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Abstract: Regularization methods for high-dimensional variable selection and esti-

mation have been intensively studied in recent years and most of them are devel-

oped in the framework of linear regression models. However, in many problems,

e.g., in compressive sensing, signal processing and imaging, the response variables

are nonlinear functions of the unknown parameters. In this paper we introduce a

so-called quadratic measurements regression model that extends the usual linear

model. We study the `q regularized least squares method for variable selection

and establish the weak oracle property of the corresponding estimator. Moreover,

we derive a fixed point equation and use it to construct an efficient algorithm for

numerical optimization. Numerical examples are given to demonstrate the finite

sample performance of the proposed method and the efficiency of the algorithm.

Key words and phrases: `q-regularization, moderate deviation, optimization algo-

rithm, sparsity, weak oracle property.

1. Introduction and Motivation

In the era of big data, more and more massive and high-dimensional data

become available in such fields, as genome and health science, economics and

finance, astronomy and physics, signal processing and imaging, etc. The large

size and high dimensionality of data pose significant challenges to the traditional

statistical methodologies, see, e.g., Donoho (2000) and Fan and Lv (2010) for

excellent overviews. As pointed out by these authors, a common feature in high-

dimensional data analysis is the sparsity of the predictors and one of the main

goals is to select the most relevant variables to accurately predict a response

variable of interest.

Various regularization methods have been proposed in the literature, e.g.,

bridge regression (Frank and Friedman (1993)), the LASSO (Tibshirani (1996)),

the SCAD and other folded-concave penalties (Fan and Li (2001)), the Elastic-

Net penalty (Zou and Hastie (2005)), the adaptive LASSO (Zou (2006)), the

group LASSO (Yuan and Lin (2006)), the Dantzig selector (Candes and Tao
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(2007)), and the MCP (Zhang (2010)). Recently, Lv and Fan (2009) pointed

out that there is a distinction and close relation between the model selection

problem in statistics and sparse recovery problem in compressive sensing and

signal processing. Moreover, they proposed a unified approach to deal with both

problems.

Most existing statistical methods for variable selection are developed in the

context of sparse linear regression. On the other hand, there is a large number of

problems, especially in compressive sensing, signal processing and imaging, and

statistics, where the regression relationships are in nonlinear forms of unknown

parameters.

Example 1. Compressive sensing has been intensively studied in the last decade

and the main goal is to reconstruct sparse signals from the observations. Recently,

the theory has been extended to nonlinear compressive sensing and, in particular,

to the so-called quadratic compressive sensing that aims to find the sparse signal β

to the problem minβ∈Rp ‖β‖0 subject to yi = βTZiβ+xTi β+εi, i = 1, . . . , n, where

‖β‖0 is the number of nonzero entries of β, yi, εi ∈ R, xi ∈ Rp and Zi ∈ Rp×p

are real matrices (vectors). For more details see, e.g., Beck and Eldar (2013),

Blumensath (2013), and Ohlsson et al. (2014).

There is a special class of problems in optical imaging, where partially spa-

tially incoherent light such as sub-wavelength optical results in a quadratic rela-

tionship between the input object β and image intensity yi as yi ≈ βTZiβ, i =

1, . . . , n, where Zi is known from the mutual intensity and the impulse response

function of the optical system (Shechtman et al. (2011) and Shechtman et al.

(2012)).

Example 2. Phase retrieval plays an important role in X-ray crystallography,

transmission electron microscopy, coherent diffractive imaging, etc. Generally

speaking, the problem is to recover the lost phase information through the ob-

served magnitudes. In particular, in the real phase retrieval problem the goal is

to find β ∈ Rp in yi = βT (ziz
T
i )β + εi, i = 1, . . . , n, where zi ∈ Rp and yi ∈ R

are observed variables and εi are random errors (Candes, Strohmer and Voronin-

ski (2013), Candes, Li and Soltanolkotabi (2015), Eldar and Mendelson (2014),

Lecué and Mendelson (2015), Netrapalli, Jain and Sanghavi (2015), Cai, Li and

Ma (2016)).

Example 3. In wireless ad hoc and sensor networks, localization is crucial for

building low-cost, low-power and multi-functional sensor networks in which di-

rect measurements of all nodes’ locations via GPS or other similar means are
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not feasible (Biswas and Ye (2004), Meng, Ding and Dasgupta (2008), Wang

et al. (2008)). The most important element of any localization algorithms is to

measure the distances between sensors and anchors. However, the acquired data

are usually imprecise because of the measurement noise and estimation errors.

Suppose p-dimensional vectors x1, x2, . . . , xn are the known sensor positions and

β ∈ Rp is the signal source location that is unknown and to be determined.

Then the measured distance yi from the source to each sensor node is given by

y2
i = ‖xi − β‖22 + εi, i = 1, . . . , n, where εi is a random error. Again, the above

relation can be written as y2
i − ‖xi‖22 = βTβ − 2xTi β + εi.

Example 4. Measurement error is ubiquitous in statistical data analysis. Wang

(2003, 2004) showed that for a class of measurement error models to be identifi-

able and consistently estimable, at least the first two conditional moments of the

response variable given the observed predictors are needed. Wang and Leblanc

(2008) showed that in a general nonlinear model this second-order least squares

estimator (SLSE) is asymptotically more efficient than the ordinary least squares

estimator when the regression error has nonzero third moment, and the two esti-

mators have the same asymptotic variances when the error term has symmetric

distribution. In a linear model, the SLSE is derived based on the first two condi-

tional moments E(yi|xi) = xTi β and E(y2
i |xi) = (xTi β)2 +σ2, i = 1, . . . , n, where β

is the vector of regression coefficients and σ2 is the variance of the regression er-

ror. It is easy to see that this second moment can be written as E(y2
i |xi) = θTZiθ

with θ = (βT , σ)T and Zi =

(
xix

T
i 0

0 1

)
.

In our examples, the main goal is to recover the sparse signals in regres-

sion setups where the response variable is a quadratic function of the unknown

parameters, and this not covered by linear regression models. Given their wide

applications, however, the high-dimensional variable selection problem in such

models has not been studied in statistical literature.

In this paper we attempt to fill in this gap. First, we introduce a so-called

quadratic measurements regression (QMR) model as an extension of the usual

linear model. Then we study the `q-regularized least squares (q-RLS) estima-

tion in this model and establish its weak oracle property (Lv and Fan (2009)).

Moreover, using moderate deviations we show that the estimators of the nonzero

coefficients have an exponential convergence rate. To deal with the problem of nu-

merical optimization, we derive a fixed point equation that is necessary for global

optimality. This allows us to construct an iterative algorithm and to establish its
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convergence. Finally, we present some numerical examples to demonstrate the

efficiency of the proposed method and algorithm.

The rest of this paper is organized as follows. In Section 2 we introduce

the quadratic measurements model and the q-RLS estimation. In Section 3 we

discuss the weak oracle property of the q-RLS estimator using the moderate de-

viation technique. In Section 4, we deal with a special case of a purely quadratic

measurements model that has applications in some important problems. In Sec-

tion 5, we derive a fixed point equation and construct an algorithm for numerical

minimization. In Section 6, we calculate some numerical examples to illustrate

our proposed method and to demonstrate its finite sample performance. Discus-

sions are given in Section 7, while technical lemmas and proofs are given in the

Supplementary Material.

2. The Quadratic Measurements Model

We define the quadratic measurements regression (QMR) model as

yi = βTZiβ + xTi β + εi, i = 1, . . . , n, (2.1)

where yi ∈ R is the observed response, xi ∈ Rp is the vector of predictors, Zi ∈
Sp×p is a symmetric design matrix, β ∈ Rp is the vector of unknown parameters,

and εi ∈ R are independent and identically distributed random errors with mean

0 and variance σ2. When Zi ≡ 0, this reduces to the usual linear model

yi = xTi β + εi, i = 1, . . . , n. (2.2)

In this paper we are mainly interested in the high-dimensional case where p >

n or p � n, although our theory applies to the case p ≤ n as well. Throughout

the paper we assume that log p = o(n%) for some constant % ∈ (0, 1) and that

there exists a constant δ0 > 0 such that E exp (δ0|ε1|) <∞.
In compressive sensing and signal processing the main goal is to identify and

estimate the smallest possible number of nonzero coefficients. Thus we consider

the problem of estimating unknown parameters of model (2.1) under the sparsity

constraint ‖β‖0 ≤ s, where s < n is a certain integer. And accordingly, we study

the `q-regularized least squares (q-RLS) problem

min
β∈Rp

Ln(β) := `n(β) + λn‖β‖qq, (2.3)

where `n(β) =
∑n

i=1(yi − βTZiβ − xTi β)2, λn > 0 and q ∈ (0, 1). The `q-

regularization has been widely used in compressive sensing. Compared to `1-

regularization, this method tends to produce precise signal reconstruction with
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fewer measurements (Chartrand (2007)), and increases the robustness to noise

and image non-sparsity (Saab, Chartrand and Yilmaz (2008)). Moreover, Krish-

nan and Fergus (2009) demonstrated very high efficiency of `1/2 and `2/3 regu-

larization in image deconvolution.

A minimizer β̂ of the optimization problem (2.3) is called q-RLS estimator

and it is a generalization of the bridge estimator in linear models (Frank and

Friedman (1993)). It is well-known that the bridge estimator has various desirable

properties including sparsity and consistency (Knight and Fu (2000), Huang,

Horowitz and Ma (2008)). A natural question is whether the q-RLS solution of

(2.3) continues to enjoy these properties in the more general model. To answer

this question, we study the moderate deviation (MD) of β̂ which gives the rate

of convergence to β at a slower rate than n−1/2 (Kallenberg (1983)).

Although we are mainly interested in variable selection problem, our results

on identifiability and numerical optimization algorithm apply also to the case

q ≥ 1. Our consistency results for selection and estimation hold only for the case

where q ∈ (0, 1); this is not surprising given that it is a well-known fact in linear

models (Fan and Li (2001), Zou (2006)).

Throughout the paper we use the following notation. For any d-dimensional

vector v = (v1, . . . , vd)
T , let |v| = (|v1|, . . . , |vd|)T , v2 = (v2

1, . . . , v
2
d)
T , ‖v‖2 =

(
∑d

i=1 v
2
i )

1/2, ‖v‖1 =
∑d

i=1 |vi|, and ‖v‖∞ = max{|v1|, . . . , |vd|}. For any set

Γ ⊆ {1, . . . , d}, denote its cardinality by |Γ| and Γc = {1, . . . , d}/Γ. For any n ×
d matrix A = [aij ], let‖A‖F =

√
{
∑n

i=1

∑d
j=1 a

2
ij} and |A|∞ = max1≤i,j≤d |aij |.

Denote by AΓ the sub-matrix of A consisting of its columns associated with

index set Γ ⊆ {1, . . . , d}, AΓ′ the sub-matrix of A consisting of its rows indexed

by Γ′ ⊆ {1, . . . , n} and by AΓ′Γ the sub-matrix consisting of the rows and columns

of A indexed by Γ′ and Γ respectively. We use the notation vΓ for a column or

a row vector v. Denote by ed,j the jth column of the d× d identity matrix Id.

3. Weak Oracle Property

In this section we discuss the moderate deviation and consistency of the q-

RLS estimators. Let β∗ be the true parameter value of model (2.1) and Γ∗ =

supp(β∗) := {j : eTp,jβ
∗ 6= 0, j = 1, . . . , p}. Without loss of generality, let |Γ∗| =

s < n. Let X = (x1, . . . , xn)T , where xi = (xi1, . . . , xip)
T , i = 1, . . . , n. Then

following Huang, Horowitz and Ma (2008), we assume that there exist constants

0 < c ≤ c <∞ such that

c ≤ min{|eTp,jβ∗|, j ∈ Γ∗} ≤ max{|eTp,jβ∗|, j ∈ Γ∗} ≤ c.



1162 FAN ET AL.

Following the literature (e.g., Zou and Hastie (2005), Huang, Horowitz and Ma

(2008), Fan, Fan and Barut (2014)), the data are assumed to be standardized so

that
n∑
i=1

yi = 0,

n∑
i=1

xij = 0, max

( n∑
i=1

x2
ij ,

n∑
i=1

|Zi|2∞
)

= n, j = 1, . . . , p. (3.1)

In the linear model, the third equality above reduces to
∑n

i=1 x
2
ij = n.

3.1. Identifiability of β∗

For the sparse linear model, Donoho and Elad (2003) introduced the concept

of spark and showed that the uniqueness of β∗ can be characterized by spark(X)

which is defined as the minimum number of linearly dependent columns of the

design matrix X. Another way to express this property is via the s-regularity

of X, any s columns of X are linearly independent. Indeed, X is s-regular if

and only if spark(X) ≥ s + 1, (Beck and Eldar (2013)). Further, in the linear

model, −X is the Jacobian matrix of the residual function R(β) = y−Xβ, where

y = (y1, . . . , yn)T . Correspondingly, under model (2.1) the residual function is

R(β) =
(
R1(β), . . . , Rn(β)

)T
with Ri(β) = yi − βTZiβ − xTi β and hence the

Jacobian is (−2Z1β − x1, . . . ,−2Znβ − xn
)T

.

Definition 1. The affine transform A(β) = (Z1β + x1, . . . , Znβ + xn
)T

is said

to be uniformly s-regular, if A(β)Γ has full column rank for any Γ ⊆ {1, . . . , p}
with |Γ| = s and β ∈ Rp with supp(β) ⊆ Γ.

Obviously, the uniform s-regularity of A(β) implies the s-regularity of X. It

is straightforward to verify that A(β) is uniformly s-regular if and only if the

submatrix AΓ(β1) = (ZΓΓ
1 β1, . . . , Z

ΓΓ
n β1

)T
+ XΓ has full column rank for any

index set Γ ⊆ {1, . . . , p} with |Γ| = s and β1 ∈ Rs.
In the linear model, we have AΓ(β1) = XΓ since Zi ≡ 0, and therefore the

uniform s-regularity of A(β) reduces to the s-regularity of X. On the other hand,

if Zi ≡ Ip as in Example 3, then A(β) is uniformly s-regular provided
∑n

i=1 xi = 0

and X is s-regular.

Proposition 1. If ȳi = β∗TZiβ
∗ + xTi β

∗, i = 1, . . . , n, the system of equations

βTZiβ + xTi β = ȳi, i = 1, . . . , n, has a unique solution β∗ satisfying ‖β∗‖0 ≤ s if

A(β) is uniformly 2s-regular.

3.2. Moderate deviation and consistency

Strong convexity is the standard condition for the existence of unique so-
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lution to a convex optimization problem. When the objective function is twice

differentiable, an equivalent condition is that the Hessian is uniformly positive

definite. To establish the consistency of an M-estimator in high-dimension, Ne-

gahban et al. (2012) introduced the concept of the restricted strong convexity

when the objective function is strongly convex on a certain set. To achieve the

accuracy of a greedy method for the sparsity-constrained optimization problem,

Bahmani, Raj and Boufounos (2013) used stable restricted Hessian to charac-

terize the curvature of the loss function over the sparse subspaces that can be

bounded locally from above and below such that the corresponding bounds have

the same order. However, the calculation of the exact Hessian of our model is

costly. The transform A(β) has a special structure that allows us to not only

use the Jacobian to obtain the gradient ∇`n(β) = −2A(2β)TR(β), but also to

employ it to approximate the Hessian near β∗. We need some conditions.

Condition 1 (Uniformly Stable Restricted Jacobian).

(a) For any Γ ⊆ {1, . . . , p} with |Γ| = s and β ∈ Rp satisfying supp(β) ⊆ Γ,

there exists a positive constant c1 that bounds all eigenvalues of n−1
((
A(β)Γ

)T
A(β)Γ

)
from below.

(b) For any Γ ⊆ {1, . . . , p} with |Γ| = s and β ∈ Rp satisfying supp(β) ⊆ Γ

and ‖β‖ ≤
(

2c+ 3
√

(σ2 + 1)/c1

)√
s, there exists a positive constant c2 that

bounds all eigenvalues of n−1
((
A(β)Γ

)TA(β)Γ

)
from above.

It is easy to see that (a) and (b) are respectively equivalent to the following.

(a′) For any Γ ⊆ {1, . . . , p} with |Γ| = s and β1 ∈ Rs, there exists a positive

constant c1 that bounds all eigenvalues of n−1
(
AΓ(β1)TAΓ(β1)

)
from below.

(b′) For any Γ ⊆ {1, . . . , p} with |Γ| = s and β1 ∈ S := {u ∈ Rs : ‖u‖ ≤(
2c + 3

√
(σ2 + 1)/c1

)√
s}, there exists a positive constant c2 that bounds all

eigenvalues of n−1
(
AΓ(β1)T AΓ(β1)

)
from above.

In the linear model (2.2), Condition 1 reduces to the first assumption of Con-

dition 2 in Fan, Fan and Barut (2014). For the general case, (a′) is similar to the

restricted strong convexity in Negahban et al. (2012). Indeed, the minimization

problem (2.3) is derived from the original optimization problem minβ∈Rp `n(β)

subject to ‖β‖0 ≤ s. So, we first consider the unconstrained optimization problem

min
β1∈Rs

1

n
˜̀
n(β1) :=

1

n

n∑
i=1

(
yi − βT1 ZΓ∗Γ∗

i β1 − xTiΓ∗β1

)2
(3.2)

that is clearly non-convex and may not have a unique solution in general. How-

ever, one can calculate the Hessian matrix of the objective function (1/n)˜̀
n(β1) at

β∗Γ∗ as ∇2
{

(1/n)˜̀
n(β∗Γ∗)

}
= (2/n)

{
AΓ∗(2β

∗
Γ∗)

TAΓ∗(2β
∗
Γ∗)
}
−(4/n)

∑n
i=1 εiZ

Γ∗Γ∗
i .
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Since ‖ZΓ∗Γ∗
i ‖2F ≤ s2|Zi|∞, the third equality of (3.1) implies that

∑n
i=1 ‖Zi‖2F

≤ ns2. Further, it follows from Chebyshev’s inequality and s = o(
√
n) that

n−1‖
∑n

i=1 εiZ
Γ∗Γ∗
i ‖F

P−→ 0, as n→∞. Hence Condition 1 (a′) ensures that the

Hessian matrix ∇2
(
n−1 ˜̀

n(β∗Γ∗)
)

is strictly positive definite and therefore (3.2)

has an unique solution in a neighborhood of β∗Γ∗ with probability approaching

one. It follows that the minimization problem (2.3) may have a unique solution

in a neighborhood of β∗, as in Negahban et al. (2012). Moreover, (a′) implies

that AΓ(β1) has full column rank for any Γ with |Γ| = s and therefore A(β) is

uniformly s-regular.

Further, (b′) is similar to the upper bound of the stable restricted Hessian. In

particular, if s is finite, then (b′) implies that the curvature of the loss function

has upper bounds at locations that are within a neighbourhood of the origin.

From the proof in Appendix A, one can see that (b′) ensures a more accurate

convergent rate.

Condition 2 (Asymptotic Property of Design Matrix). Let κ1n = |X|∞ and

κ2n = max1≤i≤n |Zi|∞ be such that, as n→∞,

κ1n
√
s√

n
→ 0,

κ2ns
3/2

√
n
→ 0. (3.3)

The first convergence in (3.3) is the same as in Fan, Fan and Barut (2014,

Condition 2). The second convergence in (3.3) and (3.5), below, are required to

deal with the quadratic term in the low-dimensional space Rs.
Condition 3 (Partial Orthogonality). For any Γ ⊆ {1, . . . , p} with |Γ| = s,

there exists a positive constant c0 such that

1√
n

∣∣∣∣∣
n∑
i=1

xiΓ ⊗ xiΓc

∣∣∣∣∣
∞

≤ c0,
1√
n

(∣∣∣∣∣
n∑
i=1

xiΓ ⊗ ZΓΓc

i

∣∣∣∣∣
∞

+

∣∣∣∣∣
n∑
i=1

xiΓc ⊗ ZΓΓ
i

∣∣∣∣∣
∞

)
≤ c0,

1√
n

(∣∣∣∣∣
n∑
i=1

ZΓΓ
i ⊗ ZΓcΓ

i

∣∣∣∣∣
∞

+

∣∣∣∣∣
n∑
i=1

ZΓΓ
i ⊗ ZΓcΓc

i

∣∣∣∣∣
∞

)
≤ c0,

where ⊗ is the Kronecker product.

In the linear model (2.2), Condition 3 coincides with the partial orthogonality

condition of Huang, Horowitz and Ma (2008) that n−1/2|
∑n

i=1 xij xik|∞ ≤ c0 for

any j ∈ Γ, k ∈ Γc.

Condition 4 (Asymptotic Property of Tuning Parameter). Let λn ≥ σc1−q
√
n log p be such that, as n→∞,

√
nqs3−q(log n)2−q

λn
→ 0,

λns
(4−q)/{2(1−q)}

n
→ 0, (3.4)
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λnκ1ns log n

n
→ 0,

λnκ2ns
2 log n

n
→ 0. (3.5)

The inequality here is equivalent to λn > 2
√

(1 + C)n log p for some positive

constant C, which is used in Fan, Fan and Barut (2014). The first convergence

is similar to the first one in their condition (4.4), and the first convergence in

(3.5) is similar to their second convergence in (4.4). The first convergence of this

condition is trivial when s is finite and the inequality in Condition 2 holds. The

second convergence implies that the penalty parameter λn is o(n) if s is finite.

If, for example, λn = nδ for a positive constant δ, then Condition 2 implies that

δ ∈ (1/2, 1) and log p = o(n(2δ−1)). Thus, Condition 2 imposes a range for the

penalty parameter with respect to the sample size n and dimension p. It is easy

to verify that Condition 2 also implies that s = o(
√
n) as needed to approximate

the Hessian through the Jacobian.

The proof of the following is given in the Supplementary Material.

Theorem 1 (Moderate Deviation). Under model (2.1), if Condition 1-4 hold,

then there exists a strict local minimizer β̂ =
(
β̂TΓ∗ , β̂

T
Γ∗c
)T

of (2.3) and a positive

constant C0 < min{1/(8σ2), 1/(2c2σ
2), c2

1/(8c2σ
2)} such that

P
(
β̂Γ∗c = 0

)
≥ 1− exp

(
− C0a

2
n

)
, (3.6)

P
(
‖β̂Γ∗ − β∗Γ∗‖2 ≤ rn

)
≥ 1− exp

(
− C0a

2
n

)
, (3.7)

where

β̂Γ∗ ∈ argminβ1∈RsL̃n(β1) :=

n∑
i=1

(
yi − βT1 ZΓ∗Γ∗

i β1 − xTiΓ∗β1

)2
+ λn‖β1‖qq,

rn =
(
an/
√
n+ (2cq−1λn

√
s)/(c1n)

)
, and {an} is a sequence of positive numbers

such that, as n→∞,
an√
s log n

→∞, (3.8)

anκ1n
√
s√

n
→ 0,

anκ2ns
3/2

√
n

→ 0, (3.9)

an

(
nq/2s(4−q)/2

λn

)1/(2−q)
→ 0. (3.10)

Note that since max(κ2
1n, κ

2
2n) ≥ 1, condition (3.9) implies an

√
s/n → 0.

Again, if s is finite and λn = nδ for some δ ∈ (1/2, 1), then conditions (3.8)-

(3.10) simplify to
an√
log n

→∞, anκ1n√
n
→ 0,

anκ2n√
n
→ 0,

an

n(2δ−q)/{2(2−q)} → 0.
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It follows that {an} tends to infinity faster than log n but slower than

n(2δ−q)/(2(2−q)) = o(
√
n). This differs from the case of the linear model with

fixed dimension p � n, where only anκ1n/
√
n → 0 is required to establish the

MD of M-estimators (Fan (2012), Fan, Yan and Xiu (2014)). We assume (3.8)-

(3.10) to cover the case of p� n.

By inequality (3.6) the q-RLS estimator correctly selects nonzero variables

with probability approaching one exponentially. It follows from (3.7) that the

estimators of nonzero variables are consistent with an exponential rate of conver-

gence. Theorem 1 also implies that the tail probability decreases exponentially

with rate a2
n, as the tail probability of the Gaussian.

Theorem 1 gives general results on the MD. By taking an =
√
s log n, we

obtain the familiar forms of convergence rate.

Theorem 2 (Weak Oracle Property). Under model (2.1), if Conditions 1-4 hold,

then there exists a strict local minimizer β̂ =
(
β̂TΓ∗ , β̂

T
Γ∗c
)T

of (2.3) such that, for

sufficiently large n,

P
(
β̂Γ∗c = 0

)
≥ 1− n−C0s logn, (3.11)

P
(
‖β̂Γ∗ − β∗Γ∗‖2 ≤

√
s log n√
n

+
2cq−1λn

√
s

c1n

)
≥ 1− n−C0s logn. (3.12)

In particular, when Zi ≡ 0, Conditions 1-4 reduce to similar conditions of

Huang, Horowitz and Ma (2008) and Fan, Fan and Barut (2014) for the linear

model (2.2).

Corollary 1. Under (2.2), the results of Theorem 2 hold, provided

(1) for each Γ ⊆ {1, . . . , p} with |Γ| = s, the eigenvalues of 1/nXT
ΓXΓ are bounded

from below and above by some positive constants c1 and c2 respectively;

(2) κ1n
√
s/
√
n→ 0, as n→∞;

(3) for each Γ ⊆ {1, . . . , p} with |Γ| = s, there exists a positive constant c0 such

that n−1/2|
∑n

i=1 xijxik|∞ ≤ c0, ∀j ∈ Γ, k ∈ Γc;

(4) λn ≥ σc1−q√n log p and λ−1
n

√
nqs3−q(log n)2−q → 0, n−1λns

(4−q)/(2(1−q)) →
0, n−1λnκ1ns log n→ 0, as n→∞.

Remark 1. To deal with the case p > n, Huang, Horowitz and Ma (2008) showed

that the marginal bridge estimators satisfy P
(
β̂Γ∗c = 0

)
→ 1 and P

(
eTp,j β̂ 6=

0, j ∈ Γ∗
)
→ 1. Here we provide the rate of this convergence. The result (3.12)

is slightly different from Theorem 2 in Fan, Fan and Barut (2014) that has

P
{
‖β̂Γ∗ − β∗Γ∗‖2 ≤ γ0

(√
s log n√
n

+
λn‖d0‖2

n

)}
≥ 1−O(n−cs),
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where γ0 and c are two positive constants and d0 is a s-dimensional vector of

nonnegative weight. To find the constant c, we use the number
√

log n to domi-

nate the constant γ0, which results in the lower consistent rate. To compensate

this loss, the right hand side of (3.12) tends to one at a faster rate.

4. Purely Quadratic Model

In this section we consider the purely quadratic measurements model

yi = βTZiβ + εi, i = 1, . . . , n. (4.1)

As demonstrated in Example 2, this covers the phase retrieval model where

Zi = ziz
T
i . As this model differs from the general model (2.1), some theoretical

conditions and results in the previous sections need to be modified.

4.1. Identifiability of β∗

The absence of the linear term in model (4.1) makes it unidentifiable because

obviously β∗ and −β∗ are indistinguishable from the observed data. In the phase

retrieval literature, e.g., Balan, Casazza and Edidin (2006) and Ohlsson and

Eldar (2014), this problem is treated by identifying ±β for any β ∈ Rp. Without

loss of generality, we assume that the first nonzero element of β∗ is positive.

For the phase retrieval problem, Balan, Casazza and Edidin (2006) and Ban-

deira et al. (2014) introduce the complement property which is necessary and suf-

ficient for identifiability. For the sparse regression, Ohlsson and Eldar (2014) pro-

pose the more general concept of s-complement property. In the phase retrieval

model where Zi = ziz
T
i , the s-complement property of {zi} means that either

{zΓ
i }i∈N or {zΓ

i }i∈Nc span Rs for every subset N ⊆ {1, . . . , n} and Γ ⊆ {1, . . . , p}
with |Γ| = s. Here, the identifiability of β∗ in (2.1) is guaranteed by the uniform

s-regularity of the affine transform A(β). In model (4.1), the residual function

R(β) =
(
R1(β), . . . , Rn(β)

)T
with Ri(β) = yi − βTZiβ has Jacobian matrices

(−2Z1β, . . . ,−2Znβ
)T

.

Definition 2. The linear transform B(β) = (Z1β, . . . , Znβ
)T

is uniformly s-

regular if B(β)Γ has full column rank for any Γ ⊆ {1, . . . , p} with |Γ| = s, and

β ∈ Rp/{0} with supp(β) ⊆ Γ.

If Zi = ziz
T
i , then the uniform s-regularity of B(β) is equivalent to the s-

complement property of {zi}. Further, it is straightforward to verify that B(β) is

uniformly s-regular if and only if the submatrix BΓ(β1) = (ZΓΓ
1 β1, . . . , Z

ΓΓ
n β1

)T
has full column rank for any Γ ⊆ {1, . . . , p} with |Γ| = s and β1 ∈ Rs/{0}.
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The proof of the following is analogous to that of Theorem 4 in Ohlsson and

Eldar (2014) and is therefore omitted.

Proposition 2. Under (4.1), β∗ is the unique solution satisfying ‖β∗‖0 ≤ s if

B(β) is uniformly 2s-regular.

4.2. Weak oracle property

To drive the MD and consistency results under model (4.1), we modify Con-

ditions 1-4 in Section 3.2 as follows.

Condition 1′ (Uniformly Stable Restricted Jacobian).

(a) For any Γ ⊆ {1, . . . , p} with |Γ| = s and β1 ∈ S1 :=
{
u ∈ Rs : |{j :

|eTs,ju| ≥ c/2}| ≥ s − [s/2]
}

, there exists a positive constant c1 that bounds all

eigenvalues of n−1
(
BΓ(β1)TBΓ(β1)

)
from below.

(b) For any Γ ⊆ {1, . . . , p} with |Γ| = s and β1 ∈ S, there exists a positive

constant c2 that bounds all eigenvalues of n−1
(
BΓ(β1)T BΓ(β1)

)
from above.

Condition 2′ (Asymptotic Property of Design Matrix). As n → ∞, n−1/2

κ2ns
3/2 → 0.

Condition 3′ (Partial Orthogonality). There exists a positive constant c0

such that

n−1/2

(∣∣∣∣∣
n∑
i=1

ZΓΓ
i ⊗ ZΓcΓ

i

∣∣∣∣∣
∞

+

∣∣∣∣∣
n∑
i=1

ZΓΓ
i ⊗ ZΓcΓc

i

∣∣∣∣∣
∞

)
≤ c0.

Condition 4′ (Asymptotic Property of Tuning Parameter). Let λn ≥ σc1−q
√
n log p be such that, as n→∞,
√
nqs3−q(log n)2−q

λn
→ 0,

λns
(4−q)/{2(1−q)}

n
→ 0 and

λnκ2ns
2 log n

n
→ 0.

For the phase retrieval model, since BΓ(β1)TBΓ(β1) =
∑n

i=1

(
zTiΓβ1

)2
ziΓz

T
iΓ,

Condition 1′ implies that at β∗Γ∗ ,

c1‖u‖2 ≤
1

n

n∑
i=1

(
zTiΓβ

∗
Γ∗
)2

(zTiΓu)2 ≤ c2‖u‖2, ∀u ∈ Rs/{0}.

This is similar to Corollary 7.6 of Candes, Li and Soltanolkotabi (2015).

Theorem 3 (Moderate Deviation). Under model (4.1), if Conditions 1′-4′ hold,

then there exists a strict local minimizer β̂ =
(
β̂TΓ∗ , β̂

T
Γ∗c
)T

of (2.3) such that

(3.6) and (3.7) hold with {an} satisfying (3.8), (3.10) and the second condition

in (3.9), where

β̂Γ∗ ∈ argminβ1∈RsL̃n(β1) :=

n∑
i=1

(
yi − βT1 ZΓ∗Γ∗

i β1

)2
+ λn‖β1‖qq.
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Theorem 4. (Weak Oracle Property). Under model (4.1) and Conditions 1′-4′,

there exists a strict local minimizer β̂ =
(
β̂TΓ∗ , β̂

T
Γ∗c
)T

of (2.3) such that (3.11)

and (3.12) hold.

For the phase retrieval problem, Candes, Strohmer and Voroninski (2013)

used convex relaxation to construct a consistent estimator of the matrix β∗(β∗)T

but not for β∗. The consistency of β∗ was studied by Eldar and Mendelson (2014)

and Lecué and Mendelson (2015). We obtain the following weak oracle property

of β∗ as a consequence of Theorem 4.

Corollary 2. Under model (4.1) with Zi = ziz
T
i , i = 1, 2, . . . , n, the result of

Theorem 4 holds if Conditions 1′-4′ hold.

5. Optimization Algorithm

The numerical computation of the q-RLS estimator as the solution of (2.3)

is an important and challenging issue, since the `q(0 < q < 1)-regularization

is a nonconvex, nonsmooth, and non-Lipschitz optimization problem. Recently,

this type of problems has attracted much attention in the field of optimization,

including developing optimality conditions and computational algorithms, see,

e.g., Xu et al. (2012), Chen, Niu and Yuan (2013), Lu (2014) and references

therein. In this section, we propose an algorithm for the minimization problem

(2.3). Since n and p are given, to simplify notation we omit the subscript n of

`n(β) and λn so that (2.3) is written as

min
β∈Rp

L(β) := `(β) + λ‖β‖qq, (5.1)

where λ > 0. We start by considering the simple minimization problem

min
u∈R

ϕt(u) :=
1

2
(u− t)2 + λ|u|q, (5.2)

where t ∈ R, λ > 0, and q ∈ (0, 1). For this problem Chen, Xiu and Peng (2014)

show that there exists an implicit function hλ,q(·) such that the minimizer û

of (5.2) satisfies û = hλ,q(t). In particular, for q = 1/2, Xu et al. (2012) give

an explicit expression hλ,1/2(t) = 2/3t
[
1 + cos

{
2π/3 − 2/3φλ(t)

}]
with φλ(t) =

arccos(λ/4((|t|)/3)−3/2
)
.

Theorem 5. There exists a function hλ,q(·) and a constant r > 0, such that any

minimizer β̂ of problem (5.1) satisfies

β̂ = Hλτ,q
{
β̂ − τ∇`(β̂)

}
(5.3)

for any τ ∈
(
0,min{G−1

r , 1}
)
, where Gr = supβ∈Br

‖∇2`(β)‖2, Br = {β ∈ Rp :
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‖β‖2 ≤ r}, and Hλ,q(u) =
(
hλ,q(u1), . . . , hλ,q(up)

)T
for u = (u1, . . . , up)

T ∈ Rp.

Remark 2. The result of Theorem 5 remains true for any function ` that is

bounded from below, twice continuously differentiable, and for which lim‖x‖→∞
`(β) =∞. An appropriate algorithm here can be derived similarly to that below.

Remark 3. In general, the `q minimization problem minβ∈Rp f(β) +λ‖β‖qq with

λ > 0, q ∈ (0, 1) has been well studied in the optimization literature and efficient

algorithms have been proposed for f(β) = ‖Xβ − y‖2. For example, Chen, Xu

and Ye (2010) derived lower bounds for nonzero entries of the local minimizer

and presented a hybrid orthogonal matching pursuit-smoothing gradient method,

while Xu et al. (2012) provided a globally necessary optimality condition for the

case q = 1/2 and proposed an efficient iterative algorithm. More recently, the

general `q problem has been studied by Chen, Niu and Yuan (2013), who proposed

a smoothing trust region Newton method for solving a class of non-Lipschitz

optimization problems. Lu (2014) studied iterative reweighted methods for a

smooth and bounded (from below) function f with an Lf -Lipschitz continuous

gradient satisfying ‖∇f(β)−∇f(β′)‖ ≤ Lf‖β − β′‖. Bian, Chen and Ye (2015)

proposed interior point algorithms for solving a class of non-Lipschitz nonconvex

optimization problems with nonnegative bounded constraints. In these works the

solution sequence of the algorithm converges to a stationary point derived from

the Karush-Kuhn-Tucker conditions.

Based on (5.3), we propose a fixed point iterative algorithm (FPIA).

Algorithm 1

Step 0. Given λ > 0, ε ≥ 0, γ, α ∈ (0, 1), δ > 0, choose an arbitrary β0 and set k = 0.

Step 1. (a) Compute ∇`(βk) from ∇`(β) = 2
∑m
i=1(βTZiβ + xTi β − yi)(2Ziβ + xi);

(b) Compute βk+1 = Hλτk,q(βk − τk∇`(βk)) with τk = γαjk and jk the smallest
nonnegative integer such that

L(βk)− L(βk+1) ≥ δ

2
‖βk − βk+1‖22. (5.4)

Step 2. Stop if ‖βk+1 − βk‖2 ≤ εmax{1, ‖βk‖2}. Otherwise, replace k by k + 1 and go
to Step 1.

An important step here is to evaluate the operator Hλ,q(·). It has an explicit

expression when q = 1/2. For more general q ∈ (0, 1), by Lemma 6 in the

Supplementary Material, there exists a constant t∗ > 0 such that hλ,q(t) > 0,

hλ,q(t) − t + λqhλ,q(t)
q−1 = 0, and 1 + λq(q − 1)hλ,q(t)

q−2 > 0, for t > t∗; and
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hλ,q(t) < 0, hλ,q(t) − t − λq|hλ,q(t)|q−1 = 0 and 1 + λq(q − 1) |hλ,q(t)|q−2 > 0,

for t < −t∗. Hence one can use the function fsolve in Matlab to get the desired

solution at each iteration.

Another step is the computation of step length τk, which represents a tradeoff

between the speed of reduction of the objective function L and search time for

the optimal length. According to Theorem 5, the ideal choice of τk depends

on the maximum eigenvalue of the Hessian ∇2`(βk) at kth iteration, which is

expensive to calculate. A more practical strategy is to perform an inexact line

search to identify a step length that achieves adequate reduction in L. One such

technique is the so-called Armijo-type line search that is adopted in our proposed

algorithm. In our context this method requires finding the smallest nonnegative

integer jk such that (5.4) holds. That this can be done successfully is assured by

Lemmas 8 and 9 in the Supplementary Material. We also verify the convergence

property of the FPIA by Theorem 1 in the Supplementary Material.

Remark 4. Xu et al. (2012) studied a q-regularized least square method with

q = 1/2 in a linear model and proposed several strategies for choosing the optimal

regularization parameter λ besides cross validation. Analogous to their method

we can derive the range of the optimal regularization parameter in our problem as

λ̂ ∈ [
√

96/(9τ)|[Bτ (β̂)]s+1|3/2,
√

96/(9τ)|[Bτ (β̂)]s|3/2) where Bτ (β) = β− τ∇`(β)

and |[Bτ (β̂)]k| is the kth largest component of Bτ (β̂) in magnitude for each

k = 1, . . . , p. Xu et al. (2012) suggest that λ̂ =
√

96/(9τ)|[Bτ (β̂)]s+1|3/2 is a

reliable choice with an approximation such as β̂ ≈ βk. They recommend this

strategy for s-sparsity problems and cross validation for more general problems.

Our algorithm can also be used to compute the q-RLS estimator for q ≥ 1.

Indeed, similar to Lemma 6 in the Supplementary Material, we can show that

there exists a unique function hλ,q(t) such that the global minimizer of problem

(5.2) is û = hλ,q(t). In particular, we can obtain the explicit expressions of this

function for q = 1, 2/3, 2 as hλ,1(t) = max(0, t − λ) −max(0,−t − λ, ), hλ,3/2(t)

= (
√

9/16λ2 + |t| − 3/4λ)2sign(t) and hλ,2(t) = t/(1 + 2λ).

6. Numerical Examples

In this section we calculate two examples to illustrate the proposed approach

and demonstrate the finite sample performance of the q-RLS estimator. The

first example is the second-order least squares method described in Example

4, and the second is the quadratic equations problem considered by Beck and

Eldar (2013). In a phase diagram study Xu et al. (2012a) point out that the
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`q-regularization method yields sparser solutions with smaller value of q in the

range [1/2, 1), while there is no significant difference for q ∈ (0, 1/2]. In view

of these findings, we use q = 1/2 in both examples. In addition, following the

literature we use 5-fold cross validation to choose the parameter λ. In each

simulation 100 Monte Carlo samples were generated and in each case the true

value β∗ was generated randomly with s nonzero components standard normal.

The numerical optimization is done using FPIA with iteration stopping criterion

‖βk+1 − βk‖
max {1, ‖βk+1‖}

≤ 10−6,

or the maximum iterative time of 5,000s is reached.

To evaluate the selection and estimation accuracy of our method, we cal-

culated the mean squared error (MSE) which is the average of ‖β̂ − β∗‖22; the

false positive (FP) which is the number of zero coefficients incorrectly identified

as nonzero; the false negative (FN) which is the number of nonzero coefficients

incorrectly identified as zero. We also report the rate of successful recovery (SR)

using the criterion Γ̂ = Γ∗ and ‖β̂ − β∗‖22 ≤ 2.5 × 10−5, where Γ̂ = {j : β̂j 6= 0}
and Γ∗ = {j : β∗j 6= 0}.

Example 1. Second-order Least Square Method

We applied the second-order least squares method described in Example 4

to the variable selection problem in (2.2). It is known that in low-dimensional

set-ups the SLS estimator is asymptotically more efficient than the ordinary

least squares estimator when the error distribution is asymmetric. Therefore it

is interesting to see if this robustness property carries over to high-dimensional

regularized estimation. In particular, we considered the q-regularized second-

order least squares (q-RSLS) problem

min
θ

n∑
i=1

ρi(θ)
TWiρi(θ) + λ‖β‖qq,

where θ = (βT , σ2)T , ρi(θ) = {yi − xTi β, y2
i − (xTi β)2 − σ2}T and Wi is a 2 × 2

nonnegative definite weight matrix. Here the objective function becomes that of

the q-regularized least squares (q-RLS) method if the weight is taken to be Wi =

diag(1, 0). To simplify computation, we used the weight Wi =

(
0.75 0.1

0.1 0.25

)
that

is not necessarily optimal according to Wang and Leblanc (2008).

We considered five error distributions logN(0, 0.12)−e−0.005, (X 2(5)−5)/100,

0.01 ∗ t, U[−0.1, 0.1] and N(0, 0.12). In each case, we took dimension p = 400
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Table 1. Selection and estimation results of Example 1.

error method
FP FN

MSE
mean se mean se

e1
q-RSLS 0.12 0.04 0.00 0.00 3.41e-05
q-RLS 0.27 0.05 0.00 0.00 1.38e-04

e2
q-RSLS 0.12 0.04 0.00 0.00 2.91e-05
q-RLS 0.21 0.05 0.00 0.00 9.34e-05

e3
q-RSLS 0.09 0.03 0.00 0.00 1.32e-05
q-RLS 0.22 0.05 0.00 0.00 9.51e-05

e4
q-RSLS 0.09 0.03 0.00 0.00 3.34e-05
q-RLS 0.29 0.05 0.00 0.00 1.64e-04

e5
q-RSLS 0.11 0.03 0.00 0.00 2.14e-05
q-RLS 0.24 0.05 0.00 0.00 1.30e-04

Noiseless
q-RSLS 0.10 0.03 0.00 0.00 3.80e-05
q-RLS 0.19 0.04 0.00 0.00 1.02e-04

Table 2. Rates of successful recovery of Example 1.

method
error

e1 e2 e3 e4 e5 Noiseless

q-RSLS 0.62 0.78 0.88 0.52 0.86 0.56
q-RLS 0.08 0.15 0.13 0.06 0.12 0.10

with sparsity s = 8 and sample size n = 200.

The results in Table 1 show that q-RSLS and q-RLS perform well in identi-

fying zero coefficients; this is expected for `q-regularized methods with q = 1/2.

Although both methods have fairly low FP values, the values of q-RLS is about 3

times higher than that of the q-RSLS. Moreover, The MSE of the q-RSLS estima-

tor is about three times smaller than that of the q-RLS estimator. The results in

Table 2 show clearly that q-RSLS has much higher rate of SR than q-RLS does,

and this is true not only for the skewed error distributions, such as log-normal

and Chi-square, but also for normal or uniform distributions.

Example 2. Quadratic Measurements

We considered (4.1) with εi ∼ N(0, σ2). A noise-free version of this model

was considered by Beck and Eldar (2013). For the sake of comparison we set

σ = 0.01 and generated matrices as Zi = ziz
T
i , i = 1, 2, . . . ,m with vectors

zi ∈ Rp from the standard normal. We considered n = 80, p = 120 with various

sparsity s = 3, 4, . . . , 10. For comparison, we calculated the q-RLS estimator for

q = 1/2, 1, 3/2, 2.
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Table 3. Selection and estimation results of Example 2.

‖β∗‖0 method
FP FN

MSE SR
mean se mean se

3
q = 1/2 3.95 0.64 0.36 0.09 1.56e-03 0.57
q = 1 64.36 5.84 1.07 0.14 1.47e-01 0.00
q = 3/2 117.00 0.00 0.00 0.00 2.04e-01 0.00

4
q = 1/2 3.73 0.65 0.09 0.04 6.98e-04 0.62
q = 1 62.64 5.79 1.63 0.20 2.97e-01 0.00
q = 3/2 116.00 0.00 0.00 0.00 2.15e-01 0.00

5
q = 1/2 4.66 0.71 0.05 0.02 4.97e-05 0.61
q = 1 76.75 5.38 1.55 0.23 3.08e-01 0.00
q = 3/2 115.00 0.00 0.00 0.00 3.18e-01 0.00

6
q = 1/2 5.99 0.88 0.04 0.02 4.75e-05 0.58
q = 1 81.88 5.07 1.50 0.26 2.60e-01 0.00
q = 3/2 114.00 0.00 0.00 0.00 4.36e-01 0.00

7
q = 1/2 4.70 0.84 0.07 0.03 3.37e-05 0.63
q = 1 83.32 4.91 1.01 0.30 3.27e-01 0.00
q = 3/2 113.00 0.00 0.00 0.00 5.76e-01 0.00

8
q = 1/2 3.76 0.77 0.32 0.14 5.22e-02 0.67
q = 1 87.54 4.37 1.28 0.30 2.78e-01 0.00
q = 3/2 111.99 0.01 0.00 0.00 8.02e-01 0.00

9
q = 1/2 4.01 0.97 0.34 0.16 4.92e-02 0.73
q = 1 86.05 4.38 1.53 0.34 3.30e-01 0.00
q = 3/2 111.00 0.00 0.00 0.00 6.35e-01 0.00

10
q = 1/2 5.46 0.46 0.11 0.03 2.68e-02 0.58
q = 1 84.69 4.22 1.50 0.36 3.56e-01 0.00
q = 3/2 110.00 0.00 0.00 0.00 6.57e-01 0.00

The results are given in Table 3, with the results for q = 2 omitted since

they are very similar to those for q = 3/2. They show clearly that the FP values

with q = 1/2 is much lower than the other cases. In particular, the FP values

with q = 3/2, 2 are the same as the number of true nonzero coefficients, which

means that no variable selection was performed.

The MSE and SR are both very small; this demonstrates that the q-RLS with

q = 1/2 is efficient and stable in variable selection and estimation. Compared to

the results in Beck and Eldar (2013), our SR rates are lower when s = 3, 4 but

significantly higher when s = 5, 6, 7, 8, 9, 10.

To see the effectiveness of our numerical algorithm FPIA, we also ran the

simulations with n = 3p/4, s = 0.05p, and p = 100, 200, 300, 400, 500. The

results in Table 4 show that, as the dimension increases, the FP and FN, as well

as MSE, remain fairly low and stable. In all cases, the rates of successful recovery
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Table 4. The successful recoveries of Example 2.

p ‖β∗‖0
FP FN

MSE SR
mean se mean se

100 5 2.99 0.60 0.12 0.07 1.90e-03 0.73
200 10 3.40 0.80 0.05 0.02 2.49e-05 0.86
300 15 9.50 1.20 0.09 0.03 5.17e-04 0.53
400 20 11.34 1.43 0.11 0.05 5.26e-04 0.53
500 25 13.07 2.56 0.07 0.03 5.45e-04 0.51

are over 50% and reach 86% when p = 200.

7. Discussion

Compared to the linear model, the quadratic measurements model is more

complex and therefore it is harder to obtain the MD rate. Under some further

assumptions, it is possible to establish more accurate results. Another open

question is the asymptotic normality of the q-RLS estimator for model (2.1),

which deserves further research.

We have studied the generalized bridge estimator because of the simplicity

and tractability of numerical optimization. We focused on the `q regularization

with q < 1, mainly because in phase retrieval and compressive sensing the pri-

mary goal is to find the smallest set of predictors and the `q method with q < 1

helps to achieve this goal. Our identification results and numerical optimization

algorithm apply when q ≥ 1. Of course in such cases the consistency results do

not hold generally as in linear models. It is also interesting to investigate the

SCAD and other regularization methods in quadratic measurements models. Our

model (2.1) can be viewed as a special case of the partially linear index model

y =
∑d

j=1 fj(β
Twj) + xTβ + ε. While it is interesting to study the regulariza-

tion estimation problem in this model, the theory and method are much more

complicated.

Supplementary Materials

The supplementary file covers technical lemmas and proofs.

Acknowledgment

The authors thank the Editor, an associate editor and two anonymous re-

viewers for their comments and suggestions that helped to improve the pre-

vious version of this paper. Fan, Kong and Xiu’s research was supported by



1176 FAN ET AL.

the National Natural Science Foundation of China (NSFC) (No. 11431002 and

11671029), while Wang’s research was supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC) (RGPIN-2016-06002). The

work was also supported by the 111 Project of China (No. B16002).

References

Bahmani, S., Raj, B. and Boufounos, P. T. (2013). Greedy sparsity-constrained optimization.

J. Mach. Learn. Res. 14, 807-841.

Balan, R., Casazza, P. and Edidin, D. (2006). On signal reconstruction without phase. Appl.

Comput. Harmon. Anal. 20, 345-356.

Bandeira, A. S., Cahill, J., Mixon, D. G. and Nelson, A. A. (2014). Saving phase: Injectivity

and stability for phase retrieval. Appl. Comput. Harmon. Anal. 37, 106-125.

Beck, A. and Eldar, Y. C. (2013). Sparsity constrained nonlinear optimization: Optimality

conditions and algorithms. SIAM J. Optim. 23, 1480-1509.

Bian, W., Chen, X. and Ye Y. (2015). Complexity analysis of interior point algorithms for

non-Lipschitz and nonconvex minimization. Math. Program. 149, 301-327.

Biswas, P. and Ye, Y. (2004). Semidefinite programming for ad hoc wireless sensor network

localization. In Proceedings of the 3rd International Symposium on Information Processing

in Sensor Networks, 46-54, Berkeley, CA.

Blumensath, T. (2013). Compressed sensing with nonlinear observations and related nonlinear

optimization problems. IEEE Trans. Inform. Theory 59, 3466-3474.

Cai, T., Li, X. and Ma, Z. (2016). Optimal rates of convergence for noisy sparse phase retrieval

via thresholded Wirtinger flow. Ann. Statist. 44, 2221-2251.

Candes, E., Strohmer, T. and Voroninski, V. (2013). Phaselift: Exact and stable signal recovery

from magnitude measurements via convex programming. Comm. Pure Appl. Math. 66,

1241-1274.

Candes, E., Li, X. and Soltanolkotabi, M. (2015). Phase retrieval via Wirtinger flow: Theory

and algorithms. IEEE Trans. Inform. Theory 61, 1985-2007.

Candes, E. and Tao, T. (2007). The Dantzig selector: statistical estimation when p is much

larger than n. Ann. Statist. 35, 2313-2351.

Chartrand, R. (2007). Exact reconstruction of sparse signals via nonconvex minimizaion. IEEE

Signal Process. Lett. 14, 707-710.

Chen, X., Niu, L. and Yuan, Y. (2013). Optimality conditions and smoothing trust region

Newton method for non-Lipschitz optimization. SIAM J. Optim. 23, 1528-1552.

Chen, X., Xu, F. and Ye, Y. (2010). Lower bound theory of nonzero entries in solutions of `2−`p
minimization. SIAM J. Sci. Comput. 32, 2832-2852.

Chen, Y., Xiu, N. and Peng, D. (2014). Global solutions of non-Lipschitz S2 −Sp minimization

over positive semidefinite cone. Optim. Lett. 8, 2053-2064.

Donoho, D. L. (2000). High-dimensional data analysis: The curses and blessings of dimension-

ality. AMS Math Challenges Lecture, 1-32.

Donoho, D. L. and Elad, M. (2003). Optimally sparse representation in general (nonorthogonal)

dictionaries via l1 minimization. Proceedings of the National Academy of Sciences 100,

2197-2202.



SPARSE REGRESSION WITH QUADRATIC MEASUREMENTS 1177

Eldar, Y. C. and Mendelson, S. (2014). Phase retrieval: Stability and recovery guarantees. Appl.

Comput. Harmon. Anal. 36, 473-494.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. J. Amer. Statist. Assoc. 96, 1348-1360.

Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional feature

space. Statist. Sinica 20, 101-148.

Fan, J., Fan, Y. and Barut, E. (2014). Adaptive robust variable selection. Ann. Statist. 42,

324-351.

Fan, J. (2012). Moderate deviations for m-estimators in linear models with φ-mixing errors.

Acta Math. Sin. (Engl. Ser.) 28, 1275-1294.

Fan, J., Yan, A. and Xiu, N. (2014). Asymptotic properties for m-estimators in linear models

with dependent random errors. J. Stat. Plan. Infer. 148, 49-66.

Frank, L. E. and Friedman, J. H. (1993). A statistical view of some chemonmetrics regression

tools (with discussion). Technometrics 35, 109-148.

Huang, J., Horowitz, J. L. and Ma, S. (2008). Asymptotic properties of bridge estimators in

sparse high-dimensional regression models. Ann. Statist. 36, 587-613.

Kallenberg, W. C. M. (1983). On moderate deviation theory in estimation. Ann. Statist. 11,

498-504.

Knight, K. and Fu, W. J. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28, 1356-

1378.

Krishnan, D. and Fergus, R. (2009). Fast image deconvolution using hyper-Laplacian priors. In

Adavances in Neural Information Processing Systems 22, 1033-1041.
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