test that will give protection
to the preferred treatments. Chen and Simon (1994) proposed two multiple-step
decision procedures that are similar to the bubble sorting algorithm. For vari-
ous other multiple-selection procedures, see Bartholomew (1961), Bechhofer and
Turnbull (1978), and Thall, Simon and Ellenberg (1988), among others.
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In this paper we also consider a selection rule for treatments with linearly
ordered prior preference in the normal case via simultaneous comparison which
is more efficient than the procedures in Chen and Simon (1993, 1994). The
efficiency is measured by the sample size requirement. We shall first derive an
invariant likelihood selection rule in Section 2, when the prior preference is solely
reflected through a set of hypotheses. Each treatment is given a score based on
data, and our procedure chooses the treatment with the highest score. Extensions
are given in Section 3 for the case where different levels of error probabilities are
preassigned to the hypotheses. Section 4 contains additional discussion which
shows the connection of our problem to a change point problem. Section 5
indicates application in cancer clinical trials, where the normal distribution is a
good approximation for binomial or exponential data with random censoring due
to large sample size.

2. An Invariant Selection Procedure

Let T1, . . . , Tk be the treatments of concern. Throughout the paper, we as-
sume that the observations from patients allocated to Ti are summarized by a
normal random variable Xi with mean µi and a known common variance σ2

n, and
that X1, . . . ,Xk are independent. These assumptions reflect good approxima-
tions to the true distributions of summary statistics in many applications with
moderate or large sample sizes and balanced design. Here the subscript in σ2

n

represents a sample size n for each treatment or simply a design which depends
on an index n. For example, if Xi is the average of n independent observations
Xi1, . . . ,Xin with EXij = µi and Var(Xij) = σ2, then σ2

n = σ2/n. The parame-
ter µi represents the treatment effect of Ti, and the variance σ2

n can be adjusted
according to error probability constraints by choosing an appropriate sample size
for each treatment.

Unless otherwise stated, we use the following notation in the sequel: X =
(X1, . . . ,Xk); θθ = (µ1, . . . , µk); Ti ≺ Tj if Ti is preferred to Tj; a+ = max(a, 0) for
all real numbers a; ai− = max1≤j<i aj and ai+ = maxi<j≤k aj with max ∅ = −∞
for all vectors a = (a1, . . . , ak). For example, X0+ = max1≤j≤k Xj . Also, we use
Z1, . . . , Zk to denote k independent standard normal random variables.

For comparison of a standard treatment T1 with an experimental treatment
T2, the selection is usually done by testing H1 : µ2 = µ1 against H2 : µ2 =
µ1 + δ with error probabilities α and β. The Neyman-Pearson test selects T2 if
(X2 −X1)/(σn

√
2) > zα and T1 otherwise, and the sample size is determined by

δ/(σn

√
2) = zα + zβ to satisfy the error probability constraints. We can choose

δ > 0 or β ≥ α to reflect our preference to T1. When α = β, we simply select T2 if
and only if (iff) X2−X1 > δ/2. Here we are interested in a one-sided alternative
because T2 is more toxic or costly than T1.
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Consider the problem of selecting among k treatments with a decreasing
order of preference, T1 ≺ · · · ≺ Tk. A natural extension of the above design for
k = 2 is a selection rule such that

P{select Ti |Hi} = 1 − αi, 1 ≤ i ≤ k, (2.1)

where αi are preassigned levels, and for 1 ≤ i ≤ k and a given δ > 0

Hi : µ1 = · · · = µi−1 = µi − δ, µi = µi+1 = · · · = µk. (2.2)

We consider the simplest case α1 = · · · = αk = α here and the general case
in Section 3. Here δ is assumed to be known; this is the amount as a trade-off
before a less preferred treatment is selected, or a clinically significant difference
we would like to detect in a comparative clinical trial. Our objective is that if
the mean of a less preferred treatment is better than means of all more preferred
treatments by δ, then we want to select this treatment with a high probability.

2.1. Selection based on likelihood

Consider a general mean vector (µ1, . . . , µk). For k = 2, the Neyman-Pearson
test is also the most powerful one for H∗

1 : µ1 ≥ µ2 against the alternative
K1 : µ2 ≥ µ1 +δ with preassigned error probabilities α and β. The set {(µ1, µ2) :
0 < µ2 − µ1 < δ} is considered as the indifference zone. The treatment T1 is the
only correct selection in H∗

1 and the incorrect one in K1. A natural extension to
the case k > 2 is to assert that Ti is the only correct selection when θθ is in the
subspace

H∗
i : µi− ≤ µi − δ, µi+ ≤ µi. (2.3)

and that Ti is an incorrect selection when θθ is in

Ki : max (µi−, µi+ − δ) ≥ µi. (2.4)

The subspaces Ki are instrumental in our derivation of selection rules, which
can be viewed as alternatives for Hi or H∗

i , since ∪j �=iHj ⊂ ∪j �=iH
∗
j ⊂ Ki. In

fact, (2.3) is a consequence of (2.4) as H∗
i = ∩j �=iKj . The spaces {K1, . . . ,Kk}

also provide more information about the performance of the treatments than
{H1, . . . ,Hk} or {H∗

1 , . . . ,H∗
k}. For example, if µj = µj−1 + δ/2 for j = 2, 3, and

k = 3, then T1 is an incorrect selection as θθ ∈ K1 (µ1 ≤ µ3 − δ), but there is no
unique correct selection as θθ �∈ ∪k

i=1H
∗
i .

Let f(X, θθ) be the joint density of X. Then the maximum likelihood for Ti

to be an incorrect selection is

λi = λi(X) = max {f(X, θθ) : θθ ∈ Ki} . (2.5)
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This motivates a simple selection rule

d(X) = i iff λi = min
1≤j≤k

λj , (2.6)

where d(X) = i means selecting Ti. Rule (2.6) essentially chooses the safest
action in the sense that Td(X) is least likely to be an incorrect selection given the
data.

Since f(X, θθ) is a decreasing function of ‖X − θθ‖ = {∑k
j=1(Xj − µj)2}1/2,

the maximum in (2.5) is reached at θθ = X for X ∈ Ki, and at

µi = (Xi + X∗
i )/2, µji = Xji + (Xi − X∗

i )/2, µj = Xj ∀j �∈ {i, ji},

for X �∈ Ki, where X∗
i = max (Xi−,Xi+ − δ), ji is such that Xji = Xi− if

Xi− ≥ Xi+ − δ and Xji = Xi+ otherwise. This is clear when i = k, and we may
simply shift each of Xi+1, . . . ,Xk by δ for 1 ≤ i < k. The minimum of ‖X − θθ‖
over θθ ∈ Ki is (Xi − X∗

i )+/
√

2. Thus, the selection rule (2.6) can be written as

d(X) = i iff Si = max
j

Sj (2.7)

with
Si = Si(X) = Xi − X∗

i = Xi − max (Xi−,Xi+ − δ) . (2.8)

We call Si the score of Ti.

2.2. Invariance

We discuss the invariance properties of our selection rule (2.7). The family
of density functions f(X, θθ) is invariant under the groups of transformations

gc,j : X → (Xk−j+1 − δ + c, . . . ,Xk − δ + c,X1 + c, . . . ,Xk−j + c),

ḡc,j : θθ → (µk−j+1 − δ + c, . . . , µk − δ + c, µ1 + c, . . . , µk−j + c),

for −∞ < c < ∞ and 0 ≤ j < k. Define

g̃j : i → g̃j(i) =

{
i + j, if i + j ≤ k,

i + j − k, otherwise.

Then, ḡc,j(Hi) = Hg̃j(i) and ḡc,j(Ki) = Kg̃j(i). The selection problem is invariant
if we define the loss function L(θθ, d) = I{θθ ∈ Kd}, as L(ḡc,j(θθ), g̃j(d)) = L(θθ, d)
for all θθ and 1 ≤ d ≤ k. A selection rule d(X) is invariant if d(gc,j(X)) = g̃j(d(X))
(cf. Ferguson (1967), pages 143-159).

Proposition 1. The selection rule (2.6), or equivalently (2.7), is invariant under
the above loss function and groups of transformations.
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Proof. By (2.8) Si(gc,j(X)) = Sg̃j(i)(X), so that d(gc,j(X)) = g̃j(d(X)).

Corollary. For the selection rule d(X) in (2.7), P{d(X) = i} is a constant on
θθ ∈ Hj for every 1 ≤ j ≤ k, and P{d(X) = i |H1} = P{d(X) = g̃j(i) |H1+j},
∀1 ≤ j < k. In particular, P{select Ti |Hi}, 1 ≤ i ≤ k, are all equal.

Proof. Since d(X) is invariant, it is a function of statistics Y = Y(X) =
(Y2, . . . , Yk), Yi = Yi(X) = Xi − X1, which have a fixed joint distribution under
Hj.

The rule (2.7) has preassigned probability of correct selection (2.1) with
constant αi = α, if σ2

n is small enough such that

P{select T1|H1} = 1 − α. (2.9)

2.3. Determination of sample size

Since the variance σ2
n can be adjusted by choosing a right sample size for

each treatment, our problem is to determine the value of σ2
n for which (2.9)

holds. We present a table for this purpose and compare our selection rule with
the multi-step rule of Chen and Simon (1993).

Proposition 2. The error probability α in (2.9) is a decreasing function of
τ = δ/(σn

√
2).

Proof. Let Zi = (Xi − µi)/σn, 1 ≤ i ≤ k. If H1 is true, then by (2.8)

Si(X)/σn = Zi + τ
√

2 − max
(
Z1 + τ

√
2, . . . , Zi−1 + τ

√
2, Zi+1, . . . , Zk

)
,

so that {S1(X)−Si(X)}/σn are all increasing functions of τ for fixed realizations
of Z1, . . . , Zk.

Since α = α(τ) is a decreasing function, its inverse τ = τ(α) exists and can
be used to determine σ2

n by setting δ/(σn

√
2) = τ(α). If σ2

n = σ2/n, then the
sample size is n = 2τ2σ2/δ2. Some values of τ(α) are listed in Table 1. The
algorithms of Schervish (1984) and Genz (1992) were used in the computations.

Table 1. Selected values of τ = τ(α).

α = 0.10 α = 0.05 α = 0.025 α = 0.01
k = 3 2.9901 3.6279 4.1885 4.8508
k = 4 3.1779 3.7766 4.3072 4.9391
k = 5 3.2809 3.8569 4.3596 4.9432

It appears that the selection rule (2.7) is more efficient than that of Chen
and Simon (1993) in the sense that the τ values here are smaller than theirs. For
k =3, 4, and 5, their values of τ(0.1) are respectively 3.004, 3.220, and 3.360.
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Note that our δ is their δ/σ and our k is their k + 1, but our τ is comparable
with theirs.

The following alternative description of the selection rule (2.7) is useful for
calculation and approximation of error probabilities. Define i1 = min(i ≥ 1 :
Xi > X0+ − δ) and ij+1 = min(i ≥ ij : Xi > Xij ) for j ≥ 1 until the maximum
X0+ = Xim is reached at some j = m. Then, by (2.8) Si > 0 iff i ∈ {i1, . . . , im}.
Furthermore, for m ≥ 2

Si1 = Xi1 − X0+ + δ, Sij = Xij − Xij−1 , 1 < j ≤ m. (2.10)

As a consequence, we have

k∑
i=1

S+
i =

m∑
j=1

Sij = δ (2.11)

for m ≥ 2, and Si1 ≥ δ for m = 1. Thus, Ti is selected if Si > δ/2, and for
m ≤ 2, Ti is selected iff Si > δ/2. For k = 2, (2.7) is the Neyman-Pearson test,
which selects T2 iff S2 = X2 − X1 > δ/2, as m ≤ 2. The following lower bound
for the probability of correct selection is an immediate consequence of (2.11) and
Proposition 1.

Proposition 3. Let the selection rule be defined by (2.7). Then P{d(X) =
i} ≥ P{Si > δ/2}. In particular, P{d(X) = i|Hi} ≥ P{Z1 − max2≤j≤k Zj >

−δ/(2σn)}, where Z1, . . . , Zk are independent standard normal random variables.

This proposition implies the asymptotic consistency of our selection rule (2.7)
in the sense of

Corollary. Let H∗
i and Ki be given by (2.3) and (2.4) respectively. Then,

P{d(X) = i} → 1 as σ2
n → 0 for all θθ ∈ H∗

i , and P{d(X) = i} → 0 as
σ2

n → 0 for all θθ ∈ Ki.

Let τ∗ = τ∗(α) be the solution of P{Z1 −max2≤j≤k Zj > −τ∗/
√

2} = 1−α.

Then, we have an upper bound τ(α) ≤ τ∗(α). In Section 4, we find a lower bound
for τ(α) via a change-point problem. Table A.1 of Gibbons, Olkin, and Sobel
(1977), page 400 can be used to find the values of τ∗(α) for various α and k. Note
that the τ in their Table A.1 is our τ∗/

√
2 and zα,k

√
2 defined in (3.3) below.

For example, when k = 2 and α = 0.05, zα,k = 1.645 and τ∗ = 2zα,k = 3.290,
while the value in their Table A.1 is 2.326 = 1.645

√
2.

3. Extensions

In this section, we consider error probability constraint (2.1) with unequal
αi. For example, when Ti0 is a standard treatment for some 1 ≤ i0 ≤ k (e.g.
i0 = 1), we may want αi0 to be smaller than other preassigned levels in (2.1).
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Suppose T1 ≺ · · · ≺ Tk. We construct selection rules satisfying

P{ select Ti |Hi} ≈ 1 − αi, 1 ≤ i ≤ k, (3.1)

for some preassigned levels αi, where Hi are given in (2.2). Our primary interest
is the case where for some α, β, and 1 ≤ i0 ≤ k

αi0 = α, αi = β > α for i �= i0. (3.2)

A simple modification of (2.7) is to add some constants ci to the scores
defined by (2.8). Let zα,k be the solution of

P

{
Z1 − max

2≤j≤k
Zj ≥ −zα,k

√
2
}

= 1 − α, (3.3)

where Zj = (Xj − µj)/σn are independent standard normal random variables.
By (2.8) and Proposition 1, we can easily see that

P
{
Si + zαi,k

√
2σn ≥ δ|Hi

}
= 1 − αi. (3.4)

This leads to the selection rule

d(X) = d(X, α1, . . . , αk, τ) = i iff Ŝi = max
j

Ŝj (3.5)

with τ = δ/(σn

√
2) and the scores

Ŝi = Ŝi(X) = Si(X) + zαi,k

√
2σn, 1 ≤ i ≤ k, (3.6)

where Si and zαi,k are given by (2.8) and (3.3) respectively. If maxj �=i Ŝj is close
to δ with high probability for suitable sample sizes, (3.1) is a consequence of (3.4)
when (3.5) is used. For k = 2, zα,2 is the same as the usual zα, while Table A.1
of Gibbons, Olkin, and Sobel (1977), page 400 can be used to find the value of
zα,k. For details, see the discussion at the end of Section 2.3.

Consider the case

δ ≥ max
1≤i<j≤k

∣∣∣zαi,k − zαj ,k

∣∣∣√2σn. (3.7)

By (3.6), this condition holds if and only if the selection rule (3.5) has the property
that d(X) = i implies Si + δ > maxj �=i Sj for all X. For example, Ti is selected
in this case if Si > 0 and m = 1 by (2.11). A great part of the probability of
correct selection under Hi is captured in the event

2Ŝi ≥ τ∗
i

√
2σn + δ, (3.8)
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where τ∗
i = zαi,k + maxj �=i zαj ,k. Clearly, (3.7) and (3.8) imply Si > 0 by (3.6).

This gives d(X) = i under (3.8) if m = 1, where m is as in (2.11). For m ≥ 2,
δ =

∑
j S+

j by (2.11), so that (3.7) and (3.8) further imply

Ŝi ≥ τ∗
i

√
2σn + δ − Ŝi

zαi,k

√
2σn = max

j �=i
zαj ,k

√
2σn +

∑
j �=i

S+
j

≥ max
j �=i

Ŝj .

Thus, (3.8) implies d(X) = i in all the cases under the assumption (3.7). This
fact and (3.4) give immediately

Proposition 4. Let d(X) be given by (3.5) with Ŝi in (3.6), and τ∗
i be as in

(3.8). Suppose (3.7) holds. If δ/(σn

√
2) ≤ τ∗

i , then

P{d(X) = i|Hi} = 1 − αi + P

{
max
j �=i

Ŝj < Ŝi < τ∗
i σn/

√
2 + δ/2|Hi

}

−P
{
δ < Ŝi < τ∗

i σn/
√

2 + δ/2|Hi

}
.

If δ/(σn

√
2) ≥ τ∗

i , then

P{d(X) = i|Hi} = 1 − αi + P

{
max
j �=i

Ŝj < Ŝi < τ∗
i σn/

√
2 + δ/2|Hi

}

+ P
{
τ∗
i σn/

√
2 + δ/2 < Ŝi < δ|Hi

}
.

Consequently, P{select Ti|Hi}≥1−αi for all 1≤ i≤k, provided that δ/(σn

√
2)≥

max1≤i≤k τ∗
i .

Remark. If (3.2) holds, then τ∗
i = zα,k + zβ,k for all 1 ≤ i ≤ k.

The sample size will be chosen such that (3.1) is satisfied. For k = 2, (3.5)
is the Neyman-Pearson test, which selects T2 iff (X2 − X1)/(σn

√
2) > zα1 with

τ = δ/(σn

√
2) = zα1 + zα2 . For k > 2, our numerical experience indicates that

δ/
(
σn

√
2
)

= τ(α1, . . . , αk) ≈ τ (a) = (2k)−1
k∑

i=1

{
τ(αi) + max

j �=i
τ(αj)

}
(3.9)

provides reasonable approximation in (3.1), where τ(α) is as in Table 1. If (3.2)
holds, then τ (a) = {τ(α) + τ(β)}/2. The computation of τ(α) is essentially as
difficult as that of Table A.1 of Gibbons, Olkin, and Sobel (1977) or the tables
in Chen and Simon (1993). Some simulation results for (3.5) are summarized in
Table 2.
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Table 2. Simulation results for unequal αi.

P1 P2 P3

d(X), τ = 3.309 0.9499 0.9185 0.9086
d(X), τ = 3.272 0.9456 0.9187 0.9007

d(cs)(X), τ = 3.272 0.9479 0.9039 0.8995

Here k = 3 and the αi satisfy (3.2) with α1 = 0.05 and α2 = α3 = 0.10.
The values of δ/(σn

√
2) = τ are the τ (a) = 3.309 of (3.9) in row 1 and the

τ = 3.272 of Chen and Simon (1993) in rows 2 and 3. The d(X) is given by
(3.5), while d(cs)(X) is the selection rule of Chen and Simon (1993). The Pi are
the probabilities of correct selection under Hi, 1 ≤ i ≤ 3. Each entry is based
on 10,000 computer simulations. The first row of Table 2 shows that (3.1) holds
approximately for (3.5) with the sample size approximation (3.9). The second
and third rows show that (3.5) performs slightly better than d(cs)(X).

The error probability in (3.1) can be made exact by using scores Si + ci for
some suitable constants ci. For this purpose, Proposition 4 suggests the recursion:

β
(m+1)
i = 1 − P{d(X, α

(m)
1 , . . . , α

(m)
k , τ (m)) = i|Hi},

α
(m+1)
i = α

(m)
i + αi − β

(m+1)
i ,

τ (m+1) = τ (m) + ρ

(
k∑

i=1

β
(m+1)
i −

k∑
i=1

αi

)

with the initialization α
(0)
i = αi and a suitable constant ρ, where d(X, α1, . . . , αk,

τ) is the selection rule given by (3.5) with the scores (3.6) and δ/σn = τ
√

2.

4. Connection to a Change Point Problem

Suppose we are only interested in the parameter space ∪k
i=1Hi, where Hi are

given in (2.2). Then, our selection problem becomes a change point problem in
the sense that the mean changes from some unknown µ to µ + δ at change point
i under Hi. See for example Hinkley (1970). By the discussion in Section 2.2,
this change point problem is invariant, and invariant selection rules are functions
of statistics

Y = Y(X) = (Y2, . . . , Yk), Yi = Yi(X) = Xi − X1,

which have a fixed joint distribution under H1. Thus, an optimal invariant
selection rule exists and maximizes P{select Ti |Hi}.

The probability density function of Y under H1 is

f1(y) = f1(y2, . . . , yk) = (2πσ2
n)−(k−1)/2k−1/2 exp

{
− 1

2σ2

k∑
i=1

(yi − ȳ)2
}
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with y1 = 0 and ȳ =
∑k

i=1 yi/k. If d(X) is invariant, then d(gc,j(X)) = g̃j(d(X)).
In other words, d(X) = i implies d(gc,k+1−i(X)) = 1 for all c. Since d(X) can
only be 1 at one of these k points {Y(gc,j(X)), 0 ≤ j < k}, the optimal invariant
selection rule is

d(cp)(X) = i iff f1(Y(gc,k+1−i(X))) = max
j

f1(Y(gc,k+1−j(X))).

Since f1(Y) is decreasing in
∑

(Yi − Ȳ )2 =
∑

(Xi − X̄)2, this rule can be written
as

d(cp)(X) = i iff SSi = min
1≤j≤k

SSj

with SS1 =
∑k

j=1(Xj − X̄)2 and SSi = SS1(gδ,k+1−i(X)), or equivalently

SSi = min




k∑
j=1

(Xj − µj)2 : (µ1, . . . , µk) ∈ Hi




= SS1 − 2δ(i − 1)(k − i + 1)k−1 (X̄i,k − X̄1,i−1 − δ/2
)
, 2 ≤ i ≤ k,

where X̄j1,j2 =
∑j2

j=j1
Xj/(j2 − j1 + 1) for j1 ≤ j2. Since SSi is the residual sum

of squares when X is fitted by a vector in Hi via the least squares method, the
selection rule d(cp)(X) is also the MLE for the change point.

For the selection rule d(cp)(X), T1 is selected under H1 with the probability

P

{
max
2≤i≤k

(
X̄i,k − X̄1,i−1 − δ/2

)
< 0

}
,

which is a decreasing function of τ∗ = δ/(σn

√
2). Its inverse function τ∗(α)

gives a lower bound of the function τ(α) in Table 1, as d(cp)(X) is the optimal
invariant rule for θθ ∈ ∪k

i=1Hi. The selection rule d(cp)(X) may not perform well
when θθ �∈ ∪k

i=1Hi. It does not possess the asymptotic consistency property of
the Corollary to Proposition 3. For example, if θθ = (µ1, µ2, µ3) with µ1 > 0,
µ2 < −(µ1 + δ), and µ3 = 0, then limσn→0 P{d(cp)(X) = 3} = 1, while the
correct selection is T1.

5. Applications

Recently, there has been a spate of multi-armed trials with prior preference
among treatments. During the period 1991-1993, the National Cancer Institute
supported and reviewed several Phase III multi-armed trials in major cancer
sites, including three trials in non-small cell lung cancer, two in head and neck
cancer, two in colorectal adjuvant, two in rectal adjuvant, one in non-Hodgkin’s
lymphoma, and two in breast cancer. In most of these cancer clinical trials,
the variable of major interest was survival or tumor response, while the prior
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preference was based on toxicity, quality of life, and cost of administration. Two
of these trials are given as examples in Chen and Simon (1993, 1994) where
methods to obtain the sample size required for tumor response and survival
endpoints are described in detail.
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