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Abstract: Limit distributions of the least squares estimate of the autoregressive co-

efficient of a nearly nonstationary autoregressive model with strong dependent and

infinite variance innovations are established in this paper. It is shown that under

some regularity conditions, the ordinary least squares estimator of the autoregres-

sive parameter converges to a functional of a fractional Ornstein-Uhlenbeck stable

process. This paper not only generalizes the recent results of Buchmann and Chan

to models with long-memory finite variance innovations, but also demonstrates the

subtlety involved in the asymptotics when jumps are present. To this end, some

newly established weak convergence theory involving so-called M1 convergence is

employed to handle these subtleties. Results of this paper work toward a better

understanding of inference for jump processes that are commonly encountered in

finance and related fields.
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1. Introduction

The asymptotic theory of autoregressive time series with roots on or near
the unit circle has been actively pursued by statisticians and econometricians.
As of today, a relatively complete theory has been established for inference for
time series with unit root or near unit root when the variance is finite, see for
example the recent survey articles of Chan (2009) and the references therein.

However, large number of empirical studies, ranging from signal process-
ing and network traffic to insurance, indicate that time series with heavy tails
provide better models for these kinds of data. For background information on
heavy-tailed time series and their applications, see Finkenstädt and Rootzén
(2004) for a survey of important theories and applications of extreme values in
the areas of finance, insurance, the environment and telecommunications. In fi-
nancial econometrics, there has also been increasing interest in modeling financial
phenomena by time series driven by heavy-tailed innovation. For example, Fama



926 NGAI HANG CHAN AND RONG-MAO ZHANG

(1965) and Mandelbrot (1963, 1967) argued that distributions of commodity and
stock returns are often heavy-tailed with possible infinite variance, Rachev and
Mittnik (2000) considered stable paretian models in finance, Lux and Marchesi
(2000) studied agent-based models with heavy tails, and Bayraktar, Horst and
Sircar (2003) studied financial market model where order flows have heavy-tailed
and long-memory durations.

Although relatively complete theories for the inference for finite variance,
nonstationary ARMA models are readily available, see for example the recent
monograph of Andersen, Davis, Kreiss and Mikosch (2009), less can be said for
the infinite variance counterpart. For a unit-root autoregressive process with
heavy-tailed noise, Knight (1989, 1991) considered the asymptotic distribution
of M -estimation and a least absolute deviation estimate; Hasan (2001) considered
a rank test for the unit-root hypothesis. For nearly non-stationary process with
heavy-tailed noise, Chan (1990) and Chan, Peng and Qi (2006) considered the
limit distribution of the LSE and quantile inference. Long-range dependence
with finite variance noise was considered by Wu (2006). Recently, Buchmann and
Chan (2007) establish the asymptotic theory of the LSE for nearly nonstationary
processes when innovations are strongly dependent with finite variance.

Due to the intricacy of the asymptotic theory involved in an infinite variance
model, even less is known when both long-range dependence and infinite variance
structure are exhibited in the time series. On the other hand, time series with
long-range dependence and infinite variance phenomenon do exist in financial
data, see for example Cont and Tankov (2004), where many convincing examples
are given. One of the main purposes of this paper is to establish a unified theory
for nearly nonstationary AR(1) model when the noise is a strongly dependent
and an infinite variance process. For more information and applications con-
cerning strong dependent and infinite variance processes, we refer the readers to
Doukhan, Oppenheim and Taqqu (2003) and Samorodnitsky and Taqqu (1994),
and the references therein.

Consider a nearly nonstationary first-order autoregressive (AR(1)) model

Yt = µn + βnYt−1 + εt, t = 1, . . . , n, (1.1)

where µn and βn are two unknown parameters. When µn = 0 and βn = 1, (1.1)
reduces to the traditional random walk model. When µn is unknown and βn = 1,
(1.1) is sometimes known as a differenced-stationary model. In this paper, the
limiting behavior of the least squares estimator of βn is studied when βn is close to
one. In particular, we show that when limn→ n(1−βn) = γ, where γ is a constant,
then under some regularity conditions the limit distribution of the least squares
estimator (LSE) of βn is a functional of fractional Ornstein-Uhlenbeck (O-U)
stable processes. An important reason to study processes like (1.1) is due to the
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non standard asymptotic behavior of the LSE between βn = 1 and βn close to
one. As indicated in Buchmann and Chan (2007), a key consideration is the kind
of approximation that should be used for statistics constructed from the LSE
when (1.1) incorporates both long-range dependence and infinite variance.

Although the main result of this paper bears some formal analogy with Buch-
mann and Chan (2007), it offers a number of important new implications. First,
it extends the recent work of Buchmann and Chan (2007) to the case when {εt}
is heavy-tailed, thereby extending the inference for LSE to the nearly nonsta-
tionary infinite variance model under strong dependence. This result can then
be used to shed light on finite sample analysis or to conduct test based on local
alternatives. Due to the existence of random jumps exhibited in infinite vari-
ance models, traditional weak convergence is no longer sufficient. To this end,
we rely on a weaker convergence involving the M1 topology (see Whitt (2002))
and the associated results of fractional O-U stable processes. Second, we show
that even in the infinite variance case, the order of βn is still n. This is some-
what intriguing as this order was originally motivated by the consideration of
the magnitude of the observed Fisher’s information number in the finite vari-
ance case, see Chan and Wei (1987). Third, by considering (1.1) with different
rates of convergence for the drift term µn, we exhaust all possible scenarios for
both differenced-stationary and trend-stationary models. These results reflect
the subtlety between differenced stationarity and trend stationarity under strong
dependence and infinite variance; this has not been dealt with previously.

The paper is organized as follows. In Section 2, we give the main results
of this paper. In Section 3 some elementary lemmas are given, while Section 4
consists of proofs of the main theorems. Simulations are reported on in Section 5,
and Section 6 concludes. Throughout the paper, the symbol C is used to denote
an unspecified positive and finite constant, which may vary in each appearance.

2. Distributions of Least Squares Estimators

Assume that Y0 = 0 and Y1, . . . Yn are observed. To estimate βn, consider
the statistics β̂n and β̂µn based on the least squares regression of Yt on Yt−1 in
(1.1), where for µn = 0,

β̂n =
∑n

t=1 Yt−1Yt∑n
t=1 Y 2

t−1

,

and for µn unknown,

β̂µn =
∑n

t=1 Yt−1Yt − Y
∑n

t=1 Yt∑n
t=1 Y 2

t−1 − n(Y )2
,
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where Y =
∑n

t=1 Yt−1/n. Define

τ̂n =
( n∑

t=1

Y 2
t−1

)1/2(
β̂n − βn

)
=

( n∑
t=1

Y 2
t−1

)−1/2( n∑
t=1

Yt−1εt

)
,

ρ̂n = n(β̂n − βn) =
( 1

n

n∑
t=1

Y 2
t−1

)−1( n∑
t=1

Yt−1εt

)
,

τ̂µn =
( n∑

t=1

Y 2
t−1 − n(Y )2

)1/2(
β̂µn − βn

)
=

( n∑
t=1

Y 2
t−1 − n(Y )2

)−1/2( n∑
t=1

Yt−1εt − Y

n∑
t=1

εt

)
,

ρ̂µn = n(β̂µn − βn) =
( 1

n

n∑
t=1

Y 2
t−1 − (Y )2

)−1( n∑
t=1

Yt−1εt − Y

n∑
t=1

εt

)
.

By elementary decompositions (see Section 4), the limit distributions of
τ̂n, ρ̂n, τ̂µn and ρ̂µn can be established by studying the limit behaviors of

1
n

n∑
i=1

( i∑
t=1

βi−t
n εt

bn

)2
,

1
n

n∑
i=1

i∑
t=1

βi−t
n εt

bn
and

1
dn

n∑
i=1

ε2
i (2.1)

for suitably chosen sequences {an} and {bn}. In many situations, the limit dis-
tribution of

∑n
i=1 ε2

i /dn can be easily obtained. If we can show that the partial
sum process S[nt] = b−1

n

∑[nt]
i=1 εi converges weakly to some process Z(t) on the

space of càdlàg functions D[0, 1] with the Skorokhod (J1) topology, then by the
Continuous Mapping Theorem, we can deduce the limit distributions in (2.1).
Unfortunately, when dependence and heavy-tailed structures are present in the
innovation, it is not always true that S[nt] =⇒J1 Z(t) in D(0, 1) for some Z(t),
see Avram and Taqqu (1992). In considering possible dependent noise sequences
{εt} with infinite variance, a weaker topology is required so that S[nt] converges
weakly to Z(t). It turns out that the M1 topology satisfies this requirement,
though there are few results on weak convergence with the M1 topology. In par-
ticular, no result concerning the limit distribution of nearly nonstationary process
under the M1 topology is available. For more information about the definitions
of the J1 and M1 topologies, see Skorokhod (1956), Avram and Taqqu (2000),
and Whitt (2002). Throughout this paper, assume that limn n(1 − βn) = γ and
define the Ornstein-Uhlenbeck (O-U) process Zγ = (Zγ(t), t ∈ [0, 1]) driven by
Z = (Z(t)) via

Zγ(t) = Z(t) − γ

∫ t

0
e−γ(t−s)Z(s) ds, Zγ(0) = 0, t ∈ [0, 1]. (2.2)
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By Samorodnitsky and Taqqu (1994), the fractional O-U stable process given
by (2.2) is well-defined. Let M1−→ and =⇒J1 denote weak convergence under the
M1 and J1 topologies, respectively, and d−→ denote convergence in distribution.
With a slight abuse of notation, let a and b denote two generic random variables
whose exact meaning may be different from line to line. Our main results can be
stated as follows.

Theorem 2.1. Let Yt follow model (1.1) with µn = 0. Suppose that there exist
two sequences of constant {bn} and {dn} such that

( 1
bn

[nt]∑
i=1

εi,
1
dn

n∑
i=1

ε2
i

)
M1−→(Z(t), Z) in D[0, 1] (2.3)

for some process Z(t) and certain random variable Z with limn→∞ dn/b2
n = c ∈

[0,∞). Then (n1/2τ̂n

bn
, ρ̂n

)
d−→

( a√
2b

,
a

b

)
, (2.4)

where a = 2γ
∫ 1
0 Z2

γ(s) ds + Z2
γ(1) − cZ and b = 2

∫ 1
0 Z2

γ(s) ds.

Theorem 2.2. Let Yt follow model (1.1) with µn unknown. Under the conditions
of Theorem 2.1.

(i) For γ = 0 (βn = 1) and lim
n→∞

nµn/bn = ν ∈ [0,∞),

(√nτ̂µn

bn
, ρ̂µn

)
d−→

( a√
2b

,
a

b

)
, (2.5)

where a = ν(Z(1) − 2
∫ 1
0 Z(t) dt) + Z(1)2 − cZ − 2Z(1)

∫ 1
0 Z(t) dt and b =

2(ν2/12 + ν
∫ 1
0 (2t − 1)Z(t) dt +

∫ 1
0 Z2(t) dt − (

∫ 1
0 Z(t) dt)2).

(ii) For γ = 0 (βn = 1) and lim
n→∞

nµn/bn = ∞,

(n1/2τ̂µn

bn
,
nµn

bn
ρ̂µn

)
d−→

( a√
2b

,
a

b

)
, (2.6)

where a = Z(1) − 2
∫ 1
0 Z(t) dt and b = 1/6.

(iii)For γ 6= 0 (βn 6= 1) and lim
n→∞

nµn/bn = ν ∈ [0,∞),

(n1/2τ̂µn

bn
, ρ̂µn

)
d−→

( a√
2b

,
a

b

)
, (2.7)

where a = 2γ
∫ 1
0 (Zγ(s)−νe−γs/γ)2 ds+(Zγ(1)−νe−γ/γ)2−Z(1)

∫ 1
0 (Zγ(t)−

νe−γs/γ) ds − cZ and b = 2
∫ 1
0 (Zγ(s) − νe−γs/γ)2 ds.
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(iv)For γ 6= 0 (βn 6= 1) and lim
n→∞

nµn/bn = ∞,

(√nτ̂µn

bn
,
nµn

bn
ρ̂µn

)
d−→

( a√
2b

,
a

b

)
, (2.8)

where a = 2(1 − (γ + 1)e−γ)Z(1)/γ2 − 2
∫ 1
0 e−γtZ(t) dt and b = 2(4e−γ −

3e−2γ − 1)/γ2.

In what follows, Theorems 2.1 and 2.2 are applied to the case when {εt} is
a heavy-tailed dependent process defined by

εt =
∞∑

j=0

cjηt−j , t = 1, 2, . . . , (2.9)

where ηj , j = 0,±1,±2, . . . are i.i.d. random variables belonging to the domain

of attraction α (DA(α)) for α ∈ (0, 2], that is,
∑[nt]

i=1 ηi/an
M1−→Zα(t) in D[0,∞),

with an = inf{y : P{|ηi| > y} ≤ 1/n} = n1/αl0(n) for some slowly varying func-
tion l0(x), and where Zα(t) is a stable process with index α. For the coefficients
{ci}, we require the following conditions.

H1. If 1 < α ≤ 2, then cj = j−θl(j) for some θ > 1/α, where l(x) is a slowly
varying function. If θ = 1, then limn→∞(lnn)2+1/α+δl(n) = 0 for some
δ > 0.

H2. If 0 < α ≤ 1, then
∑∞

j=0 |cj |ς < ∞ for some ς < α with ci ≥ 0.

Let bn = ann1−θl(n) = n1−θ+1/αl0(n)l(n), ω1 =
∑∞

i=0 ci, ω2 =
∑∞

i=0 c2
i , and

let Zαθ(t) be an integrated stable process defined by

Zαθ(t) =
∫ ∞

−∞

∫ t

0
(u − s)−θ

+ du dZα(s),

where Zαθ,γ , Zα,γ are O-U processes defined in (2.2) driven by the processes
{Zαθ(t)} and {Zα(t)}, respectively.

Theorem 2.3. If conditions H1 and H2 are satisfied, the following assertions
hold.
1. For 1 < α ≤ 2 and 1/α < θ < 1, we have

(a) (n1/2τ̂n

bn
, ρ̂n

)
d−→

( a√
2b

,
a

b

)
, (2.10)

where a = 2γ
∫ 1
0 Z2

αθ,γ(s) ds + Z2
αθ,γ(1) and b = 2

∫ 1
0 Z2

αθ,γ(s) ds;
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(b) γ = 0 (βn = 1) and µn = O(n−θ+1/α−δ) for some δ > 0,(n1/2τ̂µn

bn
, ρ̂µn

)
d−→

( a√
2b

,
a

b

)
, (2.11)

where a = Zαθ(1)2−2Zαθ(1)
∫ 1
0 Zαθ(t)dt and b = 2(

∫ 1
0 Z2

αθ(t)dt−(
∫ 1
0 Zαθ(t)

dt)2);

(c) γ 6= 0 (βn 6= 1) and µn = O(n−θ+1/α−δ) for some δ > 0,(n1/2τ̂µn

bn
, ρ̂µn

)
d−→

( a√
2b

,
a

b

)
, (2.12)

where a = 2γ
∫ 1
0 Z2

αθ,γ(s) ds + Z2
αθ,γ(1) − Zα(1)

∫ 1
0 Zαθ,γ(t) ds and b =

2
∫ 1
0 Z2

αθ,γ(s) ds;

(d) γ = 0 (βn = 1) and µn = Cn−θ+1/α+δ for some δ > 0,(n1/2τ̂µn

bn
,
nµn

bn
ρ̂µn

)
d−→

( a√
2b

,
a

b

)
, (2.13)

where a = Zαθ(1) − 2
∫ 1
0 Zαθ(t) dt and b = 1/6;

(e) γ 6= 0 (βn 6= 1) and µn = Cn−θ+1/α+δ for some δ > 0,(n1/2τ̂µn

b∗n
,
nµn

bn
ρ̂µn

)
d−→

( a√
2b

,
a

b

)
, (2.14)

where a = 2(1−(γ+1)e−γ)Zαθ(1)/γ2−2
∫ 1
0 e−γtZαθ(t) dt and b = 2(4e−γ−

3e−2γ − 1)/γ2.

2. For 0 < α ≤ 1 or 1 < α < 2 and θ ≥ 1, we have

(a) (
n1/2 τ̂n

ω1an
, ρ̂n

)
d−→

( a√
2b

,
a

b

)
, (2.15)

where a = 2γ
∫ 1
0 Z2

α,γ(s) ds+Z2
α,γ(1)−ω2Zα/2/ω2

1 and b = 2
∫ 1
0 Z2

α,γ(s) ds;

(b) γ = 0 (βn = 1) and µn = O(n−1+1/α−δ) for some δ > 0,(n1/2τ̂µn

ω1an
, ρ̂µn

)
d−→

( a√
2b

,
a

b

)
, (2.16)

where a = Zα(1)2−2Zα(1)
∫ 1
0 Zα(t) dt−ω2Zα/2/ω2

1 and b = 2
∫ 1
0 Z2

α(t) dt−
2(

∫ 1
0 Zα(t) dt)2;
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(c) γ 6= 0 (βn 6= 1) and µn = O(n−1+1/α−δ) for some δ > 0,(n1/2τ̂µn

ω1an
, ρ̂µn

)
d−→

( a√
2b

,
a

b

)
, (2.17)

where a = 2γ
∫ 1
0 Z2

α,γ(s) ds + Z2
α,γ(1)−Zα(1)

∫ 1
0 Zα,γ(t) ds− (ω2/ω2

1)Zα/2 ,

b = 2
∫ 1
0 Z2

α,γ(s) ds and Zα/2 is a stable random variable with index α/2
that will be defined in the next section;

(d) γ = 0 (βn = 1) and µn = Cn−1+1/α+δ for some δ > 0,(n1/2τ̂µn

ω1an
,

nµn

ω1an
ρ̂µn

)
d−→

( a√
2b

,
a

b

)
, (2.18)

where a = Zα(1) − 2
∫ 1
0 Zα(t) dt and b = 1/6;

(e) γ 6= 0 (βn 6= 1) and µn = Cn−1+1/α+δ for some δ > 0,(n1/2τ̂µn

ω1an
,

nµn

ω1an
ρ̂µn

)
d−→

( a√
2b

,
a

b

)
, (2.19)

where a = 2(1− (γ +1)e−γ)Zα(1)/γ2−2
∫ 1
0 e−γtZα(t) dt and b = 2(4e−γ −

3e−2γ − 1)/γ2.

Remark 2.1. Although Theorems 2.2−2.3 may appear cumbersome, together
they exhaust all commonly encountered scenarios. For example, consider the
special case that µn = µ and γ = 0 so that Yt = µ + Yt−1 + εt. Here {εt} is a
sequence of i.i.d. symmetric stable random variables with index α ∈ (0, 2]. Then
bn = Cn1/α for some C > 0 and

lim
n→∞

nµn

bn
=


∞ if α > 1,

µ
C if α = 1,

0 if α < 1.

As a result, we need to separately consider the different parts in Theorems
2.2−2.3 to cover the different limit behaviors of the quantity nµn/bn for different
α’s. As an illustration, consider Theorem 2.3, part 2 (d). When limn→∞ nµn/bn

= ∞, by (2.18) we have

ρµn := n(β̂µn − βn) d−→6Zα(1) − 12
∫ 1

0
Zα(t) dt .

When limn→∞ nµn/bn = 0, by (2.16) of Theorem 2.3, part 2 (b),

ρµn
d−→

[
Zα(1)2 − Zα/2 − 2Zα(1)

∫ 1
0 Zα(t) dt

]
2
[ ∫ 1

0 Z2
α(t) dt − (

∫ 1
0 Zα(t) dt)2

] .
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When limn→∞ nµn/bn = µ/C, according to Theorem 2.2 part (i) the limit dis-
tribution of ρµn has a complex form with ν = µ/C, c = 1, Z(t) = Zα(t) and
Z = Zα/2 in (2.5) of Theorem 2.2.

Remark 2.2. When {εt} is long-range dependent with 1/α < θ < 1 and µn =
µ 6= 0, by Theorem 2.3, we have that the limit distributions of τ̂µn and ρ̂µn are
functionals of fractional stable processes (see (2.13) and (2.14)). Consider the
special case α = 2 and γ = 0. It follows from (2.13) that the limit distribution of
the LSE is a functional of a fractional Brownian motion. When {εt} is a short-
memory process, however, it follows from Theorem 2.3 that the limit distribution
of the LSE of a unit root AR(1) with a shift is a functional of a stable process
that is independent of θ (see (2.18) and (2.19)). To the best of our knowledge,
there seems to be no result concerning nearly nonstationary processes with drifts,
not even for the case when {εt} is short-range dependent, has finite variance, and
µn is unknown.

Remark 2.3. It is well-known that for {εt} in (2.9) to be well-defined, the
coefficients {ci} must satisfy

∑∞
i=0 |ci|ς < ∞ for some ς < α. In comparison,

assumptions (H1) and (H2) are relatively mild. When α = 2 and µ = 0, Theo-
rem 2.1 recovers the main result (Theorem 2.1) of Buchmann and Chan (2007).
Similar results to Theorem 2.2 are obtained by Buchmann and Chan (2007) for
α = 2 and µn = 0, see also Proposition 2.1 in their paper.

3. Supplementary Lemmas

To prove Theorems 2.1−2.3, we need the following supplementary results.

Lemma 3.1. Let S[nt] =
∑[nt]

i=1 εi. If

S[nt]

bn

M1−→Z(t) in D[0, 1], (3.1)

then Y[nt] :=
∑[nt]

i=1 β
[nt]−i
n εi/bn

M1−→Zγ(t), where Zγ is an O-U process defined by
(2.2).

Proof. Note that S0 = Y0 = 0 and

Y[nt] =
[nt]∑
i=1

β[nt]−i
n

Si − Si−1

bn

=
S[nt]

bn
−

[nt]∑
i=1

(β[nt]−i
n − β[nt]−(i−1)

n )
Si−1

bn

=
S[nt]

bn
− 1

n

[nt]∑
i=1

β[nt]−i
n (1 − βn)n

Si−1

bn
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=
S[nt]

bn
− γ

n

[nt]∑
i=1

e−γ(t−i/n) Si−1

bn
+

1
n

[nt]∑
i=1

(γe−γ(t−i/n) − β[nt]−i
n (1 − βn)n)

Si−1

bn

=
S[nt]

bn
− γ

∫ t

0
e−γ(t−s) S[ns]

bn
d s + Rn(t). (3.2)

Since sup0≤t≤1 |X(t)| is continuous on D[0, 1] in the M1 topology, by (3.1) and the
Continuous Mapping Theorem in the M1 topology, we have sup0≤t≤1 |S[nt]/bn| =
Op(1). This implies

sup
0≤t≤1

|Rn(t)| ≤ sup
0≤t≤1

|
S[nt]

bn
| · sup

0≤t≤1

1
n

[nt]∑
i=1

|γe−c(t−i/n) − β[nt]−i
n (1 − βn)n)|

= Op(1)o(1) = op(1). (3.3)

Let f(X(t)) =
∫ t
0 X(s)e−γ(t−s) ds. By Theorem 11.5.1 of Whitt (2002), we

see that f is also a continuous function in D with the M1 topology. Therefore,
by (3.1) and the Continuous Mapping Theorem, we have∫ t

0
e−γ(t−s) S[ns]

bn
ds

M1−→
∫ t

0
e−γ(t−s)Z(s) ds. (3.4)

From (3.1), (3.2) (3.3) and (3.4), it follows that

Y[nt] :=
[nt]∑
i=1

β[nt]−i
n

εi

bn

M1−→Zγ(t).

This completes the proof.

Let εi =
∑∞

j=0 cjηi−j be defined as in Theorem 2.2. For v ≤ 1 < α, set

s(α − η) =
( ∞∑

i=n

|ci|v
)( ∞∑

i=n

|ci|
)α−η−v

.

The following lemma is a consequence of Theorem 2 of Avram and Taqqu (1992).

Lemma 3.2. Suppose that
∑∞

i=0 ci < ∞ with ci ≥ 0, and that either (i) α ≤ 1 or
(ii) α > 1 and limn→∞(log n)1+α+ηs(α − η) = 0 for some 0 < η ≤ α − 1. Then

[nt]∑
i=1

εi

an

M1−→(
∞∑
i=0

ci)Zα(t) in D[0, 1].

Lemma 3.3. Under the condition of Theorem 2.3, we have
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(i) 1 < α < 2 with 1/α < θ < 1,

( [nt]∑
j=1

εj

ann1−θl(n)
,

n∑
j=1

ε2
j

a2
n

)
M1−→

(
Zαθ(t), (

∞∑
i=0

c2
i )Zα

2

)
; (3.5)

(ii) α = 2 with 1/2 < θ < 1,

( [nt]∑
j=1

εj

bn
,

n∑
j=1

ε2
j

b2
n

)
M1−→

(
Z2θ(t), 0

)
, (3.6)

where bn = n3/2−θl0(n)l(n) and Z2θ is a fractional Brownian motion with
index θ;

(iii) 0 < α ≤ 1 and α ∈ (1, 2) with θ ≥ 1,

( [nt]∑
j=1

εj

an
,

n∑
j=1

ε2
j

a2
n

)
M1−→

(
(
∞∑

j=0

ci)Zα(t), (
∞∑
i=0

c2
i )Zα

2

)
, (3.7)

where Zα/2 is a stable process with index α/2.

Proof. The weak convergence of the first component in (3.5) and (3.6) can be
found in Maejima (1983), and the asymptotic distribution of the second compo-
nent in (3.5) and (3.7) are given by Astrauskas (1983), see also Avram and Taqqu
(2000). For the second component of (3.6), by θ < 1, we have (2−θ)/(3−2θ) < 1,
so E|ε1|2(2−θ)/(3−2θ) < ∞. This implies

E
∣∣∣ n∑

j=1

ε2
j

b2
n

∣∣∣(2−θ)/(3−2θ)
→ 0.

Hence,
∑n

j=1 ε2
j/b2

n
p−→0. This concludes (3.6). Further, the joint convergence of

the finite dimension distribution of the first component and the second component
in (3.5) and (3.7) can be found in Avram and Taqqu (2000). It is therefore
sufficient to show the weak convergence of the first component in (3.7).

Case one: θ > 1. For 1/θ < v ≤ 1, we have

s(α − η) =
( ∞∑

i=n

(i−θl(i))v
)( ∞∑

i=n

i−θl(i)
)α−η−v

= n−θv+1lv(n)(n−θ+1l(n))α−η−v

= n1−v−(α−η)(θ−1)(l(n))α−η. (3.8)

As 1/θ < v ≤ 1, 1−v− (α−η)(θ−1) < 0. Thus, limn→∞(lnn)1+α+ηs(α−η) = 0
and by Lemma 3.2, we have (3.7).
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Case two: θ = 1. By the condition limn→∞(log n)2+1/α+δl(n) = 0, we have

∞∑
i=n

i−1l(i) = (lnn)l(n) = 0.

This implies that
∑∞

i=0 ci <∞. By taking v=1, we have s(α−η)=[(lnn)l(n)]α−η.

Combining this with the condition limn→∞(lnn)2+1/α+δl(n) = 0, we have

lim
n→∞

(log n)1+α+ηs(α − η) = lim
n→∞

(lnn)1+2α(l(n))α−η = 0

for 0 < η < δ/(2 + δ + 1/α). By Lemma 2.2, we also have (3.7). The proof is
complete.

Lemma 3.4. Under the conditions of Theorem 2.3,

(i) For 1 < α ≤ 2 with 1/α < θ < 1,

( [nt]∑
j=1

β
[nt]−j
n εj

ann1−θl(n)
,

n∑
j=1

ε2
j

a2
n

)
M1−→

(
Zαθ,γ(t), (

∞∑
i=0

c2
i )Zα/2

)
. (3.9)

(ii) For α = 2 with 1/2 < θ < 1,

( [nt]∑
j=1

β
[nt]−j
n εj

bn
,

n∑
j=1

ε2
j

b2
n

)
M1−→

(
Z2θ,γ(t), 0

)
, (3.10)

where bn, Z2θ is defined as that in Lemma 3.3.
(iii)For 0 < α ≤ 1 and α ∈ (1, 2] with θ ≥ 1,

( [nt]∑
j=1

β
[nt]−j
n εj

an
,

n∑
j=1

ε2
j

a2
n

)
M1−→

(
(
∞∑

j=0

ci)Zα,γ(t), (
∞∑
i=0

c2
i )Zα/2

)
. (3.11)

Remark 3.1. For 1 < α ≤ 2 with 1/α < θ < 1, the weak convergence in
Lemmas 3.3 can be replaced by the J1 topology.

4. Proofs of Theorems

In this section, proofs of Theorems 2.1−2.3 are presented. The main idea of
showing these theorems is to decompose the statistics τ̂n, τ̂µn, ρ̂n and ρ̂µn.

For model (1.1) with µn = 0, we have

Yi = βi
nY0 +

i∑
j=1

βi−j
n εj ,
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n∑
i=1

Yi−1εi =
1
βn

n∑
i=1

βnYi−1εi

=
1

2βn

( n∑
i=1

(βnYi−1 + εi)2 −
n∑

i=1

β2
nY 2

i−1 −
n∑

i=1

ε2
i

)
=

1
2βn

(
(1 − β2

n)
n∑

i=1

Y 2
i−1 + Y 2

n −
n∑

i=1

ε2
i

)
. (4.1)

This yields

n1/2τ̂n

bn
=

(√n

bn

)
·
(1 − β2

n)
∑n

i=1 Y 2
i−1 + Y 2

n −
∑n

i=1 ε2
i

2βn

√∑n
i=1 Y 2

i−1

=
(√n

bn

)
·
(2γ/n)

∑n
i=1 Y 2

i−1 + Y 2
n −

∑n
i=1 ε2

i

2
√∑n

i=1 Y 2
i−1

+ op(1)

=
(2γ/n)

∑n
i=1(Yi−1/bn)2 + (Yn/bn)2 −

∑n
i=1(εi/bn)2

2
√

n−1
∑n

i=1(Yi−1/bn)2
+ op(1), (4.2)

ρ̂n =
(1 − β2

n)
∑n

i=1 Y 2
i−1 + Y 2

n −
∑n

i=1 ε2
i

2βn
1
n

∑n
i=1 Y 2

i−1

=
(2γ/n)

∑n
i=1(Yi−1/bn)2 + (Yn/bn)2 −

∑n
i=1(εi/bn)2

(2/n)
∑n

i=1(Yi−1/bn)2
+ op(1). (4.3)

For model (1.1) with µn unknown and βn 6= 1, let dn = µn/(1 − βn), Xi =
Yi − dn. Then

Xi = βnXi−1 + εi, i = 1, 2, . . . , n,

X[nt]

bn
= β[nt]

n

X0 − dn

bn
+

[nt]∑
i=1

β[nt]−i
n

εi

bn

=
β

[nt]
n Y0

bn
− β

[nt]
n nµn

bnn(1 − βn)
+

[nt]∑
i=1

β
[nt]−i
n εi

bn

=: I1(t) − I2(t) + I3(t). (4.4)

Furthermore,

β̂µn − βµn =
∑n

i=1 Yi−1εi − (1/n)
∑n

i=1 Yi−1
∑n

i=1 εi∑n
i=1 Y 2

i−1 − n(Y )2

=
∑n

i=1(Yi−1 − dn)εi − (1/n)
∑n

i=1(Yi−1 − dn)
∑n

i=1 εi∑n
i=1(Yi−1 − dn)2 − n(Y − dn)2
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=
∑n

i=1 Xi−1εi − (1/n)
∑n

i=1 Xi−1
∑n

i=1 εi∑n
i=1 X2

i−1 − n(X)2
, (4.5)

where X =
∑n

i=1 Xi−1/n. Similar to the argument of µn = 0, we have

n1/2τ̂µn

bn
=

2γ
n

n∑
i=1

(Xi−1

bn
)2 + (Xn

bn
)2 −

n∑
i=1

( εi
bn

)2 − 1
n

n∑
i=1

Xi−1

bn

n∑
i=1

εi
bn

2
[

1
n

n∑
i=1

(Xi−1

bn
)2 −

(
1
n

n∑
i=1

Xi−1

bn

)2]1/2
+ op(1), (4.6)

ρ̂µn =

2γ
n

n∑
i=1

(Xi−1

bn
)2 + (Xn

bn
)2 −

n∑
i=1

( εi
bn

)2 − 1
n

∑n
i=1

Xi−1

bn

n∑
i=1

εi
bn

2
n

n∑
i=1

(Xi−1

bn
)2 −

(
1
n

n∑
i=1

Xi−1

bn

)2
+ op(1) . (4.7)

For model (1.1) with µn unknown and βn = 1, we have Yi = iµn +
∑i

j=1 εj .

Then,

n∑
i=1

Yi−1εi −
1
n

n∑
i=1

Yi−1

n∑
i=1

εi

= µn

n∑
i=1

((i − 1) − 1
n

n∑
i=1

(i − 1))εi +
n∑

i=1

(
i−1∑
j=1

εj)εi −
1
n

n∑
i=1

(
i−1∑
j=1

εj)
n∑

i=1

εi

=
µn(n − 1)

2

n∑
i=1

εi −
nµn

n

n∑
i=1

i−1∑
j=1

εj +
n∑

i=1

(
i−1∑
j=1

εj)εi −
1
n

n∑
i=1

(
i−1∑
j=1

εj)
n∑

i=1

εi

=
µn(n−1)

2

n∑
i=1

εi−
nµn

n

n∑
i=1

i−1∑
j=1

εj+
1
2

(( n∑
i=1

εi

)2
−

n∑
i=1

ε2
i

)
− 1

n

n∑
i=1

(
i−1∑
j=1

εj)
n∑

i=1

εi

=: H1 − H2 + H3 − H4, (4.8)

n∑
i=1

Y 2
i−1 − n(Y )2 =

n∑
i=1

(Yi−1 −
1
n

n∑
i=1

Yi−1)2

=
n∑

i=1

(
(i − 1)µn − 1

n

n∑
i=1

(i − 1)µn +
i−1∑
j=1

εj −
1
n

n∑
i=1

i−1∑
j=1

εj

)2

= µn

n∑
i=1

(
(i − 1) − 1

n

n∑
i=1

(i − 1)
)2

+ 2µn

n∑
i=1

(
(i − 1) − 1

n

n∑
i=1

(i − 1)
)

( i−1∑
j=1

εj −
1
n

n∑
i=1

i−1∑
j=1

εj

)
+

n∑
i=1

( i−1∑
j=1

εj −
1
n

n∑
i=1

i−1∑
j=1

εj

)2
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=: J1 + J2 + J3. (4.9)

We are now ready to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Since Y0 = 0, by (2.3) and Lemma 3.1, we have

Y[nt]

bn

M1−→Zγ(t) in D[0, 1].

We also have (Y[nt]

bn
,

n∑
i=1

ε2
i

dn

)
M1−→(Z(t), Z) in D[0, 1].

Let f(X(t), Z) = (
∫ 1
0 X(t)2dt,X(1)2, Z). Then f is a continuous function in

D[0, 1] under the M1 topology. By (4.2), (4.3) and the Continuous Mapping
Theorem, we have

(n1/2τ̂n

bn
, ρ̂n

)
d−→

(2γ
∫ 1
0 Z2

γ(s) ds + Z2
γ(1) − cZ

2
√∫ 1

0 Z2
γ(s) ds

,
2γ

∫ 1
0 Z2

γ(s) ds + Z2
γ(1) − cZ

2
∫ 1
0 Z2

γ(s) ds

)
.

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. This theorem is proved by considering the following
four cases.
Case one: βn = 1 and limn→∞ nµn/bn = ν ∈ [0,∞). By the Continuous Mapping
Theorem under the M1 topology, we have

1
b2
n

(H1−H2+H3−H4)
d−→ν

2

(
Z(1)−2

∫ 1

0
Z(t)dt

)
+

1
2
(Z(1)2−cZ)−Z(1)

∫ 1

0
Z(t)dt,

(4.10)

1
nb2

n

(J1 + J2 + J3)
d−→ν2

12
+ 2ν

∫ 1

0
(t − 1

2
)Z(t) dt +

∫ 1

0
Z(t)2 dt −

( ∫ 1

0
Z(t) dt

)2
.

(4.11)
By (4.10) and (4.11), we have (2.5) as desired.
Case two: βn = 1 and limn→∞ nµn/bn = ∞. Similar to (4.10) and (4.11), we
have

1
nbnµn

(H1 − H2 + H3 − H4)
d−→1

2
Z(1) −

∫ 1

0
Z(t) dt, (4.12)

1
n3µ2

n

(J1 + J2 + J3)
p−→ 1

12
. (4.13)

Then, (2.6) follows from (4.12) and (4.13).
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Case three: γ 6= 0 (βn 6= 1) and limn→∞ nµn/bn = ν ∈ [0,∞). Since Y0 = 0, it
follows that for all t ∈ [0, 1], I1(t) = 0. Furthermore, limn→∞ I2 = (ν/γ)e−γt. It
follows from Lemma 3.1 that

X[nt]

bn
= I3(t) − I2(t)

M1−→Zγ(t) − ν

γ
e−γt in D[0, 1].

This gives(X[nt]

bn
,

n∑
i=1

εi

bn
,

n∑
i=1

ε2
i

dn

)
M1−→(Zγ(t) − ν

γ
e−γt, Z(1), Z) in D[0, 1]. (4.14)

Let f(X(t), Z(1), Z) = (
∫ t
0 X(t)2 dt,

∫ t
0 X(t) dt,X2(1), Z(1), Z). Then f is con-

tinuous and by (4.6), (4.7), (4.14) and the Continuous Mapping Theorem, we
have (2.7) as desired.
Case four: γ 6= 0 (βn 6= 1) and limn→∞ nµn/bn = ∞. For all t ∈ [0, 1], we
have limn→∞ I2(t) = ∞. On the other hand, by Lemma 3.1, we know that
sup0≤t≤1 I3(t) = Op(1). The distribution of X[nt]/bn is determined by I2(t). By
(4.4) and (4.5), we have

1
nbnµn

( n∑
i=1

Yi−1εi −
1
n

n∑
i=1

Yi−1

n∑
i=1

εi

)
=

1
nbnµn

( n∑
i=1

Xi−1εi −
1
n

n∑
i=1

Xi−1

n∑
i=1

εi

)
=

1
nbnµn

[
µn

n∑
i=1

(−βi−1
n

1 − βn
+

1
n

n∑
i=1

βi−1
n

1 − βn

)
εi

]
+ op(1)

=
1
γ

n∑
i=1

(
− βi−1

n +
1
n

n∑
i=1

βi−1
n

) εi

bn
+ op(1)

=
1
γ

[( 1
n

n∑
i=1

βi−1
n

) n∑
i=1

εi

bn
−

n∑
i=1

βn−1
n

εi

bn
− γ

n

n∑
i=1

βi−2
n

i−1∑
j=1

εj

bn

]
+ op(1)

=
( 1

γ2
− γ + 1

γ2
e−γ

)
Z(1) −

∫ 1

0
e−γtZ(t) dt. (4.15)

On the other hand,

1
n3µ2

n

( n∑
i=1

Y 2
i−1 − n(Y )2

)
=

1
n3µ2

n

( n∑
i=1

X2
i−1 − n(X)2

)
=

1
n3µ2

n

n∑
i=1

( 1
n

n∑
i=1

µnβi−1
n

1 − βn
− µnβi−1

n

1 − βn

)2
+ op(1)
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=
1
γ2

[ 1
n

n∑
i=1

e−2γ(i−1)/n −
( 1

n

n∑
i=1

e−γ(i−1)/n
)2]

+ op(1)

=
1
γ2

( ∫ 1

0
e−2γt dt − (

∫ 1

0
e−2γtdt)2

)
+ op(1)

=
1
γ2

(
4e−γ − 3e−2γ − 1

)
+ op(1). (4.16)

By (4.15) and (4.16), we obtain (2.8). This completes the proof of Theorem 2.2.

Proof of Theorem 2.3. By Theorems 2.1, 2.2 and Lemma 3.3, we have the
conclusion of Theorem 2.3.

5. Simulations

In this section, we apply Theorems 2.2−2.3 to calculate the empirical per-
centiles of the the least squares statistics ρ̂n,

√
nτ̂n/bn and ρ̂µn,

√
nτ̂µn/bn of

model (1.1). For simplicity, they are represented as ρn, τn and ρµn, τµn in the
tables. By means of these percentiles, we can conduct inference and testing for
model (1.1) under various scenarios. Furthermore, to acquire better understand-
ing of the limiting behaviors of the results, we also plot the simulated proba-
bility density functions for several cases. Although it is anticipated that direct
simulations are feasible once the limiting forms are established, we have to over-
come the difficulty of simulating a long-memory stable process. In particular,
the error process {εt} in the simulations is drawn from εt =

∑∞
i=1 ciηt−i, where

{ηt, t = · · · ,−1, 0, 1, · · · } are i.i.d. stable variables with index α and ci = i−θ.
Note that each εt involves an infinite number of terms. It is therefore difficult
to directly generate εt. Instead, the following algorithm due to Wu, Michailidis
and Zhang (2004) is adopted to approximate ε. Define

ε′i = ciη0+ci+1η−1+· · ·+cm−iη−(m−2i)+c1η−(m−2i)−1+· · ·+ci−1η−m+Rm,i, i≥1,

(5.1)
where

Rm,i =

{
[(m − n)1/α−θ][(αθ − 1)−1/α]ηi if θ < 1,

0 if θ > 1,

and n is the sample size. When m is large enough, then ε′i approximates εi

reasonably well, see Wu, Michailidis and Zhang (2004).
Let bn = n1−θ+1/α for the long-memory case (θ < 1) and bn =

∑m
i=1 cin

1/α

for the short-memory case (θ > 1). When µn = 0 and βn = 1 − γ/n, we approx-
imate the limit distributions of ρn := ρ̂n = n(β̂n − βn) and τn :=

√
nτ̂n/bn =



942 NGAI HANG CHAN AND RONG-MAO ZHANG

√
n(

∑n
i=1 Y 2

i−1)
1/2(β̂n − βn)/bn, respectively, by

G1(γ) = n

{∑n
i=1

∑i
k=1 e−γ(i−k)/nεkεi+1

}
{∑n

i=1

[∑i
k=1 e−γ(i−k)/nεk

]2} , (5.2)

G2(γ) =
(√n

bn

){∑n
i=1

∑i
k=1 e−γ(i−k)/nεkεi+1

}
√∑n

i=1

[∑i
k=1 e−γ(i−k)/nεk

]2
. (5.3)

When µn is unknown and βn = 1 − γ/n with γ 6= 0, we approximate
the limit distribution of ρµn := ρ̂µn = n(β̂µn − βµn) and τµn :=

√
nτ̂µn/bn =√

n(
∑n

i=1 Y 2
i−1 − n(Y )2)1/2(β̂µ,n − βn)/bn, respectively, by

G3(γ)=n

n∑
i=1

e−
γi
n

( i∑
k=1

e
γk
n εk− nµ

γ

)
εi+1− 1

n

[ n∑
i=1

e−
γi
n

( i∑
k=1

e
γk
n εk − nµ

γ

)] n∑
i=1

εi

n∑
i=1

[
e−

γi
n

( ∑i
k=1 e

γk
n εk− nµ

γ

)]2
− 1

n

[ n∑
i=1

e−
γi
n

( i∑
k=1

e
γk
n εk− nµ

γ

)]2
, (5.4)

G4(γ)=

n∑
i=1

e−
γi
n

( i∑
k=1

e
γk
n εk − nµ

γ

)
εi+1− 1

n

[ n∑
i=1

e−
γi
n

( i∑
k=1

e
γk
n εk − nµ

γ

)] n∑
i=1

εi{ n∑
i=1

[
e−

γi
n

( i∑
k=1

e
γk
n εk− nµ

γ

)]2
− 1

n

[ n∑
i=1

e−
γi
n

( i∑
k=1

e
γk
n εk− nµ

γ

)]2}1/2

×(
√

nb−1
n ). (5.5)

When µn is unknown and βn = 1, i.e. γ = 0, then we approximate the limit
distributions of ρµn = n(β̂µn −βµn) and τµn =

√
n(

∑n
i=1 Y 2

i−1 −n(Y )2)1/2(β̂µ,n −
βn)/bn, respectively, by

G5(γ) = n

n∑
i=1

( i∑
k=1

εk + iµ
)
εi+1 − n−1

[ n∑
i=1

( i∑
k=1

εk + iµ
)]( n∑

i=1
εi

)
n∑

i=1

[( i∑
k=1

εk + iµ
)]2

− n−1
[ n∑

i=1

( i∑
k=1

εk + iµ
)]2

, (5.6)

G6(γ) = (
√

nb−1
n )

n∑
i=1

( i∑
k=1

εk + iµ
)
εi+1 − n−1

[ n∑
i=1

( i∑
k=1

εk + iµ
)][ n∑

i=1
εi

]
{ n∑

i=1

[( i∑
k=1

εk + iµ
)]2

− n−1
[ n∑

i=1

( i∑
k=1

εk + iµ
)]2}1/2

. (5.7)

Simulated percentiles in each entry of Tables 1−4 were computed using m =
5, 000, 000 in (5.1) with n = 1, 000 and 5, 000 repetitions. Table 1 is for the
case θ = 1.6, µ = 0.1 and γ = 10 for different α’s and Table 2 is for the case
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Table 1. Empirical percentiles of ρµn, τµn with θ = 1.6, µ = 0.1 and γ = 10.

α Statistics Probability of a smaller value
0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

2 ρµn 0.079 1.411 2.479 3.600 8.451 8.991 9.668 10.468
τµn -0.047 0.212 0.442 0.701 2.711 3.037 3.337 3.725

1.5 ρµn 0.457 2.021 3.098 4.130 8.455 9.164 10.218 12.178
τµn 0.049 0.248 0.399 0.611 3.855 5.983 9.890 20.043

0.9 ρµn 1.133 2.734 3.870 4.953 8.443 9.662 11.809 19.676
τµn 0.036 0.161 0.256 0.382 11.498 25.273 53.900 154.581

Table 2. Empirical percentiles of ρµn, τµn with α = 1.5, θ = 0.8 and γ = 0.

µ Statistics Probability of a smaller value
0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

10 ρµn -0.366 -0.281 -0.211 -0.152 0.216 0.352 0.578 1.369
τµn -15.917 -10.048 -7.094 -4.814 4.710 6.707 8.957 15.965

5 ρµn -0.439 -0.400 -0.349 -0.263 0.452 0.860 1.387 2.293
τµn -15.625 -8.613 -6.426 -4.660 4.142 5.812 7.867 12.719

0 ρµn -0.534 -0.475 -0.445 -0.405 1.301 2.152 3.018 4.412
τµn -22.216 -10.898 -6.726 -4.311 3.579 5.798 9.903 18.165

α = 0.9 for different µ’s. Tables 3 and 4 correspond to α = 2, θ = 0.8 and
α = 1.5, θ = 1.6, respectively, for different γ’s. By examining the values in Table
1, we observe that the heavy-tailed effects are dominant. The distributions of
G3(γ) and G4(γ) have heavier right-tails when α decreases. This phenomena was
also noted in Chan (1990) for µ = 0. From Table 2, we see that the bigger is µ,
the heavier are the right-tails of G5(γ) and G6(γ).

To gain a further understanding of these phenomena, we plot the probability
density functions of G3(γ) and G5(γ) in Figures 1−2. Figure 1 shows that the
smaller is α, the heavier is the right-tail of the density G3(γ). Figure 2 shows that
the smaller is µ, the heavier is the right-tail of the density G5(γ). Tables 3 and 4
reveal that when γ increases, the values of the empirical percentile of G1(γ) and
G2(γ) also increase quickly. In Figure 3, observe that the pdf of G1(γ) shifts to the
right quickly as γ increases. This is different from the i.i.d. case reported in Chan
(1990). A possible explanation is that the dependence {εi} plays an important
role in determining the limit distribution of β̂n. When {εi} are i.i.d. random
variables, there is a term −Zα/2 appearing in the limit distribution of β̂n. But
when {εi} is long-range dependent, this term vanishes (cf., (2.10) and (2.15)).
As a result, when γ increases, the percentiles of G1(γ) increase more quickly to
the right than in the i.i.d. case.
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Table 3. Empirical percentiles of ρn, τn with α = 2, θ = 0.8.

γ Statistics Probability of a smaller value
0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

0 ρn -0.257 -0.135 -0.054 0.048 2.416 3.085 3.710 4.443
τn -0.172 -0.122 -0.068 0.075 7.563 8.925 10.186 12.012

10 ρn 8.792 9.069 9.271 9.467 11.264 11.863 12.495 13.288
τn 2.469 2.919 3.286 3.753 10.096 11.540 12.828 14.181

100 ρn 90.906 92.376 93.487 94.581 100.947 101.671 102.207 102.798
τn 6.628 7.083 7.494 8.024 12.990 14.148 15.186 16.355

Table 4. Empirical percentiles of ρn, τn with α = 0.9, θ = 1.6.

γ Statistics Probability of a smaller value
0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

0 ρn -2.766 -1.731 -1.067 -0.566 2.148 3.243 5.081 9.448
τn -1.123 -0.614 -0.368 -0.187 5.427 12.219 26.599 73.948

10 ρn 1.920 4.029 5.227 6.136 9.195 10.325 12.719 18.590
τn 0.155 0.263 0.380 0.537 13.078 24.933 50.490 142.704

100 ρn 53.471 59.874 63.226 66.265 75.228 78.484 83.665 97.763
τn 0.859 1.039 1.237 1.570 29.301 62.832 129.422 361.767

Figure 1. Probability density function of G3(10), θ = 1.6, µ = 0.1.
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Figure 2. Probability density function of G5(γ), α = 1.5, θ = 0.8.

Figure 3. Probability density function of G1(γ), α = 2, θ = 0.8.
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6. Conclusion

In this paper, asymptotic distributions of the LSE of a nearly nonstationary
AR(1) process with long-memory and infinite variance errors are derived. In
particular, we demonstrate the effects of the limit distributions under the pres-
ence of known and unknown drifts. It should be pointed out that there exist
other methods to deal with infinite variance models and/or long-memory mod-
els, notably the M -estimation approach developed by Knight (1991) for infinite
variance phenomena, and the semiparametric approach of Robinson (2005) for
long-memory phenomena. Although it is arguable that these approaches may
offer more efficient estimation procedures than the LSE under infinite variance
and/or long-memory, LSE is nevertheless one of the most commonly used proce-
dures in practice. It is useful to study the asymptotic behavior of the LSE under
the current setting before tackling the more challenging issues such as quantile
inference.
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