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Abstract: In this paper we consider a heteroscedastic transformation model of the

form Λϑ(Y ) = m(X)+σ(X)ε, where Λϑ belongs to a parametric family of monotone

transformations, m(·) and σ(·) are unknown but smooth functions, ε is independent

of the d-dimensional vector of covariates X, E(ε) = 0 and Var(ε) = 1. We consider

the estimation of the unknown components of the model, ϑ, m(·), σ(·), and the

distribution of ε, and we show the asymptotic normality of the proposed estimators.

We propose tests for the validity of the model, and establish the limiting distribution

of the test statistics under the null hypothesis. A bootstrap procedure is proposed

to approximate the critical values of the tests. We carried out a simulation study to

verify the small sample behavior of the proposed estimators and tests, and illustrate

our method with a dataset.
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1. Introduction

Assume we observe independent copies of a random vector (X,Y ), where

X represents a d-dimensional covariate and Y is a univariate response. One

possibility is to analyze these data by fitting a non- or semiparametric regression

model

Y = m(X) + ε, where E[ε | X] = 0. (1.1)

Doing so, often the conditional error distribution, given the covariate, still de-

pends on X, so the dependency of the response Y on the covariate X goes beyond

the first moment. If only the second moment is dependent on X one can fit a

nonparametric location-scale model of the form

Y = m(X) + σ(X)ε, where ε ⊥ X with E[ε] = 0,Var(ε) = 1. (1.2)

Here and throughout the paper Z ⊥ X means that Z and X are stochastically

independent. Such nonparametric location-scale models have been widely used,
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see e.g., Akritas and Van Keilegom (2001), Dette, von Lieres und Wilkau, and

Sperlich (2005) or Hušková and Meintanis (2010), among many others. Note

that the conditional normal distribution is always a special case because from

Y |X = x ∼ N(m(x), σ2(x)) it follows that ε ∼ N(0, 1) does not depend on X.

The general location-scale model (1.2) has several advantages over the unstruc-

tured model (1.1). First, the asymptotic analysis of statistical procedures often

simplifies a lot. Further, the model allows us to estimate the error distribution

with a parametric
√
n-rate, see Akritas and Van Keilegom (2001). Therefore

the estimation of the conditional distribution of Y given X is much more effi-

cient. Goodness-of-fit as well as other specification tests have been developed

that specifically use the location-scale structure, see Section 2.4 in the recent

review by González-Manteiga and Crujeiras (2013). When data (X,Y1, Y2) have

been observed and one’s interest lies in the dependence between Y1 and Y2, given

X, under the location-scale structure the conditional copula of (Y1, Y2), given X,

can not only be estimated with
√
n-rate, but also as precisely as if the errors

were known, see Gijbels, Omelka, and Veraverbeke (2015).

The construction of valid resampling procedures is essential for most hypoth-

esis tests in nonparametric regression. It is known that in heteroscedastic regres-

sion models simple residual bootstrap methods generally do not lead to valid

procedures. Thus mostly the wild bootstrap is used, see Härdle and Mammen

(1993) and Stute, González-Manteiga, and Presedo Quindimil (1998). However,

Zhu, Fujikoshi, and Naito (2001) show that the wild bootstrap may fail if the con-

ditional 4th moment of the error distribution depends on the covariate, while for

the procedure considered there it works in the location-scale context. There are

other cases where the wild bootstrap even fails in the location-scale model (1.2),

see e.g., Neumeyer and Sperlich (2006). A (smooth or not smooth) heteroscedas-

tic residual bootstrap often can be an alternative, see Neumeyer (2009a), and

explicitly makes use of the location-scale structure.

Before application of model (1.2) a specification test should be conducted, a

test for independence of ε andX. Such tests have been suggested by Einmahl and

Van Keilegom (2008), Neumeyer (2009b), and Hlávka, Hušková, and Meintanis

(2011). However, if those tests reject the null hypothesis, a remedy might be

to transform the response Y by a suitable transformation Λ before fitting the

location-scale model to the data (X,Y ).

It is common in practice to transform the response variable before fitting a

regression model to the data. The aim of the transformation is to reduce skew-

ness or heteroscedasticity, or to induce normality. Often the transformation is

chosen from a parametric class such as the Box-Cox power transformations in-

troduced by Box and Cox (1964). Generalizations of this class were suggested

by Bickel and Doksum (1981) and Yeo and Johnson (2000), among others. The
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parameter of the transformation in the class can be chosen data dependently by

a profile likelihood approach, for instance. There is a huge literature on para-

metric transformation models and we refer to the monograph by Carroll and

Ruppert (1988); see also the references in Fan and Fine (2013). Nonparametric

estimation of the transformation in the context of parametric regression mod-

els has been considered by Horowitz (1996) and Zhou, Lin, and Johnson (2009),

among others. Horowitz (2009) reviews estimation in transformation models with

parametric regression in the cases where either the transformation or the error

distribution, or both, are modeled nonparametrically. Linton, Sperlich, and Van

Keilegom (2008) consider a parametric class of transformations, with the error

distribution estimated nonparametrically and the regression function assumed

to be additive. The aim of the transformation is to induce independence of the

covariate and the error. Asymptotic normality of a profile likelihood estimator

for the transformation parameter is proved. Heuchenne, Samb, and Van Keile-

gom (2015) consider a residual based empirical distribution function in the same

model in order to estimate the error distribution. Recently, Colling and Van

Keilegom (2015) considered goodness-of-fit tests for the regression function in a

semiparametric transformation model, in which the transformation parameter is

estimated by means of the profile likelihood estimator of Linton, Sperlich, and

Van Keilegom (2008).

The aim of our paper is twofold. We generalize the results of Linton, Sper-

lich, and Van Keilegom (2008) by allowing heteroscedasticity. To this end in a

parametric class of transformations we seek the one that leads to a nonparametric

location-scale model of the form

Λ(Y ) = m(X) + σ(X)ε, where ε ⊥ X with E[ε] = 0,Var(ε) = 1, (1.3)

where Λ denotes the transformation. The regression function m and variance

function σ2 are modeled fully nonparametrically, but analogous results can be ob-

tained for semiparametric modeling. We estimate the transformation parameter

by a profile-likelihood approach and prove asymptotic normality of the estimator.

We investigate the performance of the estimator in a simulation study. Note that

in the context of parametric regression, Zhou, Lin, and Johnson (2009) and Khan,

Shin, and Tamer (2011) considered heteroscedastic transformation models.

We also propose, for the first time, a test for model validity in the context

of transformation models with a parametric class of transformations and a non-

(or semi-)parametric regression function. Mu and He (2007) consider estimation

procedures in a transformation model with a linear quantile regression function

and also suggest a test for model validity. In the general heteroscedastic case

we suggest tests for the hypothesis of existence of some transformation Λ in the

considered parametric class, such that the data fulfill model (1.3). The results
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can readily be modified to test whether such a model can hold with σ ≡ 1,
i. e. a homoscedastic transformation model. Our test statistics are based on the
difference between the estimated joint distribution of covariables and errors, and
the product of the marginal distributions. A similar approach was used to test for
validity of a location-scale model (without transformation) by Einmahl and Van
Keilegom (2008). However, the estimation of the unknown transformation vastly
complicates theoretical derivations. We show weak convergence of the estimated
empirical process to a centered Gaussian process under the null hypothesis of
model validity. As a by-product we obtain an expansion for the residual-based
empirical distribution function that generalizes results by Heuchenne, Samb, and
Van Keilegom (2015). Moreover, we discuss consistency of the proposed tests and
demonstrate the finite sample properties of a bootstrap version of Kolmogorov-
Smirnov and Cramér von Mises tests in a simulation study.

The rest of the paper is organized as follows. In Section 2 we define the pro-
file likelihood estimator for the transformation parameter and show asymptotic
normality. We further discuss estimation of the regression and variance function
by local polynomial estimators, and the estimation of the error distribution. In
Section 3 we consider the problem of testing for existence of a transformation in
the considered class that leads to a location-scale model. We derive an expansion
for the estimator of the joint distribution of covariates and errors. Under the null
hypothesis we show weak convergence of the process given by the difference of the
estimated joint distribution and the product of the marginals. Consistency of the
testing procedures and modifications for the homoscedastic model are discussed.
Additionally, we describe bootstrap versions of the hypothesis tests. In Section
4, we present simulations to demonstrate finite sample properties of the profile
likelihood estimator for the transformation parameter as well as the hypothesis
tests. We illustrate our method on a dataset. All regularity conditions and some
of the proofs are collected in Appendices A and B. The other proofs are in a
supplementary document.

2. Estimation of the Model

Let L = {Λϑ | ϑ ∈ Θ} be a parametric class of differentiable and strictly
increasing transformations, and let Θ be a nonempty subset of Rk. In this section
we assume that there exists some unique ϑ0 ∈ Θ such that

Λϑ0(Y )− E[Λϑ0(Y )|X]

(Var (Λϑ0(Y )|X))1/2
⊥ X.

Then the covariate and transformed response can be modeled by a nonparametric
location-scale model as

Λϑ0(Y ) = m(X) + σ(X)ε, ε ⊥ X, (2.1)

where m(x) = E[Λϑ0(Y )|X = x] and σ2(x) = Var (Λϑ0(Y )|X = x).
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2.1. Estimation of the transformation parameter

To estimate the transformation parameter ϑ0 we use a profile likelihood ap-

proach. This type of approach has been proposed by Linton, Sperlich, and Van

Keilegom (2008) in the context of homoscedastic transformation models, and has

been further used by Heuchenne, Samb, and Van Keilegom (2015) and Colling

and Van Keilegom (2015) in the context of the estimation of the error distri-

bution and the development of goodness-of-fit tests for the regression function,

respectively. We extend their method to the current setup with heteroscedastic

errors.

For ϑ ∈ Θ, let mϑ(x) = E[Λϑ(Y )|X = x], σ2ϑ(x) = Var [Λϑ(Y )|X = x], and

ε(ϑ) =
Λϑ(Y )−mϑ(X)

σϑ(X)
.

Let Fε(ϑ)(y) = P (ε(ϑ) ≤ y) denote the marginal distribution function of the

errors and let fε(ϑ)(y) be the corresponding probability density function. We use

the abbreviated notations Λ = Λϑ0 , ε = ε(ϑ0), m = mϑ0 , σ
2 = σ2ϑ0

, Fε = Fε(ϑ0),

and fε = fε(ϑ0).

The conditional distribution FY |X(·|x) of Y given X = x can then be written

as

FY |X(y|x) = Fε

(Λ(y)−m(x)

σ(x)

)
,

and hence the conditional density fY |X(·|x) of Y given X = x is

fY |X(y|x) = fε

(Λ(y)−m(x)

σ(x)

)Λ′(y)

σ(x)
.

Assume we have independent observations (Xi, Yi), i = 1, . . . , n, distributed

as (X,Y ), and let εi = εi(ϑ0), i = 1, . . . , n. Then, for an arbitrary value ϑ ∈ Θ,

the log-likelihood can be written as

Lϑ =
n∑

i=1

{
log fε(ϑ)

(Λϑ(Yi)−mϑ(Xi)

σϑ(Xi)

)
+ log Λ′

ϑ(Yi)− log σϑ(Xi)
}
. (2.2)

In order to maximize this log-likelihood with respect to ϑ, we first need

to replace the unknown functions fε(ϑ), mϑ, and σϑ by suitable estimators.

For each ϑ ∈ Θ we estimate mϑ(x) by a local polynomial estimator based

on (Xi,Λϑ(Yi)), i = 1, . . . , n. To this end denote the components of Xi by

(Xi1, . . . , Xid) (i = 1, . . . , n) and let x = (x1, . . . , xd). Let m̂ϑ(x) = β̂0, where β̂0
is the first component of the vector β̂, that is the solution of the local minimiza-

tion problem

min
β

n∑
i=1

{
Λϑ(Yi)− Pi(β, x, p)

}2
Kh(Xi − x). (2.3)
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Here, Pi(β, x, p) is a polynomial of order p built up with all 0 ≤ k ≤ p products of

factors of the form Xij − xj (j = 1, . . . , d). The vector β is the vector consisting

of all coefficients of this polynomial. Here, for u = (u1, . . . , ud) ∈ Rd, K(u) =∏d
j=1 k(uj) is a d-dimensional product kernel, k is a univariate kernel function,

h = (h1, . . . , hd) is a d-dimensional bandwidth vector converging to zero when n

tends to infinity, and Kh(u) =
∏d

j=1 k(uj/hj)/hj .

Analogously, for each ϑ ∈ Θ let ŝϑ denote a local polynomial estimator

based on (Xi,Λϑ(Yi)
2), i = 1, . . . , n, and define the variance function estimator

as σ̂2ϑ = ŝϑ − m̂2
ϑ. This estimator has similar properties as a local polynomial

estimator based on (Xi, (Λϑ(Yi)− m̂ϑ(Xi))
2), i = 1, . . . , n.

Let ε̂i(ϑ) = (Λϑ(Yi)− m̂ϑ(Xi))/σ̂ϑ(Xi) and define

f̂ε̂(ϑ)(y) =
1

n

n∑
i=1

ℓg
(
ε̂i(ϑ)− y

)
,

where ℓ and g are a kernel function and a bandwidth sequence, possibly different

from the kernel k and the bandwidth h that were used to estimate the regression

and variance function.

We plug the estimators m̂ϑ, σ̂ϑ and f̂ε̂(ϑ) into the log-likelihood given in (2.2)

and obtain a profile likelihood estimator of ϑ as

ϑ̂ = argmax
ϑ∈Θ

n∑
i=1

{
log f̂ε̂(ϑ)

(Λϑ(Yi)− m̂ϑ(Xi)

σ̂ϑ(Xi)

)
+log Λ′

ϑ(Yi)− log σ̂ϑ(Xi)
}
. (2.4)

In order to state an asymptotic i.i.d. representation and the asymptotic nor-

mality of the estimator ϑ̂, we need some notation. For any function hϑ we denote

by ḣϑ = ∇ϑhϑ the vector of partial derivatives of hϑ with respect to the compo-

nents of ϑ. Let

Gn(ϑ) =
1

n

n∑
i=1

gϑ(Xi, Yi)

be the derivative of the log-likelihood given in (2.2) (divided by n) with respect

to ϑ, where

gϑ(Xi, Yi) =
f ′ε(ϑ)(εi(ϑ))

fε(ϑ)(εi(ϑ))

[ Λ̇ϑ(Yi)− ṁϑ(Xi)

σϑ(Xi)
− {Λϑ(Yi)−mϑ(Xi)}

σ̇ϑ(Xi)

σ2ϑ(Xi)

]
+
ḟε(ϑ)(εi(ϑ))

fε(ϑ)(εi(ϑ))
+

Λ̇′
ϑ(Yi)

Λ′
ϑ(Yi)

− σ̇ϑ(Xi)

σϑ(Xi)
.

Then Gn(ϑ) converges in probability to G(ϑ) = E[gϑ(X,Y )]. We assume that ϑ0
is the unique zero of G (Assumption (a7) in Appendix A). Our theorem states the

asymptotic normality of the estimator ϑ̂. The result shows that the variance of
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the estimator is the same as in the case where the nonparametric functionsmϑ(x),

σϑ(x), and fε(ϑ)(y) and their derivatives with respect to ϑ and y are known,

which is quite remarkable. The cancellation of all terms derived from estimators

of nuisance functions has been observed in other contexts where profile likelihood

methods have been used; see e.g., Severini and Wong (1992) among others, where

the profile likelihood method internalizes the estimation cost associated with the

nonparametric functions. The regularity conditions under which this result is

valid are given in Appendix A.

Theorem 1. Assume (a1)−(a7) in Appendix A. Then,

ϑ̂− ϑ0 = −Γ−1 1

n

n∑
i=1

gϑ0(Xi, Yi) + oP (n
−1/2),

n1/2
(
ϑ̂− ϑ0

) d→ N
(
0,Σ

)
,

where Σ = Γ−1Var[gϑ0(X,Y )]Γ−1 and Γ = ∇ϑG(ϑ)
⊤|ϑ=ϑ0.

The proof is in the supplementary document.

2.2. Estimation of regression and variance functions

Once the transformation parameter vector ϑ0 is estimated, we take

m̂(x) = m̂ϑ̂(x) and σ̂2(x) = σ̂2
ϑ̂
(x).

Under regularity conditions the estimation of ϑ0 has no influence on the asymp-

totic distribution of the centered and scaled estimators (nhd)1/2(m̂(x)−E[m̂(x)])

and (nhd)1/2(σ̂2(x) − E[σ̂2(x)]), since ϑ̂ has a parametric rate of convergence.

Therefore, the estimators behave asymptotically as if the true ϑ0 would be known.

The pre-estimation of ϑ0 does influence the asymptotic distribution of the test

statistic because the integrals
∫
(m̂ϑ0 −m)/σ dFX and

∫
(m̂ϑ̂ − m̂ϑ0)/σ dFX have

the same n1/2-rate of convergence (see terms Bn and Cn in the proof of Theorem

2) and a similar statement holds for the variance estimator (see Section 3).

2.3. Estimation of the error distribution

The last unknown component of our heteroscedastic transformation model

(2.1) is the distribution Fε of the error term. We define the residuals as

ε̂i = ε̂i(ϑ̂) =
Λϑ̂(Yi)− m̂(Xi)

σ̂(Xi)
,

and take

F̂ε̂(y) =
1

n

n∑
i=1

I{ε̂i ≤ y},
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where I denotes the indicator function. The asymptotic properties of this esti-
mator are studied in the next section, where we study an estimator of the joint
distribution of X and ε that includes the estimator F̂ε̂(y) as a special case.

3. Testing the Validity of the Model

In this section we develop tests for validity of a heteroscedastic semipara-
metric transformation model. Let L = {Λϑ | ϑ ∈ Θ} be some parametric class
of transformations, Θ some nonempty subset of Rk. Our aim is to test the null
hypothesis

H0 : ∃ϑ ∈ Θ such that
Λϑ(Y )− E[Λϑ(Y )|X]

(Var (Λϑ(Y )|X))1/2
⊥ X. (3.1)

If the null hypothesis is valid then there exists some transformation Λϑ0 ∈ L from
which one obtains a nonparametric location-scale model as in (2.1). As we want
to test the appropriateness of the parametric family of transformations, our test
is a goodness-of-fit test for the chosen family.

3.1. The test statistics and asymptotic distributions under H0

Let ϑ̂ be some estimator for the true parameter ϑ0 under H0 such that a
linear expansion

ϑ̂− ϑ0 =
1

n

n∑
i=1

gϑ0(Xi, Yi) + oP

(
1√
n

)
(3.2)

is valid under H0, where E[gϑ0(Xi, Yi)] = 0, E[∥gϑ0(Xi, Yi)∥2] <∞. By Theorem
1, such an expansion is valid for the profile likelihood estimator under some
regularity conditions. The joint empirical distribution function of covariates and
residuals is

F̂X,ε̂(x, y) =
1

n

n∑
i=1

I{Xi ≤ x, ε̂i ≤ y},

where ≤ for vectors is meant componentwise. We consider test statistics based
on the estimated independence empirical process

Sn =
√
n(F̂X,ε̂ − F̂X F̂ε̂), (3.3)

where F̂X(x) = n−1
∑n

i=1 I{Xi ≤ x} and F̂ε̂(y) = n−1
∑n

i=1 I{ε̂i ≤ y}.
Theorem 2. Assume (a1), (a2) and (A1)−(A8) from Appendix A. Then, under
H0,

F̂X,ε̂(x, y) =
1

n

n∑
i=1

(
I{Xi ≤ x}

(
I{εi ≤ y}+ fε(y)(εi +

y

2
(ε2i − 1))

)
+ E

[
∇ϑFε(ϑ)|X(y|X)|ϑ=ϑ0I{X ≤ x}

]⊤
gϑ0(Xi, Yi)

)
+ oP (n

−1/2)

uniformly with respect to x ∈ RX , y ∈ R.
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The proof is given in appendix B. From the theorem one directly obtains the
following result for the residual based empirical distribution function defined in
Section 2.3.

Corollary 1. Under the assumptions of Theorem 2,

F̂ε̂(y) =
1

n

n∑
i=1

(
I{εi ≤ y}+ fε(y)(εi +

y

2
(ε2i − 1))

)
+ E

[
∇ϑFε(ϑ)|X(y|X)|ϑ=ϑ0

]⊤
gϑ0(Xi, Yi)

)
+ oP (n

−1/2)

uniformly with respect to y ∈ R. The process
√
n(F̂ε̂ − Fε) converges weakly in

ℓ∞(R) to a centered Gaussian process.

This corollary generalizes results of Heuchenne, Samb, and Van Keilegom
(2015) who consider estimation of the error distribution in a homoscedastic trans-
formation model. The asymptotic expansion directly follows from Theorem 2.
The proof of weak convergence is analogous to the proof of Corollary 1 below,
and is omitted.

The dominating term in the expansion of F̂ε̂(y) has expectation Fε(y) and,
with F̂X = FX + Op(n

−1/2), one straightforwardly obtains an expansion for the
process Sn defined in (3.3):

Sn(x, y) =
1√
n

n∑
i=1

ψx,y,ϑ0(Xi, Yi) + oP (1) (3.4)

uniformly with respect to x ∈ RX , y ∈ R, where

ψx,y,ϑ0(Xi, Yi) =
(
I{Xi≤x}−FX(x)

)(
I{εi≤y}−Fε(y)+fε(y)(εi+

y

2
(ε2i −1))

)
+ E

[
∇ϑFε(ϑ)|X(y|X)|ϑ=ϑ0

(
I{X ≤ x} − FX(x)

)]⊤
gϑ0(Xi, Yi).

Corollary 2. Under the assumptions of Theorem 2, the process Sn converges
weakly in ℓ∞(RX × R) to a centered Gaussian process S with covariance
Cov (S(x, y), S(u, z)) = E[ψx,y,ϑ0(X,Y )ψu,z,ϑ0(X,Y )].

The proof is given in appendix B. Let Ψ denote some continuous functional
from ℓ∞(RX × R) to R, e.g., Ψ(s) = supx,y |s(x, y)| for a Kolmogorov-Smirnov
test. Then we reject H0 with nominal level α if Tn = Ψ(Sn) exceeds a critical
value cα. A bootstrap approximation of cα is given in Section 3.2. In our simu-
lations, we use the Kolmogorov-Smirnov and Cramér-von Mises test statistics

Tn,KS =
√
n sup

x,y
|F̂X,ε̂(x, y)− F̂X(x)F̂ε̂(y)|, (3.5)

Tn,CM = n

∫∫
(F̂X,ε̂(x, y)− F̂X(x)F̂ε̂(y))

2dF̂X(x)dF̂ε̂(y). (3.6)
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3.2. Bootstrap approximation of the critical value

Since the asymptotic distributions of the test statistics depend in a compli-

cated way on unknown quantities, we apply a bootstrap procedure to approxi-

mate the critical values. To this end let η∗1, . . . , η
∗
n be drawn with replacement

from standardized residuals ε̃1, . . . , ε̃n, where

ε̃i =
ε̂i − n−1

∑n
k=1 ε̂k

(n−1
∑n

j=1(ε̂j − n−1
∑n

k=1 ε̂k))
1/2

, i = 1, . . . , n. (3.7)

Let further ξ1, . . . , ξn be independent standard normals independent of the origi-

nal sample Yn = {(X1, Y1), . . . , (Xn, Yn)}, and let an be some positive smoothing

parameter. Define bootstrap errors as ε∗i = η∗i + anξi. Methods based on resid-

ual empirical processes require smoothing of the bootstrap errors, cf., Neumeyer

(2009b), among others. It is easily seen that, conditionally on Yn, ε
∗
i has a

smooth distribution function

F̃ε̂(y) =
1

n

n∑
j=1

Φ(
y − ε̃j
an

),

where Φ denotes the standard normal distribution function.

Generate X∗
i from F̂X and take

Y ∗
i = Λ−1

ϑ̂
(Z∗

i ), where Z
∗
i = m̂(X∗

i ) + σ̂(X∗
i )ε

∗
i , i = 1, . . . , n. (3.8)

The bootstrap sample is (X∗
i , Y

∗
i ), i = 1, . . . , n, and fulfills H0 by construction.

To see this let E∗
n and Var ∗n denote the expectation and variance with respect

to the conditional distribution P (· | Yn). Then E∗
n[ε

∗
i | X∗

i ] ≡ 0 and Var ∗n(ε
∗
i |

X∗
i ) ≡ 1 + a2n, and thus

Λϑ̂(Y
∗
i )− E∗

n[Λϑ̂(Y
∗
i )|X∗

i ]

(Var ∗n(Λϑ̂(Y
∗
i )|X∗

i ))
1/2

=
ε∗i

(1 + a2n)
1/2

⊥ X∗
i

(given Yn). Let Tn denote the test statistic based on the original sample and

let T ∗
n be the one based on the bootstrap sample. Then H0 is rejected whenever

Tn > cn,α, where P (T
∗
n > cn,α | Yn) = 1− α. The critical value cn,α is estimated

by the ⌊B(1 − α)⌋-largest bootstrap test statistic obtained from B replications

of the bootstrap data generation.

3.3. Remarks on consistency of the proposed tests

Consider the hypothesis test of Section 3.1 when using the profile likelihood

estimator ϑ̂ suggested in Section 2.1. With those notations let

pϑ(y|x) = fε(ϑ)

(Λϑ(y)−mϑ(x)

σϑ(x)

)Λ′
ϑ(y)

σϑ(x)
.
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A consistent estimator (under mild regularity conditions) of the log-likelihood

Lϑ = log
( n∏

i=1

pϑ(Yi|Xi)
)

is maximized in order to obtain the profile likelihood estimator of the transfor-

mation parameter ϑ ∈ Θ (see (2.2)). Now consider the alternative H1 that states

that there exists no parameter ϑ ∈ Θ such that pϑ(·|x) is the conditional density

of Y , given X = x. Then Lϑ/n estimates the expectation

E[log pϑ(Yi|Xi)] =

∫ ∫
(log pϑ(y|x))fY |X(y|x) dydFX(x)

and thus ϑ̂ estimates the value ϑ1 ∈ Θ which minimizes the expected Kullback-

Leibler divergence of the conditional densities fY |X and pϑ,∫ ∫ (
log

fY |X(y|x)
pϑ(y|x)

)
fY |X(y|x) dydFX(x).

Thus F̂X,ε̂ in Section 3.1 estimates the joint distribution of X and ε(ϑ1) =

(Λϑ1(Y ) − E[Λϑ1(Y )|X])/(Var (Λϑ1(Y )|X))1/2. Since under H1 the distribution

of ε(ϑ1) depends on X, it follows that, e.g., a Kolmogorov-Smirnov test statis-

tic Tn = supx,y |Sn(x, y)| converges to infinity. Thus any test that rejects H0

whenever Tn exceeds some constant cα is consistent.

3.4. The homoscedastic transformation model

Let independent copies of (X,Y ) be observed and a parametric class of trans-

formations {Λϑ | ϑ ∈ Θ} be given. Then tests for the null hypothesis

H0 : ∃ϑ ∈ Θ such that Λϑ(Y )− E[Λϑ(Y )|X] ⊥ X (3.9)

are also of interest. The validity of the null hypothesis means that a nonpara-

metric location model

Λϑ0(Y ) = m(X) + ε, ε ⊥ X

with m(x) = E[Λϑ0(Y )|X = x] describes the data for some ϑ0 ∈ Θ. Tests for

model validity can be derived similarly as in the heteroscedastic case in an obvi-

ous manner. An estimator for the transformation parameter analogous to Linton,

Sperlich, and Van Keilegom (2008) can be applied where the additive regression

estimator is replaced by a purely nonparametric local polynomial estimator. The

residuals are then defined as ε̂ = Λϑ̂(Y ) − m̂ϑ̂(X). Under slightly weaker as-

sumptions than those stated in Appendix A, similar asymptotic results to those

in Section 3.1 can be derived. Additionally, we can use the simplification of the
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bootstrap in Section 3.2 to implement the test for the validity of (3.9), replacing

ε̃i in (3.7) with ε̃i = ε̂i − n−1
∑n

k=1 ε̂k, and Z
∗
i in (3.8) with Z∗

i = m̂(X∗
i ) + ε∗i .

4. Numerical Simulations

In this section, we report on three simulation studies. All computations were

done with R (R Core Team (2015)). We first illustrate the finite sample perfor-

mance of the estimator ϑ̂ of the transformation parameter in (2.4). We study

the performance of the proposed test for checking homoscedasticity under some

transformation when it is implemented via the bootstrap described in Section 3.4,

and we verify how well the test in Section 3.1 is able to test the assumption of a

heteroscedastic transformation structure when the true model gradually deviates

from a heteroscedastic transformation model.

In all simulations, we considered the Yeo-Johnson family of transformations:

Λϑ(y) =



(y+1)ϑ−1
ϑ , y ≥ 0, ϑ ̸= 0,

log(y + 1), y ≥ 0, ϑ = 0,

− (−y+1)2−ϑ−1
(2−ϑ) , y < 0, ϑ ̸= 2,

− log(−y + 1), y < 0, ϑ = 2,

proposed by Yeo and Johnson (2000) as a generalization of the Box-Cox family.

Concerning the estimation of the transformation parameter, we used the normal

kernel whenever a kernel function was needed. To estimatem(·) and σ(·), we used
the local linear estimator (p = 1) using the R package np (See Hayfield and Racine

(2008)). The bandwidth was chosen by the direct plug-in methodology described

by Ruppert, Sheather, and Wand (1995). For estimation of fε(ϑ)(·), we used the

bandwidth obtained from the method of Sheather and Jones (1991). All these

bandwidth selection methods were implemented in the R package KernSmooth

(See Wand (2015)).

4.1. Estimation of heteroscedastic transformation parameter

To see how the estimator ϑ̂ in (2.4) works in practice, we generated data

from the following heteroscedastic transformation model:

Λϑ0(Yi) = m(Xi) + σ(Xi)εi, i = 1, · · · , n, (4.1)

where m(x) = exp(x) + 1.5 and σ(x) = 1 + a(x − 1). Here X1, . . . , Xn were

independent and uniform on [0, 1], ε1, . . . , εn were independent standard normal,

and Xi and εi were independent. We let θ0 be zero here and whenever this model

was used further on. For various values of a and n, we calculated ϑ̂ from 200

samples of size n = 100, 200, and 400, and computed
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Table 1. The bias and mean squared error of the estimator ϑ̂ for n = 100, 200
and 400.

n = 100 n = 200 n = 400
MEAN MSE MEAN MSE MEAN MSE

a = 0.5 0.085 0.198 0.035 0.117 0.026 0.062
a = 0.75 0.077 0.200 0.048 0.090 0.008 0.053
a = 1 0.056 0.228 0.074 0.121 -0.009 0.066

MEAN =
1

200

200∑
j=1

ϑ̂(j) and MSE =
1

200

200∑
j=1

(ϑ̂(j) − ϑ0)
2,

ϑ̂(j) the estimate of ϑ0 from the jth sample. The results are given in Table 1.

For various values of a, we observe that both the bias and the mean squared

error of the estimator decrease as the sample size increases, which suggests the

consistency of the estimator.

4.2. Testing for homoscedastic transformation models

To verify the performance of the test proposed in Section 3.4 regarding the

assumption of a homoscedastic transformation model, we use model (4.1). The

degree of heteroscedasticity decreases as the value of a gets closer to 0 and (4.1)

is a homoscedastic transformation model when a = 0, which satisfies the null

hypothesis (3.9). We investigate how the test behaves as the value of a increases

from 0 to 1.

We consider the Kolmogorov-Smirnov and Cramér-von Mises test statistics

in (3.5). To find the critical value for the proposed tests, we used 200 bootstrap

replications for each sample. For the smooth bootstrap described in Section 3.4,

we set an to 0.5n−1/4, as in Neumeyer (2009b). In that reference the validity of

a smooth residual bootstrap procedure for the residual-based empirical process

was shown rigorously under some conditions on the relationship between the

bandwidths h1 and an when d = 1 (see assumption A.6 in the reference). They

basically assert that

nh1a
2+∆1
n

log(h−1
1 )

→ ∞, h1 = o(a1+∆2
n ) for some small positive ∆1,∆2. (4.2)

We think that combining that method of proof with ours that could prove the

validity of the smooth residual bootstrap for the transformation model under

similar conditions. For an ∼ n−1/4 the conditions in (4.2) amount to nh21ω1,n →
∞, nh41ω2,n → 0 for some sequences ω1,n → 0 and ω2,n → ∞ slowly. Our

bandwidth conditions (a2) for p = d = 1 say nh3+δ
1 → ∞, nh41 → 0, so they do

not contradict the conditions for the bootstrap.
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Table 2. The power of the test for verifying the validity of a homoscedastic
transformation structure. The power was calculated based on 200 samples.
The null hypothesis is satisfied for a = 0.

n = 100 n = 200
α = 0.05 α = 0.1 α = 0.05 α = 0.1

KS CM KS CM KS CM KS CM
a = 0 0.040 0.035 0.075 0.065 0.045 0.045 0.070 0.085
a = 0.5 0.085 0.125 0.125 0.160 0.110 0.165 0.180 0.240
a = 0.75 0.340 0.460 0.445 0.510 0.545 0.690 0.670 0.775
a = 1 0.910 0.980 0.965 0.980 0.995 1.000 1.000 1.000

Table 2 shows the results for the test implemented via the bootstrap de-

scribed in Section 3.4. The size of the test is somewhat too low, but the power

grows to one as the parameter a measuring the degree of heteroscedasticity gets

larger. One feature of the results is that the power does not change much until

the degree of heteroscedasticity reaches a certain level and then starts to increase

rapidly. To explain this peculiar behavior, we show in Figure 1 four plots using

data of size n = 200 from (4.1). These plots are given for two values of a, and

compare the regression function based on the true parameter ϑ0 with the one

based on the estimator ϑ̂.

When a ̸= 0, the estimator ϑ̂ is not consistent due to the misspecification of

the heteroscedastic error structure, and instead targets the pseudo-true parame-

ter ϑ∗ ̸= ϑ0 that maximizes

PL(ϑ) = E(log fεϑ(Λϑ(Y )−mϑ(X)) + log Λ′
ϑ(Y )), (4.3)

where mϑ(x) = E(Λϑ(Y )|X = x) and εϑ = Λϑ(Y )−mϑ(X). This value has the

interpretation that the corresponding homoscedastic model is the best approx-

imation to the true heteroscedastic transformation model. When the degree of

heteroscedasticity is moderate, it is possible that the data look like data com-

ing from a homoscedastic transformation model with transformation parameter

ϑ̂ (see the upper right panel of Figure 1. In this case, our test is not able to

detect the violation of (3.9) well, and behaves as if the null hypothesis is true.

When the degree of heteroscedasticity is severe, the data cannot be considered

anymore to come from a homoscedastic transformation model, and it is possible

to detect the violation through the dependence between X and ε̂ (see the right

lower panel of Figure 1). This feature is different from what was observed in

testing for homoscedasticity in regression settings without transformation, such

as in Neumeyer (2009a).

Since our testing procedure involves estimation of many parameters and func-

tions, one is interested in how the selection of the smoothing parameters for these
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Figure 1. Plot of Λϑ=ϑ0(Yi) versus Xi (left panel), and Λϑ=ϑ̂(Yi) versus Xi

(right panel), when a = 0.5 (upper panel) and a = 1 (lower panel). The
solid curves are mϑ0(·) (left) and mϑ̂(·) (right).

estimators affects the performance of the proposed tests. We first investigated

the impact of the choice of an on the test. We reran the simulation for Table

2 but with other choices of an: an = 0.25n−1/4, n−1/4, which produces Table 3.

Table 3 suggests that the performance (level or power) of the test is not so sen-

sitive to the choice of an. We investigated the impact of bandwidth selection on

the behavior of the tests where the test for homoscedastic transformation mod-

els requires three bandwidths. To calculate the profile likelihood, we used two

bandwidths for m̂ϑ and f̂ε(ϑ). Once ϑ̂ is obtained, we need another bandwidth to

calculate the residual ε̂i = Λϑ̂(Yi)−m̂(Xi). In our simulations, these bandwidths

were chosen as the optimal bandwidths in terms of MISE using the methods of

Ruppert, Sheather, and Wand (1995) and Sheather and Jones (1991). To see the

impact of bandwidth selection, we used half of the optimal bandwidth or twice

the optimal bandwidth whenever bandwidth selection was necessary and checked

the level and power with such bandwidth. The results are summarized in Table
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Table 3. The power of the test for verifying the validity of a homoscedastic
transformation structure when different bandwidths an were used for the
smooth bootstrap. The power was calculated based on 200 samples. The
null hypothesis is satisfied for a = 0.

n = 100 n = 200
α = 0.05 α = 0.1 α = 0.05 α = 0.1

an a KS CM KS CM KS CM KS CM

0.25n−1/4

a = 0 0.025 0.030 0.055 0.055 0.040 0.040 0.065 0.085
a = 0.5 0.080 0.120 0.130 0.155 0.120 0.165 0.180 0.245
a = 0.75 0.300 0.440 0.415 0.510 0.555 0.690 0.645 0.785
a = 1 0.910 0.975 0.955 0.975 0.995 1.000 1.000 1.000

n−1/4

a = 0 0.035 0.025 0.090 0.070 0.040 0.070 0.080 0.090
a = 0.5 0.095 0.115 0.170 0.170 0.130 0.150 0.170 0.240
a = 0.75 0.335 0.450 0.425 0.520 0.550 0.660 0.640 0.740
a = 1 0.905 0.975 0.955 0.980 0.990 1.000 1.000 1.000

Table 4. The power of the test for verifying the validity of a homoscedastic
transformation structure when different bandwidths were used. The power
was calculated based on 200 samples. The null hypothesis is satisfied for
a = 0.

n = 100 n = 200
α = 0.05 α = 0.1 α = 0.05 α = 0.1

bandwidth KS CM KS CM KS CM KS CM
half 0.030 0.040 0.085 0.065 0.080 0.070 0.010 0.011

a = 0 our choice 0.040 0.035 0.075 0.065 0.045 0.045 0.070 0.085
twice 0.035 0.025 0.060 0.045 0.025 0.040 0.060 0.095
half 0.285 0.360 0.395 0.495 0.590 0.700 0.690 0.780

a = 0.75 our choice 0.340 0.460 0.455 0.510 0.545 0.690 0.670 0.775
twice 0.325 0.450 0.440 0.545 0.540 0.710 0.650 0.795

4. We see there that the level and power is not so sensitive to the choice of the

bandwidths, which makes our procedure applicable in practice.

4.3. Testing for heteroscedastic transformation models

Finally, we illustrate how the test in Section 3.1 works to verify the as-

sumption of a heteroscedastic transformation structure. Here we define two new

transformation models. Basically, they are model (4.1), except that the error

distribution is as follows.

Model A

(ε|X = x) ∼

N(0, 12), if 0.5 < x ≤ 1;

W−E(W )√
V ar(W )

, where W ∼ ST (0, 1, α, ν), if 0 ≤ x ≤ 0.5.
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Table 5. The power of the test for verifying the validity of a heterocedastic
transformation structure from Model A. The power was calculated based on
200 samples. The null hypothesis is satisfied for α = 0 and ν = ∞.

n = 100 n = 200
α = 0.05 α = 0.1 α = 0.05 α = 0.1
KS CM KS CM KS CM KS CM

α = 100, ν = 2.1 0.370 0.445 0.505 0.590 0.710 0.770 0.795 0.850
α = 0, ν = 2.1 0.105 0.140 0.170 0.200 0.205 0.270 0.325 0.360
α = 0, ν = 5 0.075 0.060 0.105 0.085 0.060 0.060 0.130 0.095
α = 0, ν = ∞ 0.055 0.060 0.070 0.105 0.080 0.070 0.120 0.135

Model B

(ϵ|X = x) =

{
N(0, 12), if 0.5 < x ≤ 1;

W−η√
2η
, where W ∼ χ2(η), if 0 ≤ x ≤ 0.5.

Here, ST (ξ,Ω, α, ν) is a skew-t distribution with parameters ξ,Ω, α, and ν defined

in Azzalini (2005). The parameter α controls the skewness of the distribution

and the paramer ν controls kurtosis. Additionally, we set σ(x) = x (so a = 1).

First, note that as ν → ∞ and α → 0, Model A converges to model (4.1) with

σ(x) = x, which satisfies the assumption of a heteroscedastic transformation

structure (the same thing happens as η → ∞ in case of Model B). The first and

second moments of the conditional error distribution given X coincide with the

respective moments under model (4.1). The parameters α, ν, and η determine

how much the model violates (3.1). In our simulations, to see how the test

performs when the true model gradually deviates from the assumption under the

null hypothesis, we investigated the power function as ν changed from ∞ to 2.1

and then as α changed from 0 to 100 for Model A, and as η changed from ∞ to

2 for Model B. Here, ν should be greater than 2 and η should be at least 2 lest

one cannot standardize the distribution of W due to variance explosion. For the

smooth bootstrap described in Section 3.2, we set an to 0.5n−1/4 and used 200

bootstrap replications.

As seen in the case of homoscedastic transformation models, we observe from

Tables 5 and 6 that there is a threshold of difference in two component distri-

butions in the error above which we can detect the violation of the assumption,

and the power starts to grow beyond that threshold. Compared to Model A, the

power of Model B is somewhat lower; we attribute this to the flexibility of the

heteroscedastic transformation model. Since it is a very flexible model, unless the

two component distributions in the error are strikingly different from each other,

the generated data look like data coming from a heteroscedastic transformation

model with appropriately chosen transformation parameter.
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Table 6. The power of the test for verifying the validity of a heterocedastic
transformation structure from Model B. The power was calculated based on
200 samples. The null hypothesis is satisfied for η = ∞.

n = 100 n = 200
α = 0.05 α = 0.1 α = 0.05 α = 0.1
KS CM KS CM KS CM KS CM

η = 2 0.215 0.220 0.285 0.310 0.325 0.355 0.455 0.440
η = 3 0.100 0.165 0.175 0.270 0.155 0.220 0.270 0.295
η = 5 0.090 0.095 0.140 0.150 0.120 0.125 0.190 0.200
η = 10 0.050 0.065 0.091 0.125 0.100 0.105 0.140 0.190
η = ∞ 0.065 0.060 0.105 0.115 0.045 0.055 0.100 0.100

Table 7. The calculated P -values for the validity of homoscedastic transfor-
mation models concerning the ultrasonic calibration data.

P -value
an KS CM

0.25n−1/4 0.883 0.617
0.5n−1/4 0.853 0.560
n−1/4 0.825 0.490

4.4. Data analysis

To illustrate our method, we analyze the ultrasonic calibration data that can

be found in the NIST/SEMATECH e-Handbook of Statistical Methods. The data

is available on the website (http://www.itl.nist.gov/div898/handbook/pmd/

section6/pmd631.htm). The response Y is ultrasonic response and the predictor

X is metal distance. Concerning these data, it has been found in the e-book that

the data seem to satisfy the assumption of homoscedastic transformation models

with the square-root transformation of Y ,
√
Yi = m(Xi) + εi, i = 1, . . . , n. We

wanted to test whether our method can rediscover such validity without the

information about the appropriate transformation. We considered the Box-Cox

transformation family since the square-root transformation is included in the

family and all the responses are positive. We calculated the P -values from the

proposed test with various choices of an. For a more accurate result, the number

of bootstrap iterations was set as 400. The estimated transformation parameter ϑ̂

was 0.436, close to 0.5. The P -values in Table 7 suggest that the given data satisfy

the assumption of the homoscedastic transformation model, which is consistent

with the analysis of the previous study. Additionally, we compare the residual

plots of the two regression models, Y = m(X)+ε and Λϑ=0.436(Y ) = m′(X)+ε′,

where {Λϑ(·)} is the family of Box-Cox transformations. The plots (Figure 2)

suggest that the the transformation of the response stablizes the variance function

in the regression model.

http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd631.htm
http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd631.htm
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Figure 2. The residual plots of the two regression models, Y = m(X) + ε
and Λϑ=0.436(Y ) = m′(X) + ε′, where {Λϑ(·)} is the family of Box-Cox
transformations.

Supplementary Materials

The online supplementary material includes the proof of Theorem 1 and the
proof of some auxiliary results used to prove Theorem 2.
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Appendix

Appendix A. Regularity Conditions

For the asymptotic normality of the estimator ϑ̂, we need regularity condi-
tions.
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(a1) k is a symmetric probability density function supported on [−1, 1], k is d+1

times continuously differentiable, and k(j)(±1) = 0 for j = 0, . . . , d− 1.

(a2) hj (j = 1, . . . , d) satisfies hj/h0 → cj for some 0 < cj < ∞ and some

baseline bandwidth h0 satisfying nh
2p+2
0 → 0, for some p ≥ 3, and nh3d+δ

0 →
∞ for some small δ > 0.

(a3) The kernel ℓ is a symmetric, twice continuously differentiable function sup-

ported on [−1, 1],
∫
usℓ(u)du = 0 for s = 1, . . . , q − 1, and

∫
uqℓ(u)du ̸= 0

for some q ≥ 4. The bandwidth g satisfies ng6(log n)−2 → ∞ and ng2q → 0.

(a4) The support RX of the covariate X is a compact subset of Rd, the distribu-

tion function FX is 2d+1-times continuously differentiable, infx∈RX
fX(x)

> 0, and infx∈RX
σ(x) > 0. The functions mϑ(x), ṁϑ(x), σϑ(x), and σ̇ϑ(x)

are p+ 2 times continuously differentiable with respect to the components

of x on RX × N (ϑ0), and all derivatives up to order p + 2 are bounded

uniformly in (x, ϑ) ∈ RX ×N (ϑ0), where N (ϑ0) is a neighborhood of ϑ0.

(a5) The transformation Λϑ satisfies supϑ∈Θ,x∈RX
||E[Λ̇ϑ(Y )|X = x]|| < ∞,

supx∈RX
||E[Λ̇4

ϑ0
(Y )|X = x]|| <∞, and the density function of (Λ̇ϑ(Y ), X)

exists and is continuous for all ϑ ∈ Θ. In addition, Λϑ(y) is three times

continuously differentiable with respect to y and ϑ, and there exists a δ > 0

such that

E
[

sup
ϑ′:∥ϑ′−ϑ∥≤δ

∣∣∣ ∂j+r

∂yj∂ϑr11 . . . ∂ϑrkk
Λϑ′(Y )

∣∣∣] <∞,

for all ϑ ∈ Θ and all 0 ≤ j + r ≤ 3, where r =
∑k

i=1 ri.

(a6) The error term ε has finite sixth moment and is independent of X. The

distribution Fε(ϑ)(y) is three times continuously differentiable with respect

to y and ϑ,

sup
y,ϑ

∣∣∣ ∂j+r

∂yj∂ϑr11 . . . ∂ϑrkk
Fε(ϑ)(y)

∣∣∣ <∞

for all 0 ≤ j +
∑k

i=1 ri ≤ 2, supy |yf ′ε(y)| < ∞, supy |yḟ ′ε(y)| < ∞ and

supy |y2f ′′ε (y)| <∞. The conditional distribution Fε(ϑ)|X(y|x) is three times

continuously differentiable with respect to y and ϑ,

sup
y,x,ϑ

∣∣∣ ∂j+r

∂yj∂ϑr11 . . . ∂ϑrkk
Fε(ϑ)|X(y|x)

∣∣∣ <∞

for all 0 ≤ j+
∑k

i=1 ri ≤ 2, supy,x |yf ′ε|X(y|x)| <∞, supy,x |yḟ ′ε|X(y|x)| <∞
and supy,x |y2f ′′ε|X(y|x)| <∞.

(a7) For all η > 0, there exists ϵ(η) > 0 such that inf∥ϑ−ϑ0∥>η ∥G(ϑ)∥ ≥ ϵ(η) > 0.

The matrix Γ defined in Theorem 1 is of full rank.
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For the results of Section 3, we need assumptions (a1), (a2) and the following

conditions. Let ∥ · ∥ denote some vector or matrix norm, as appropriate.

(A1) All partial derivatives of FX up to order 2d + 1 exist on the interior of its

compact support RX , they are uniformly continuous, and inf
x∈RX

fX(x) > 0.

(A2) All partial derivatives of m and σ up to order p+ 2 exist on the interior of

RX , they are uniformly continuous, and inf
x∈RX

σ(x) > 0.

(A3) Fε is twice continuously differentiable, sup
y

|yfε(y)| <∞, sup
y

|y2f ′ε(y)| <∞,

and E(ε6) <∞.

(A4) sup
y∈R

E
[∥∥∇ϑFε(ϑ)|X(y|X)|ϑ=ϑ0

∥∥] <∞.

(A5) For the parameter estimator a linear expansion as in (3.2) is valid with

E[gϑ0(X,Y )] = 0, E[∥gϑ0(X,Y )∥2] <∞.

(A6) If FY |X(·|x) and fY |X(·|x) denote the conditional distribution and density

function of Y , given X = x, respectively, there exists η > 0 such that

sup
ϑ:∥ϑ−ϑ0∥≤η

sup
z∈R

∫ (
|f ′Y |X(Vϑ(z)|u)|∥V̇ϑ(z)∥2+fY |X(Vϑ(z)|u)∥V̈ϑ(z)∥

)
dFX(x)

<∞,

where Vϑ = Λ−1
ϑ , V̇ϑ = ∇ϑVϑ, and V̈ϑ = ( ∂2Vϑ

∂ϑiϑj
)i,j=1,...,k. Further,

sup
y∈R,x∈RX

∥∥∥y∂(fY |X(Vϑ0(y)|x)V̇ϑ0(y))

∂y

∥∥∥ <∞.

(A7) For some η > 0, E[supϑ:∥ϑ−ϑ0∥≤η ∥Λ̈ϑ(Y )∥]<∞, E[supϑ:∥ϑ−ϑ0∥≤η ∥Λ̇ϑ(Y )∥2]
<∞ and E[supϑ:∥ϑ−ϑ0∥≤η ∥Λ̈ϑ(Y )Λϑ(Y )∥]<∞. Further,

E
[

sup
ϑ:∥ϑ−ϑ0∥≤η

∥Λϑ(Y )Λ̇ϑ(Y )∥
∣∣∣X = x

]
<∞,

E
[

sup
ϑ:∥ϑ−ϑ0∥≤η

∥Λ̇ϑ(Y )∥
∣∣∣X = x

]
<∞

for almost all x ∈ RX .

(A8) Assumption (A2) holds with m replaced by E[∂Λϑ(Y )
∂ϑi

|ϑ=ϑ0 |X = ·] and

σ replaced by E[Λϑ0(Y )∂Λϑ(Y )
∂ϑi

|ϑ=ϑ0 |X = ·], for i = 1, . . . , k. Further,

E[∥Λ̇ϑ0(Y )∥3] <∞ and E[∥Λϑ0(Y )Λ̇ϑ0(Y )∥3] <∞.
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Remarks on the assumptions. Assumptions (a1)−(a7) are needed for The-

orem 1. Here, (a1)−(a3) refers to choices of bandwidths and kernel functions.

Assumptions (a4)−(a7) are conditions on the model, analogous to assumptions

A.1–A.8 of Linton, Sperlich, and Van Keilegom (2008) with some changes due

to heteroscedasticity of our model and application of local polynomial estima-

tors. For Theorem 2, instead of (a3)−(a7), we formulate (A5) about the linear

expansion of the estimator ϑ̂. Thus the application of Theorem 2 for different

estimators ϑ̂ apart from the profile likelihood estimator is possible. Assumptions

(a1), (a2), (A1)−(A3) are typically needed for weak convergence of empirical

residual processes, compare to assumptions (C1)−(C5) of Neumeyer and Van

Keilegom (2010) in a model without transformation. Assumption (A4) is needed

for some Taylor expansion of the, now ϑ-dependent, error distribution with re-

spect to ϑ. In particular they allow interchanging derivatives with integrals that

appear in several terms. Assumptions (A6)−(A8) are needed to prove asymptotic

expansions of the empirical process, using Taylor expansions with respect to ϑ.

For specific classes of transformations, some assumptions can be reformulated or

replaced by simpler conditions. For example, (A7) for the Yeo-Johnson family

used in the simulations can be deduced from (conditional) moment assumptions

on the observations Y .

Appendix B. Proof of the Main Results

B.1. Proof of Theorem 2

Let F̂X,ε denote the joint empirical distribution function of (Xi, εi), i =

1, . . . , n, under H0. Let further

Rn(x, y)=E[I{X≤x}I{Λϑ̂(Y )≤yσ̂(X)+m̂(X)} | Yn]−E[I{X≤x}I{ε≤y}],

where Yn = {(Xi, Yi) | i = 1, . . . , n}.

Lemma B.1. Under the assumptions of Theorem 2,

F̂X,ε̂(x, y) = F̂X,ε(x, y) +Rn(x, y) + oP (
1√
n
)

uniformly with respect to x ∈ RX , y ∈ R.

Proof of Lemma B.1. We need some notation. For k = (k1, . . . , kd) ∈ Nd
0, let

k. =
∑d

j=1 kj , D
k = ∂k./∂xk11 . . . ∂xkdd , and

∥f∥d+α = max
k.≤d

sup
x∈RX

|Dkf(x)|+max
k.=d

sup
x,x′∈RX

|Dkf(x)−Dkf(x′)|
∥x− x′∥α

,

where ∥ · ∥ is the Euclidean norm in Rd. Let G1 = Cd+α
1 (RX) be the class of

d times differentiable functions f defined on RX such that ∥f∥d+α ≤ 1, and
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G2 = C̃d+α
2 (RX) be the class of d times differentiable functions f defined on RX

such that ∥f∥d+α ≤ 2 and infx∈RX
f(x) ≥ 1/2. Let

φϑ,g1,g2,y(X,Y ) = I
{Λϑ(Y )−m(X)

σ(X)
≤ yg2(X) + g1(X)

}
−I
{Λϑ0(Y )−m(X)

σ(X)
≤ y
}
.

With this notation,

√
n(F̂X,ε̂(x, y)− F̂X,ε(x, y)−Rn(x, y)) = Gn

(
x, ϑ̂,

m̂−m

σ
,
σ̂

σ
, y
)
,

where the empirical process

Gn(x, ϑ, g1, g2, y)

=
1√
n

n∑
i=1

(
I{Xi ≤ x}φϑ,g1,g2,y(Xi, Yi)− E[I{X ≤ x}φϑ,g1,g2,y(X,Y )]

)
(indexed in x ∈ RX , ϑ ∈ Θ, g1 ∈ G1, g2 ∈ G2, y ∈ R) converges weakly to a

Gaussian process. This follows from Proposition S2.1 in the supplementary doc-

ument, the Donsker property of {I{X ≤ x} | x ∈ RX}, and because products of

uniformly bounded Donsker classes are Donsker (see Example 2.10.8 in van der

Vaart and Wellner (1996)). Thus Gn is asymptotically stochastically equicontin-

uous with respect to

ρ
(
(x, ϑ, g1, g2, y), (x

′, ϑ′, g′1, g
′
2, y

′))

=
(
Var

(
I{X ≤ x}φϑ,g1,g2,y(X,Y )− I{X ≤ x′}φϑ′,g′1,g

′
2,y

′(X,Y )
))1/2

(see pages 262 and 263 of van der Vaart (1998)). We have

ρ
(
(x, ϑ̂,

m̂−m

σ
,
σ̂

σ
, y), (x, ϑ0, 0, 1, y)

)
= oP (δn),

where δn ↘ 0 by Proposition S2.3 in the supplementary document. Thus, and

because φϑ0,0,1,y ≡ 0, it follows that

P
(
sup
x,y

|
√
n(F̂X,ε̂(x, y)− F̂X,ε(x, y)−Rn(x, y))| > η

)
≤ P

(
sup

ρ((x,ϑ,g1,g2,y),(x′,ϑ′,g′1,g
′
2,y

′))≤δn

|Gn(x, ϑ, g1, g2, y)−Gn(x
′, ϑ′, g′1, g

′
2, y

′)| > η
)

which converges to zero for n → ∞, for all η > 0. From this the assertion of

Lemma B.1 follows.
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To finish the proof of Theorem 2 we write Rn = An +Bn + Cn, where

An(x, y) = E[I{X ≤ x}I{Λϑ̂(Y ) ≤ yσ̂(X) + m̂(X)} | Yn]

−E[I{X ≤ x}I{Λϑ0(Y ) ≤ yσ̂(X) + m̂(X)} | Yn],

Bn(x, y) = E[I{X ≤ x}I{Λϑ0(Y ) ≤ yσ̂ϑ̂(X) + m̂ϑ̂(X)} | Yn]

−E[I{X ≤ x}I{Λϑ0(Y ) ≤ yσ̂ϑ0(X) + m̂ϑ0(X)} | Yn],

Cn(x, y) = E[I{X ≤ x}I{Λϑ0(Y ) ≤ yσ̂ϑ0(X) + m̂ϑ0(X)} | Yn]

−E[I{X ≤ x}I{Λϑ0(Y ) ≤ yσϑ0(X) +mϑ0(X)}].

For the ease of notation, suppose the parameter ϑ is one-dimensional. We use

the notation as in assumption (A6). Then

An(x, y)

=

∫ (
FY |X(Vϑ̂(yσ̂(u) + m̂(u))|u)−FY |X(Vϑ0(yσ̂(u) + m̂(u))|u)

)
I{u≤x}dFX(u).

For the moment fix u and z = yσ̂(u)+ m̂(u), and consider a second order Taylor

expansion of the map ϑ 7→ ψ(ϑ) = FY |X(Vϑ(z)|u),

ψ(ϑ̂)−ψ(ϑ0) = fY |X(Vϑ0(z)|u)V̇ϑ0(z)(ϑ̂− ϑ0)

+
1

2

(
f ′Y |X(Vϑ∗(z)|u)(V̇ϑ∗(z))2 + fY |X(Vϑ∗(z)|u)V̈ϑ∗(z)

)
(ϑ̂−ϑ0)2.

The value ϑ∗ may depend on u and z, but lies between ϑ̂ and ϑ0. Because for

each η > 0, |ϑ̂ − ϑ0| ≤ η with probability converging to one, for the proof we

may assume |ϑ∗ − ϑ0| ≤ η with η, by (A6). A Taylor expansion of ψ motivates

the definition of

Ãn(x, y)

=

∫
fY |X(Vϑ0(yσ̂(u) + m̂(u))|u)V̇ϑ0(yσ̂(u) + m̂(u))I{u ≤ x} dFX(u)(ϑ̂− ϑ0)

and yields that

sup
x,y

|An(x, y)− Ãn(x, y)|

≤ (ϑ̂− ϑ0)
2 1

2
sup

ϑ:|ϑ−ϑ0|≤η
sup
z∈R

∫ (
|(f ′Y |X(Vϑ(z)|u)|(V̇ϑ(z))2+fY |X(Vϑ(z)|u)|V̈ϑ(z)|

)
dFX(x)

= oP (
1√
n
)

by (A6). Denote by Ān the same term as Ãn, but with the estimators σ̂ and

m̂ replaced by the true functions σ and m, respectively. From the proof of



HETEROSCEDASTIC SEMIPARAMETRIC TRANSFORMATION MODELS 949

Proposition S2.2 in the supplementary document, uniform convergence of |σ̂−σ|
and |m̂−m| to zero in probability follows, and thus by the Mean Value Theorem,

the last part of (A6), and ϑ̂ − ϑ0 = OP (n
−1/2) we obtain supx,y |Ãn(x, y) −

Ān(x, y)| = oP (n
−1/2). Altogether for An, we have uniformly with respect to

x ∈ RX , y ∈ R,

An(x, y)=

∫
fY |X(Vϑ0(yσ(u)+m(u))|u)V̇ϑ0(yσ(u)+m(u))I{u ≤ x}dFX(u)(ϑ̂−ϑ0)

+oP (
1√
n
).

For Cn we obtain an expansion, uniformly with respect to x, y,

Cn(x, y) = E
[
I{X ≤ x}I

{
ε ≤ y

σ̂ϑ0(X)

σ(X)
+
m̂ϑ0(X)−m(X)

σ(X)

}
| Yn

]
− E[I{X ≤ x}I{ε ≤ y}]

=

∫ (
Fε

(
y
σ̂ϑ0(u)

σ(u)
+
m̂ϑ0(u)−m(u)

σ(u)

)
− Fε(y)

)
I{u ≤ x} dFX(u)

= fε(y)
(
y

∫
σ̂ϑ0(u)− σ(u)

σ(u)
I{u ≤ x} dFX(u)

+

∫
m̂ϑ0(u)−m(u)

σ(u)
I{u ≤ x} dFX(u)

)
+ oP (

1√
n
)

= fε(y)
1

n

n∑
i=1

(εi +
y

2
(ε2i − 1))

∫
1

h
K∗
(u−Xi

h

)
I{u ≤ x} du+ oP (

1√
n
).

The second but last equality follows by Taylor’s expansion, (A3) and the fact

that
∫
(m̂ϑ0−m)2/σ2 dFX = oP (n

−1/2),
∫
(σ̂ϑ0−σ)2/σ2 dFX = oP (n

−1/2), see the

proof of Theorem 2.1 in Neumeyer and Van Keilegom (2010). The last equality

follows from (S1.1) and (S1.2) in the supplementary document, a combination of

the proof of Lemma A.2 in Neumeyer and Van Keilegom (2010), and the proof

of Proposition 2 in Neumeyer and Van Keilegom (2009).

Now let either Zi = εi or Zi = ε2i − 1. Then, as in the last part of the proof

of Lemma B.1 in the supporting information to Birke and Neumeyer (2013), we

have

sup
x∈RX

∣∣∣ 1
n

n∑
i=1

Zi

(∫ 1

hd
K∗
(u−Xi

h

)
I{u ≤ x} du− I{Xi ≤ x}

)∣∣∣ = oP (
1√
n
).

Altogether for Cn we have, uniformly with respect to x ∈ RX , y ∈ R,

Cn(x, y) = fε(y)
1

n

n∑
i=1

(εi +
y

2
(ε2i − 1))I{Xi ≤ x}+ oP (

1√
n
).
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With Bn we proceed similarly to obtain

Bn(x, y) = fε(y)
(
y

∫
σ̂ϑ̂(u)− σ̂ϑ0(u)

σ(u)
I{u ≤ x} dFX(u)

+

∫
m̂ϑ̂(u)− m̂ϑ0(u)

σ(u)
I{u ≤ x} dFX(u)

)
+ oP (

1√
n
)

by (A3) and the fact that supx |m̂ϑ̂(x) − m̂ϑ0(x)| = OP (n
−1/2), supx |σ̂ϑ̂(x) −

σ̂ϑ0(x)| = OP (n
−1/2) (see the proof of Proposition S2.2). Now

m̂ϑ̂(u)− m̂ϑ0(u) =
1

nhd

n∑
i=1

Wu,n

(u−Xi

h

)
(Λϑ̂(Yi)− Λϑ0(Yi))

=
1

nhd

n∑
i=1

Wu,n

(u−Xi

h

)
Λ̇ϑ0(Yi)(ϑ̂− ϑ0) + rn(u), (B.1)

where∫
rn(u)

σ(u)
I{u ≤ x} dFX(u)

≤ 1

2
(ϑ̂− ϑ0)

2

∫
1

nhd

n∑
i=1

∣∣∣Wu,n

(u−Xi

h

)∣∣∣ sup
ϑ:|ϑ−ϑ0|≤η

|Λ̈ϑ(Yi)|
I{u ≤ x}
σ(u)

dFX(u)

= oP (n
−1/2)

by (A5) and (A7). Proceeding similarly to the expansion of Cn we obtain

n

∫
m̂ϑ̂(u)− m̂ϑ0(u)

σ(u)
I{u ≤ x} dFX(u)

= (ϑ̂− ϑ0)
1

n

n∑
i=1

Λ̇ϑ0(Yi)

∫
1

hd
K∗
(u−Xi

h

)I{u ≤ x}
σ(u)

dx+ oP (
1√
n
)

= (ϑ̂− ϑ0)E
[
Λ̇ϑ0(Y )

I{X ≤ x}
σ(X)

]
+ oP (

1√
n
).

For the variance we have σ̂ϑ̂− σ̂ϑ0 = (σ̂2
ϑ̂
− σ̂2ϑ0

)/(σ̂ϑ̂+ σ̂ϑ0), which yields (compare

to (B.1))∫
σ̂ϑ̂(u)− σ̂ϑ0(u)

σ(u)
I{u ≤ x} dFX(u)

=
1

2

∫
1

σ2(u)

1

nhd

n∑
i=1

Wu,n

(u−Xi

h

)
((Λϑ̂(Yi))

2 − (Λϑ0(Yi))
2)I{u ≤ x} dFX(u)

+
1

2

∫
1

σ2(u)
(m̂ϑ0(u)− m̂ϑ̂(u))(m̂ϑ0(u)+m̂ϑ̂(u))I{u ≤ x}dFX(u)+oP (

1√
n
)
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= (ϑ̂− ϑ0)

(
1

2n

n∑
i=1

∂(Λϑ(Yi))
2

∂ϑ

∣∣∣
ϑ=ϑ0

∫
1

hd
K∗
(u−Xi

h

)I{u ≤ x}
σ2(u)

du

− 1

2n

n∑
i=1

Λ̇ϑ0(Yi)

∫
1

hd
K∗
(u−Xi

h

)I{u ≤ x}
σ2(u)

2m(u) du

)
+ oP (

1√
n
)

= (ϑ̂− ϑ0)
1

n

n∑
i=1

(
Λ̇ϑ0(Yi)Λϑ0(Yi)− Λ̇ϑ0(Yi)m(Xi)

)I{Xi ≤ x}
σ2(Xi)

+ oP (
1√
n
)

= (ϑ̂− ϑ0)E
[(

Λ̇ϑ0(Y )Λϑ0(Y )− Λ̇ϑ0(Y )m(X)
)I{X ≤ x}

σ2(X)

]
+ oP (

1√
n
).

Those expansions yield, uniformly with respect to x and y,

Bn(x, y) = (ϑ̂− ϑ0)fε(y)E
[
Λ̇ϑ0(Y )

(
σ(X) + yΛϑ0(Y )− ym(X)

)I{X ≤ x}
σ2(X)

]
+ oP (

1√
n
).

The expansions derived for An, Bn, and Cn now yield

Rn(x, y) = (ϑ̂−ϑ0)Hϑ0(x, y)+fε(y)
1

n

n∑
i=1

(εi+
y

2
(ε2i − 1))I{Xi ≤ x}

+oP (
1√
n
) (B.2)

with

Hϑ0(x, y) = fε(y)E
[
Λ̇ϑ0(Y )

(
σ(X) + yΛϑ0(Y )− ym(X)

)I{X ≤ x}
σ2(X)

]
+

∫
fY |X(Vϑ0(yσ(u) +m(u))|u)V̇ϑ0(yσ(u) +m(u))I{u ≤ x} dFX(u)

= E
[ ∂
∂ϑ
Fε(ϑ)|X(y|X)

∣∣∣
ϑ=ϑ0

I{X ≤ x}
]
.

The last equality follows by some tedious but straightforward calculations. The

assertion of Theorem 2 follows by Lemma B.1, (B.2), and (A5).

B.2. Proof of Corollary 2

From (3.4) we have

Sn(x, y) = Gn

(
x, y, fε(y), yfε(y), hϑ0(x, y)

)
+ oP (1)

uniformly, where

hϑ0(x, y) = E
[
∇ϑFε(ϑ)|X(y|X)

∣∣∣
ϑ=ϑ0

(
I{X ≤ x} − FX(x)

)]
,
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and where the process

Gn(x, y, z1, z2, z3)

=
1√
n

n∑
i=1

((
I{Xi ≤ x} − FX(x)

)(
I{εi ≤ y} − Fε(y) + z1εi +

z2
2
(ε2i − 1)

)
+ z3gϑ0(Xi, Yi)

)
,

is indexed in F = {(x, y, z1, z2, z3) | x ∈ RX , y ∈ R, z1, z2, z3 ∈ [−K,K]} for some

K such that supy fε(y) ≤ K, supy |yfε(y)| ≤ K, supx,y |hϑ0(x, y)| ≤ K ((A3) and

(A4)). Weak convergence of Gn follows similarly to the proof of Theorem 2 in

Neumeyer and Van Keilegom (2009). The key argument is that for the bracketing

number N[](η,F , L2(P )), an order O(η−7) can be derived from the L2(P )-norm(
E
[((

I{Xi ≤ x} − FX(x)
)(
I{εi ≤ y} − Fε(y) + z1εi +

z2
2
(ε2i − 1)

)
+z3gϑ0(Xi, Yi)−

(
I{Xi ≤ x′}−FX(x′)

)(
I{εi≤y′}−Fε(y

′)+z′1εi+
z′2
2
(ε2i −1)

)
−z′3gϑ0(Xi, Yi)

)2])1/2
≤ C

(
|FX(x)− FX(x′)|(1 +K2(1 + Var (ε2))) + |Fε(y)− Fε(y

′)|+ (z1 − z′1)
2

+(z2 − z′2)
2Var (ε2) + (z3 − z′3)

2E[g2ϑ0
(X,Y )]

)1/2
for some constant C. Weak convergence of Sn follows by consideration of the

subclass of F defined by z1 = fε(y), z2 = yfε(y), z3 = hϑ0(x, y).
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