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Abstract: The problem of multiple comparisons has become increasingly important

in light of the significant surge in volume of data available to statisticians. The
seminal work of Benjamini and Hochberg (1995) on the control of the false discov-

ery rate (FDR) has brought forth an alternative way of measuring type I error rate

that is often more relevant than the one based on the family-wise error rate. In this

paper, we emphasize the importance of considering type II error rates in the con-

text of multiple hypothesis testing. We propose a suitable quantity, the expected

proportion of false negatives among the true alternative hypotheses, which we call

non-discovery rate (NDR). We argue that NDR is a natural extension of the type

II error rate of single hypothesis to multiple comparisons. The utility of NDR is
emphasized through the trade-off between FDR and NDR, which is demonstrated

using a few real and simulated examples. We also show analytically the equivalence

between the FDR-adjusted p-value approach of Yekutieli and Benjamini (1999) and

the q-value method of Storey (2002). This equivalence dissolves the dilemma en-

countered by many practitioners of choosing the “right” FDR controlling procedure.
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error, type II error.

1. Introduction

The advent of large dimensional data in scientific exploration underscores
the need for more powerful methods to handle the multiplicity problem. In this
context, once a large number m of hypothesis tests are performed, one needs to
determine which, if any, of these tests have produced significant results. Tra-
ditionally, the decision is based on controlling the probability of making even
one type I error, also known as the Family-Wise Error Rate (FWER). However,
controlling FWER for large values of m typically results in a diminished power
to detect the true signal(s), although it should be noted that a clear definition
of power in this context has yet to be specified.

The breakthrough paper of Benjamini and Hochberg (1995) (henceforth BH)
offers a different approach in which one is interested in controlling the False Dis-

covery Rate (FDR), i.e., the fraction of erroneous rejections. If we test m hy-
potheses, we can summarize the findings as in Table 1, where m is assumed to be
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Table 1. Summary of findings when testing m hypotheses.

Declared Declared Total
non-significant significant

True null hypothesis U V m0

Non-true null hypothesis T S m1 = m − m0

m− R R m

fixed and known, m0 and m1 are unknown parameters, R is an observed random
variable, and U, V, T and S are unobserved random variables. Given the above
notation, FWER = Pr(V ≥ 1), and FDR = E[V/R]. To circumvent the situa-
tion in which R = 0, FDR was alternatively defined as E[V/R|R > 0]Pr(R > 0)
by BH, and as pFDR = E[V/R|R > 0] by Storey (2002). However, the dis-
tinction is not crucial in many applications because Pr(R > 0) ≈ 1, as noted
by Storey and Tibshirani (2003), among others. Here we work with the FDR
alternatively defined by BH. Improvements and extensions of the BH method
have been proposed by Benjamini and Hochberg (2000), Benjamini and Yekutieli
(2001), Storey (2002, 2003), and Genovese and Wasserman (2001, 2002).

In the context of multiple hypothesis testing, the discussions so far have
focused mostly on type I error rate, α, either in the form of FWER or FDR.
However, in addition to α, of importance is also the type II error rate, β,
or power, 1−β. Dudoit et al. (2003) briefly discussed three common defini-
tions of power, namely Pr(S ≥ 1), Pr(S = m1) and E[S]/m1. The measure
E[S]/m1 has been used to quantify power in a large number of studies (e.g.,
Storey, Taylor and Siegmund (2004) and Li et al. (2005)). Unfortunately, few
studies offered in-depth investigation of β and power in the context of multiple
hypothesis testing. In this paper, we intend to fill this gap by formally proposing
a new quantity, the Non-Discovery Rate (NDR = E[T]/m1), the expected pro-
portion of non-rejections among false null hypotheses, as one possible measure of
type II error rate for multiple hypothesis testing, and investigating its properties
and utilities. Of particular interest is the trade-off between NDR and FDR.

The number of false negatives T was also considered by Genovese and
Wasserman (2002) who defined the False Non-discovery Rate, FNR= T/(m−R).
Although, mathematically, FNR is a suitable measure of β if FDR is used to
quantify α, we note that FNR may be artificially decreased in the context of
hypothesis generation as in Thomas et al. (1985), and the quantity itself is of
little interest to practitioners (see Appendix for numerical examples). In addition,
1−FNR is a function of true negatives but not true positives, an undesirable
feature given the traditional use of 1−β as power. (See Section 2.2 for detailed
discussions.)

One of the referees has brought to our attention the Fraction of Non-Selection

(FNS) proposed by Delongchamp et al. (2004). Our NDR measure indeed bears
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considerable resemblance to FNS. However, we note that there are significant dif-

ferences between the two quantities and methods. FNS was proposed specifically
for the fixed rejection region approach, in the spirit of Storey (2002). That is, one

rejects all tests with unadjusted p-values less than a pre-determined γ level, then
estimates the corresponding FDR. (We use notation γ to distinguish it from α.)

In that context, and assuming that the null p-values are Unif(0,1) distributed,
they defined FNS as FNS(γ) = (m1 − (R − m0γ))/m1, where R = #{pi ≤ γ}.
It should be noted that the threshold γ needed for FNS is not directly available

if the traditional FDR control procedure is used to adjust for the multiplicity
problem (i.e., controlling FDR at a pre-determined α level). In contrast, we de-

fine NDR as a measure of type II error rate in a general setting, independent
of the specific multiple comparison procedure used. The chosen procedure only

affects the estimation of NDR. (See Section 6 for more discussion.)

In the next section we formally define NDR and provide justification for
considering this quantity as the type II error rate for multiple hypothesis test-

ing. We emphasize that much can be gained from a clear understanding and
representation of the dependence between FDR and NDR. The other main con-

tribution of the paper is in Section 3 where we show that the FDR-adjusted
p-value approach of Yekutieli and Benjamini (1999) is equivalent to Storey’s q-

value method (2002). This equivalence dissolves the dilemma encountered by

many practitioners of choosing the “right” FDR procedure, and gives us the
freedom to work with either method in estimating NDR in Section 4. We illus-

trate our results with a series of real and simulated data sets in Section 5. We
present conclusions and discussion of further work in Section 6.

2. Joint Analysis of FDR and NDR

2.1. Definition and motivation

Definition 1. Given m1 > 0, the non-discovery rate (NDR) is

NDR =
E[T]

m1
.

Note that the quantity is defined given m1 > 0. Similarly to FDR for which
R = 0 is a concern, one may define NDR = E[T]/m1 I(m1 > 0). However, this

requires a Bayesian approach rather than treating m1 as an unknown but fixed

parameter. In addition, in situations where none of the null hypotheses are likely
to be false, one would probably not conduct the analysis in the first place. Thus,

we limit our attention to the case where m1 > 0.
The motivation of our work can be well demonstrated by the following toy

example. Consider a situation in which m = 1, 000 and m1 = 100, and assume

the following two strategies. Under Strategy 1, we choose FDR = 0.05. Suppose
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that the number of rejections is R = 20, among which one is expected to be

incorrect, i.e., V = 1. Thus, the number of false negatives T is likely to be

m1 − (R −V) = 81 and NDR = 0.81. Under Strategy 2, we decide to increase

FDR to 0.1. Suppose that R = 80, then E[V] = 8 and NDR = 0.28. A natural

question is whether one should choose Strategy 1 or 2 to perform the analysis.

While the answer depends on the specific objective of each study, we believe that

each choice should be made while fully aware of the fact that the proportion of

missed signals as measured by NDR could be unsatisfactorily large for a given

FDR level, and a small increase in FDR may result in a considerable amount of

decrease in NDR.

The dependence between α and β for single hypothesis testing is well doc-

umented in the literature. For example, assume that
√

n X/σ is used to test

the mean of a normal population (H0 : θ = 0 vs. H1 : θ > 0) with known vari-

ance σ2, based on n i.i.d. samples. The probability of a type II error is then

β(θ;α) = 1 − Φ(Φ−1(α) +
√

n θ/σ) where Φ is the cdf of N(0, 1). Figure 1 il-

lustrates the trade-off between α and β for θ = 1 and 2, assuming n = 100 and

σ = 5. The dashed lines connect α values of 0.01 and 0.05 with their correspond-

ing β values. It can be seen that the gain in power obtained when α is relaxed

from 0.01 to 0.05 is very different in the two situations. Although an increase in

α comes with an increased power in the context of simple hypothesis testing, α

is typically pre-specified at a small value (e.g., α = 0.05 for social sciences and

α = 0.01 or 0.001 for natural sciences), and β is mainly discussed when design

and sample size are of concern. However, such standard statistical practice is not

yet available for multiple hypothesis testing utilizing FDR. First, the definition

of type II error rate and power in this context is often unclear. Second, the

Figure 1. Illustration of the trade-off between type I and type II error rates
for single hypothesis testing.
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trade-off between FDR and type II error rate is not well studied. Finally, the

choice of FDR level seems to be somewhat arbitrary from study to study.

2.2. NDR as type II error rate for multiple comparisons

When a large number of hypotheses are tested simultaneously, the choice of

type II error rate, β, and power, 1 − β, is not unique. For example, Pr(T ≤ k)

and Pr(S ≥ m1 − k), 0 ≤ k ≤ m1, could be defined as type II error rate and

power, respectively, where the choice of k reflects the stringency of the criterion.

However, such definitions are probably more suitable as counterparts for FWER.

To see why NDR is a good candidate as type II error rate for multiple

hypothesis testing, consider m independent and identical hypotheses H1, . . . ,Hm

with test statistics t1, . . . , tm. Let Hi = 0 denotes a true null hypothesis, Hi = 1

otherwise, and R be the rejection region. It is not difficult to see that NDR

=
∑

i Pr(ti /∈ R|Hi = 1)/m1 = β. Thus NDR is essentially the average of type

II error rate of single hypothesis testing. If we further assume Pr(Hi = 0) ≡ π0,

from the Bayesian point of view FDR = Pr(Hi = 0|ti ∈ R). A direct extension

of this definition of α leads to the FNR of Genovese and Wasserman (2002), and

E[FNR] = Pr(Hi = 1|ti /∈ R). However, it is difficult to interpret 1 - FNR as

power, because 1 - E[FNR] = Pr(Hi = 0|ti /∈ R) = E[U/(m − R)], a quantity

that depends on the true negatives but not the true positives. In contrast, NDR

has the traditional frequentist interpretation of β, and 1 - NDR =
∑

i Pr(ti ∈
R|Hi = 1)/m1 = 1 − β, the average power. Note that 1 - NDR = E[S]/m1 is

precisely the power defined in Dudoit et al. (2003) and used in many applications.

NDR can be considered a direct extension of the Per-Comparison Error Rate

(PCER), where PCER = E[V]/m ≤ E[V]/m0 =
∑

i Pr(ti ∈ R|Hi = 0)/m0.

Although it is mathematically more straightforward to pair FDR with FNR,

and PCER with NDR, the values of FNR and PCER are of little interest to

practitioners. Therefore, we choose to consider the trade-off between FDR and

NDR.

2.3. Trade-off between FDR and NDR

An astute reader will not be surprised that, similar to the trade-off between

α and β in the context of single hypothesis, there is one between FDR and NDR

for multiple comparisons. To illustrate this, assume that the p-values are from

(Unif [0, 1])θ , where θ = 1 corresponds to the true null hypotheses and θ > 1

corresponds to the false null hypotheses. Figure 2 shows three different types

of dependencies between FDR and NDR corresponding to (θ = 2, π0 = 0.9),

(θ = 3, π0 = 0.7) and (θ = 4, π0 = 0.5), where π0 is the proportion of true



866 RADU V. CRAIU AND LEI SUN

Figure 2. Illustration of dependence between FDR and NDR for multiple
hypothesis testing.

null hypotheses. Dashed lines connect FDR values of 0.01 and 0.05 with their

corresponding NDR values. As shown clearly by the graph, a) for some cases,

FDR at 0.01 or 0.05 level may not be suitable if the objective is to screen for as

many true signals as possible for follow up studies, b) a slight increase of FDR

may result in various amounts of decrease in NDR for different alternatives.

Evidently, a better understanding of the relationship between NDR and FDR

can assist with the choice of FDR as well as sample size calculation.

Unlike the α level for a single test, there is no “golden standard” (e.g., 0.05)

for FDR and it could be argued that FDR is chosen based on the specific objective

of each study. For example, in the context of exploratory microarray analyses, a

larger value of FDR might be preferred in order to minimize NDR and identify

as many interesting/promising genes as possible. If the goal is to perform (often

costly) functional studies on significant genes, a more stringent FDR level might

be required to minimize the number of false positives and reduce the unnecessary

spending.

In the context of FNS control, Delongchamp et al. (2004) considered the

trade-off between power (=1−FNS) and FDR which is also of interest. In fact,

the curve of 1−NDR vs. FDR can be interpreted as a Receiver Operating Charac-

teristics (ROC) curve, where 1−NDR is the sensitivity and FDR is 1−specificity.

The methodology developed for ROC curves could be used to evaluate different

designs and analytic methods in the context of false discovery control. However,

in order to emphasize the main message of the paper which is the trade-off be-

tween the two types of errors, we continue the discussion around the dependency

between NDR and FDR.
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2.4. Cost-effectiveness measure based on FDR and NDR

The decision to use a particular level of FDR depends on the cost of intro-

ducing false positives and the gain of discovering true positives. In this respect,

some measures of cost-effectiveness or efficiency might be proposed. For example,

eratio = wratio

NDR2

NDR1

FDR1

FDR2

,

eslope = wslope
NDR2 − NDR1

FDR2 − FDR1
,

where wratio and wslope are weighting factors, and eratio > 1 or eslope > −1

indicates that FDR1 is more cost-effective than FDR2. If eratio is used with

wratio = 1, increasing FDR from 0.01 to 0.1 requires a 10-fold decrease in NDR

to make the two choices of FDR equally efficient, which may not be reasonable.

Alternatively, wratio < 1 could be used to give more weight to the effectiveness of

a decrease in NDR. Compared to eratio, eslope has a natural interpretation when

wslope = 1: it can be viewed as the slope of the NDR versus FDR curve. In that

case, if the slope of the curve at a chosen FDR value is less than -1, using a less

stringent FDR level could be beneficial. The final choice of eratio or eslope, or

some other measure of efficiency, is likely to be study specific and of interest for

future research. In Section 5 we demonstrate patterns observed in three datasets

collected for distinctive genetic and genomic studies.

3. Equivalence between FDR-adjusted p-values and q-values

The estimation of NDR depends on the specific procedure for FDR con-

trol. Currently, there are two main approaches. The first, due to Yekutieli and

Benjamini (1999), is based on the FDR-adjusted p-value. The second is Storey’s

(2002) q-value method. We show in the following section that the two approaches

are in fact equivalent, a result that was also shown numerically by Black (2004)

through simulation studies.

In the original BH procedure, if p(1) ≤ · · · ≤ p(m) is the ordered sequence of

m available p-values, we search for the largest k such that p(k) ≤ (k/m) α and

reject all H(j), j ≤ k. Benjamini and Hochberg (2000), Benjamini and Yekutieli

(2001), Genovese and Wasserman (2002) and Finner and Roters (2002) have all

shown that this procedure is conservative in that FDR = απ0, where π0 = m0/m.

(Evidently, FDR ≤ π0 because α ≤ 1.) A natural modification is given by the

adaptive BH procedure (Benjamini and Hochberg (2000)) in which we look for
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the largest k such that p(k) ≤ (k/m) (α/π0) and reject all H(j), j ≤ k. This leads

to FDR = (α/π0) π0 = α.

Equivalently, the BH procedure can be performed by means of the FDR

adjusted p-value (Yekutieli and Benjamini (1999)). The FDR adjusted p-value

corresponding to p(i) is

pFDR
(i) = min

{

mp(j)

j
: j ≥ i

}

= min

{

mp(i)

i
, pFDR

(i+1)

}

, (3.1)

with pFDR
(m) = p(m). In order to maintain FDR ≤ α one rejects all hypotheses

with pFDR
(i) ≤ α. Obviously, an adaptive BH method can be implemented by

rejecting all hypotheses with pFDR
(i) ≤ α/π̂0, resulting in R = #{pFDR

(i) ≤ α/π̂0}.
The superiority of the adaptive BH procedure is apparent in that the number

of rejections R is at least as large as in the original BH procedure while still

controlling FDR at level α. However, we emphasize that both the adaptive BH

procedure and Storey’s approach below require a good approximation of π0.

Recently Storey (2002, 2003) has proposed the notion of q-value as the

FDR counterpart of the p-value. Roughly speaking, the q-value of an observed

test statistic associated with hypothesis Hi is the minimum possible FDR for

calling Hi significant. If we declare all hypotheses with q-values less or equal

to α significant, then FDR ≤ α for large m. Using the same notation as in

Storey and Tibshirani (2003), the q-value can be estimated using

q̂(i) = min

{

π̂0mp(i)

i
, q̂(i+1)

}

,

where q̂(m) = π̂0 p(m). It is not hard to see that q̂(i) = π̂0 pFDR
(i) , therefore the

number of rejections based on q-values, Rq = #{q̂(i) ≤ α} = #{pFDR
(i) ≤ α/π̂0} =

R.

4. Estimation of NDR

To estimate NDR, we choose to use the adaptive BH procedure based on

the FDR adjusted p-value. Given the results in Section 3, the estimator works

equally well for the q-value approach.

Storey (2003) has shown that, under certain assumptions including indepen-

dence between tests,

E

[

V

R

∣

∣

∣
R > 0

]

=
E[V]

E[R]
. (4.1)

For general cases, Storey and Tibshirani (2003) argued that (4.1) holds approx-

imately for large m. In the following we assume that (4.1) holds. For a chosen
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FDR level α such that 0 ≤ α ≤ π0 and E[(V/R)|R > 0] Pr(R > 0) = α,

NDR =
E[T]

m1
= 1 − E[R − V]

m1
= 1 −

(

1 − α

Pr(R > 0)

)

E[R]

(1 − π0)m
. (4.2)

A simple estimate of NDR may be obtained by replacing E[R] with its observed

value R, where R = #{pFDR
(i) ≤ α/π̂0}, and π0 with π̂0. We obtain

N̂DR =

{

1 − (1 − α)R

(1 − π̂0)m

}

I(π̂0 < 1). (4.3)

Note that the event {R = 0} is of little concern here because a) Pr(R > 0) ≈ 1 in

practice, as argued by Storey and Tibshirani (2003) among others, and b) when

R = 0, NDR obviously should be 1 which is the case based on N̂DR above. Be-

cause of the small variance of π̂0 (on the order of o(1/m) using the π̂0(λ) estimator

below and assuming tests are independent), cov(R, π̂0) is negligible. Therefore

(for simplicity we omit the indicator I(π̂0 < 1) in the following expression),

E[N̂DR] ≈ 1 − (1 − α)E[R]

(1 − E[π̂0])m
= 1 − (1 − α)E[R]

(1 − π0 − c)m

= 1 − (1 − α)E[R]

m

{

1

1 − π0 − c
− 1

1 − π0
+

1

1 − π0

}

= 1 − (1 − α)E[R]

(1 − π0)m
− (1 − α)E[R]

(1 − π0)m

c

1 − π0 − c
, (4.4)

where c is the bias of π̂0. Equation (4.4) suggests that the bias of N̂DR mainly

depends on the bias of π̂0. Consider the following commonly used π0 estimator

π̂0(λ) =
#{pi > λ}
m(1 − λ)

. (4.5)

With λ = 0.5, it is easy to show that the (upward) bias of the estimator is

2 (1 − π0) ǫ, where ǫ is the probability an alternative p-value is greater than

0.5. Let F0 and F1 be the cdf of the test statistic under the null and alternative

hypotheses, ǫ = F1[F
−1
0 (0.5)], a small value as long as F1 and F0 are not close.

For example, assume F0(t) = Φ0,1(t) and F1(t) = Φµ1,1(t), µ1 > 0, where Φµ,σ2(t)

is the cdf of N(µ, σ2), as in Cox and Wong (2004). Then c = 2(1−π0)Φ0,1(−µ1),

a value that decreases fast as µ1 increases. However, in situations where π0 is

small and the “distance” between the null and alternative populations is also

small, the bias of π̂0 could be considerable (Black (2004)) which may lead to a

non-negligible downward bias in N̂DR, particularly when the chosen FDR level is
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high. We thus must acknowledge the central role of accurate estimation of π0 in

the performance of the method proposed here. Specifying good estimators for π0

goes beyond the scope of this paper, and we refer readers to the work of Storey

(2002), Storey and Tibshirani (2003), Storey, Taylor and Siegmund (2004), and

Langaas, Lindqvist and Ferkingstad (2005).

5. Examples and Simulation Study

The following examples demonstrate the various relationships that may exist

between FDR and NDR. For practical reasons, one might be also interested in

knowing E[R]/m, the proportion of rejections among all the m tests at the given

FDR level. We call this quantity Proportion Of Rejection (POR). A natural

unbiased estimator is P̂OR = R/m. Some simple algebra can also show that

POR ≈ (1− π0) (1−NDR)/(1−FDR). For clarification, we summarize here the

procedure used to produce the plots and tables in this section.

Step 1: Estimate π0, e.g., using (4.5) with λ = 0.5.

Step 2: Choose FDR = α, e.g., α ∈ (0, π̂0), on a grid of 0.01.

Step 3: Derive R, e.g., using the above adaptive BH procedure.

Step 4: Estimate NDR using (4.3), and POR as above.

5.1. Microarray data

Our first illustration uses the data from Example 1 of Storey and Tibshirani

(2003) which contains m = 3, 170 p-values calculated from a study of microar-

ray gene expression data (p-values were obtained from Dr. Storey’s website at

http://faculty.washington.edu/~jstorey/). In this case we have also used

Storey and Tibshirani’s estimate of π̂0 = 0.67.

Figure 3 presents the relationships between NDR and FDR (left panel), and

between POR and FDR (right panel). The dashed lines connect FDR = 0.01, 0.1

and 0.2 with their corresponding NDR and POR estimates. The results indicate

that increasing FDR from 0.1 to 0.2 can work well for this dataset since it reduces

NDR from 0.73 to 0.45. If one uses wslope = 1, then eslope = −2.8 which favors

FDR = 0.2. The slope of the curve at FDR = 0.1 is −2.44, which is obtained by

fitting a linear regression model in a local interval of FDR,(0.1−0.02, 0.1+0.02).

For extreme situations where the pattern is non-linear, more sophisticated models

such as cubic splines may be required to approximate the slope at a given point.

In the right hand panel, it can be seen that roughly 10% and 23% of the 3,170

tests would be rejected (317 and 729 out of 3,170), respectively, for an FDR of

0.1 and 0.2.
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Figure 3. NDR vs. FDR (left panel), and POR vs. FDR (right panel) for
the microarray data example.

5.2. Pedigree error detection using genomewide genetic marker data

The following two examples concern pedigree error detection in the context
of genome-scans for localizing disease susceptibility genes. Both datasets were
distributed as part of the biennial Genetic Analysis Workshops (GAW). The
COGA dataset was collected for the study of genetics of alcoholism (GAW11),
and its potentially misspecified relationships among relative pairs were analyzed
by McPeek and Sun (2000). The CSGA dataset was used for an asthma study
(GAW12), and its pedigree errors were analyzed by Sun, Abney and McPeek
(2001). Given a set of collected families, the null hypothesis for a particular
relative pair is the relationship type indicated by the given pedigree, e.g., a sib
pair. Genome-wide genetic marker data are used to perform the corresponding
hypothesis test. Figure 4 shows the histogram of the 5381 p-values from the
COGA dataset and the 3276 p-values from the CSGA dataset. The estimates of
π0 are 0.68 and 0.81 for the COGA and CSGA datasets, respectively.

Figure 4. Histogram of the p-values for the two pedigree error examples.
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Figure 5. NDR vs. FDR (left panel) and POR vs. FDR (right panel) for the
two pedigree error examples.

The top panel of Figure 5 (COGA dataset) shows trends similar to those

from the previous microarray example. Increasing FDR from 0.1 to 0.2 seems to

be beneficial: NDR decreases from 74% to 54% with eslope = −2. The bottom

panel in Figure 5 (CSGA dataset) presents a different image. Indeed, even with

FDR = 0.2, NDR remains high (about 0.8) and only 20% of the truly misspecified

relative pairs could be detected. Increasing FDR from 0.1 to 0.2 leads to eslope =

−0.9. In this case, π̂0 = 0.81, so one might think that with a smaller π1 = m1/m

it would be easier to identify all the m1 true alternatives. However, since the

noise in the data is larger, it is in fact more difficult to detect the true signals.

The following simulation study further shows that, given the same level of FDR,

NDR increases as π0 increases.

5.3. A simulation study

We performed a simulation study to investigate the bias and variance of the

NDR and POR estimates. The simulation model considered is similar to that

of Storey (2002) and Black (2004). We generated m = 5, 000 independent data

points from a normal distribution with mean µ and known variance σ2 = 1. For

each set of data, mπ0 observations were simulated from µ0 = 0 and the remaining

ones from µ1 = 1, 1.5, 2, 2.5 and 3, with π0 ranging from 0.6 to 0.9 on a grid
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of 0.1. We considered FDR at level 0.01, 0.05, and from 0.1 to 0.5 on a grid of

0.1. For each replication, to estimate π0, NDR and POR, we used the procedure

described at the beginning of this section. We repeated the above 1,000 times.

The true NDR was estimated through another set of 1,000 simulations in which

T was tracked.

Figure 6 demonstrates the relationships among FDR, NDR and POR for

the models considered, for a particular simulation realization. The graph clearly

shows that NDR increases as π0 increases. Not surprisingly, for a given π0, the

“distance” between the null and the alternative hypotheses plays a significant

role in determining NDR. For example, when π0 = 0.7 and µ1 = 3, by allowing

FDR to be 0.2 we could identify most of the true signals. In contrast, if µ1 = 1,

NDR does not change almost at all even if one increases FDR from, say, 0.01 to

0.2. The above remarks are also clearly reflected by the differences in slopes of

the corresponding NDR versus FDR curves.

Figure 6. NDR vs. FDR (left panel) and POR vs. FDR (right panel) for

the simulation model.
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Table 2 summarizes the results over the 1,000 replicates and gives the sample

average of the NDR estimates and their standard error (SE). (Results for µ1 = 1.5

and 2.5 are not shown because of their similarities to the others.) The estimate

of NDR tends to be downward biased because of the upward bias of π̂0. In most

cases, the biases are very small. The worse case scenario is the situation when

π0 and µ1 are small and FDR is large (the largest bias is −0.18 when π0 = 0.6,

µ1 = 1, and FDR = 0.5). When π0 and µ1 are small, the estimate of π0 tends to

be less accurate, resulting in a larger bias c. In that case, if the chosen FDR level

is very high, the proportion of rejections increases considerably and the bias of

NDR becomes non-negligible because it is proportional to E[R]/m. For example,

when π0 = 0.6 and µ1 = 1, c ≈ 0.1. If FDR = 0.5, roughly half of the tests are

rejected, and the downward bias of N̂DR is about 0.2, while the true NDR is

about 0.3. This might be an extreme case in practice, since FDR is unlikely to

be chosen at the 0.5 level.

Table 2. Simulation results for the estimate of NDR

Parameters N̂DR(Bias, SE)

µ1, FDR π0 = 0.9 π0 = 0.8 π0 = 0.7 π0 = 0.6

µ1 = 1.0

FDR = 0.01 1.00 ( 0.00, 0.001) 1.00 ( 0.00, 0.001) 1.00 ( 0.00, 0.001) 1.00 ( 0.00, 0.001)

FDR = 0.05 1.00 ( 0.00, 0.003) 1.00 ( 0.00, 0.003) 1.00 ( 0.00, 0.004) 0.99 ( 0.00, 0.006)

FDR = 0.10 1.00 ( 0.00, 0.007) 0.99 ( 0.00, 0.008) 0.98 (-0.01, 0.011) 0.96 (-0.01, 0.017)

FDR = 0.20 0.99 (-0.01, 0.014) 0.96 (-0.01, 0.022) 0.90 (-0.03, 0.031) 0.81 (-0.06, 0.034)

FDR = 0.30 0.97 (-0.01, 0.027) 0.89 (-0.03, 0.040) 0.75 (-0.07, 0.045) 0.57 (-0.11, 0.042)

FDR = 0.40 0.93 (-0.03, 0.046) 0.76 (-0.07, 0.059) 0.53 (-0.12, 0.052) 0.32 (-0.16, 0.037)

FDR = 0.50 0.86 (-0.05, 0.074) 0.57 (-0.12, 0.069) 0.30 (-0.16, 0.050) 0.10 (-0.18, 0.031)

µ1 = 2.0

FDR = 0.01 0.98 ( 0.00, 0.014) 0.95 ( 0.00, 0.015) 0.91 ( 0.00, 0.014) 0.87 (-0.01, 0.015)

FDR = 0.05 0.88 (-0.01, 0.036) 0.76 (-0.01, 0.029) 0.65 (-0.02, 0.023) 0.55 (-0.02, 0.019)

FDR = 0.10 0.77 (-0.02, 0.049) 0.60 (-0.02, 0.035) 0.47 (-0.02, 0.027) 0.36 (-0.03, 0.020)

FDR = 0.20 0.59 (-0.03, 0.069) 0.40 (-0.03, 0.042) 0.26 (-0.03, 0.029) 0.16 (-0.03, 0.019)

FDR = 0.30 0.45 (-0.04, 0.083) 0.25 (-0.03, 0.045) 0.13 (-0.03, 0.027) 0.06 (-0.03, 0.015)

FDR = 0.40 0.34 (-0.04, 0.094) 0.15 (-0.04, 0.044) 0.06 (-0.03, 0.022) 0.01 (-0.03, 0.008)

FDR = 0.50 0.23 (-0.05, 0.094) 0.08 (-0.03, 0.037) 0.01 (-0.03, 0.012) 0.00 (-0.01, 0.003)

µ1 = 3.0

FDR = 0.01 0.63 ( 0.00, 0.053) 0.51 ( 0.00, 0.036) 0.42 ( 0.00, 0.027) 0.35 ( 0.00, 0.020)

FDR = 0.05 0.37 (-0.01, 0.084) 0.25 ( 0.00, 0.048) 0.18 ( 0.00, 0.032) 0.13 ( 0.00, 0.022)

FDR = 0.10 0.25 (-0.01, 0.094) 0.15 ( 0.00, 0.051) 0.10 ( 0.00, 0.033) 0.06 ( 0.00, 0.021)

FDR = 0.20 0.15 ( 0.00, 0.093) 0.07 ( 0.00, 0.047) 0.04 ( 0.00, 0.028) 0.02 ( 0.00, 0.016)

FDR = 0.30 0.11 ( 0.00, 0.085) 0.04 ( 0.00, 0.039) 0.02 ( 0.00, 0.020) 0.01 ( 0.00, 0.010)

FDR = 0.40 0.08 ( 0.00, 0.076) 0.03 ( 0.00, 0.030) 0.01 ( 0.00, 0.013) 0.00 ( 0.00, 0.004)

FDR = 0.50 0.06 ( 0.00, 0.066) 0.02 ( 0.00, 0.023) 0.00 ( 0.00, 0.006) 0.00 ( 0.00, 0.005)
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6. Conclusions and Future Work

In this paper, we proposed the use of the quantity NDR, the expected pro-

portion of non-rejections among the false null hypotheses, which can be viewed

as a natural extension of the type II error rate for multiple hypothesis testing.

(The concept of NDR certainly relies on the assumption that there are true

alternatives, i.e., m1 > 0.) We also proposed a simple estimator for NDR and

investigated its accuracy through simulation studies. Although the observed bias

of our estimator was small, we note that its performance depends highly on the

accuracy of the π0 estimation, particularly when π0 ≈ 1 or when tests are not

independent of each other. Alternatively, the bias of π̂0 could be potentially in-

corporated directly in the estimation of NDR. This is of future research interest.

NDR and its trade-off relationship to FDR can be utilized in many ex-

ploratory studies in which the problem of multiple comparisons is of concern,

yet an “optimal” level of FDR to be controlled is unknown. The NDR measure

is also useful at the stage of study design, in particular, for the determination

of adequate sample size for a required level of accuracy. In this context, FDR

is the type I error rate to be controlled, and NDR is the type II error rate to

be minimized, so power is considered to be 1−NDR. For example, in the sim-

ulation study when µ1 = 1 and π0 = 0.6, there is almost no power (1−NDR

= 1 − 0.96 = 0.04) for FDR at the 0.1 level. However, if a power of 80% is de-

sired while FDR needs to be maintained at the 0.1 level, then a simple simulation

study shows that a sample 4 times that of the original one is required for each

test. Müller et al. (2004), and Tsai et al. (2004) also considered the sample size

calculation for multiple hypothesis testing, but in the context of FNR and/or the

number of false negatives.

It has been shown that the current FDR controlling procedures work well for

independent tests and tests with Positive Regression Dependency (PRD). How-

ever, the effect of general dependence has not been well studied. In their recent

simulation studies of microarray data, Li et al. (2005) have demonstrated that

the actual FDR could be twice the nominal level when the dependent structure

among tests was mimicked under realistic assumptions, and if the proportion

of null genes is greater than 90%. Unfortunately, this is likely to be the case

for most microarray analyses and genome-wide genetic studies. In addition, an

estimator of π0 such as the one given in (4.5) is sensitive to the assumption of

independence. Accurate π0 estimation and FDR control under general conditions

is still an open question. The recent work of Efron (2005) suggests that empir-

ical null distributions (Efron (2004)) could be used as a more robust technique

to control FDR in the presence of correlation. Based on the current estimator

of NDR using (4.3), the downward bias of FDR would lead to a downward bias

of NDR. Li et al. (2005) have recommended adjusting the nominal FDR level by
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half when π0 > 0.9. In that case, one crude adjustment for the NDR estimate is

to replace the nominal FDR level α by 2α in (4.3).

In contrast to the FNS of Delongchamp et al. (2004) that was defined exclu-

sively for the fixed rejection region procedure, our NDR is defined as a general

measure of type II error rate regardless of the specific FDR procedure. The cho-

sen method however does affect the estimation of NDR. The estimator considered

in (4.3) was developed for the fixed FDR procedure, but can be easily modified

to obtain an NDR estimate under the fixed rejection framework by replacing

the nominal FDR value α with the estimated FDR level. Discussions on the

connection between the fixed rejection and fixed FDR methods can be found in

Storey, Taylor and Siegmund (2004) and Sun et al. (2006).

Our study of NDR, as well as most work on FDR, has focused on the mean

of the estimators. The variance is another quantity of interest, especially in the

context of constructing confidence intervals. The variances of N̂DR and P̂OR

are both proportional to the variance of R, which depends on the structure

of both null and alternative models. The recent paper of Owen (2005) shows

possible pathways of exploring the variance of R and is of particular importance

to further development of the work presented here.

Appendix

In this Appendix, we provide numerical examples that demonstrate the dif-

ferences between NDR and FNR. FNR was proposed to compare the performance

of different FDR controlling procedures (Genovese and Wasserman (2002)), and

has a clear connection with FDR as discussed above. For a given dataset, there

is also a trade-off between FDR and FNR, as shown in Table A and Table B.

However, because the value of FNR depends on the number of null hypotheses,

the value of FNR could be artificially decreased as demonstrated by the compar-

ison between the two tables. Therefore, it is difficult to use FNR as a measure of

type II error rate across datasets. In contrast, NDR and 1−NDR are quantities

of particular interest to practioners.

For illustration, we assume
√

n X/σ is used to test the mean of a normal

population (H0 : θ = 0 vs. H1 : θ > 0) with known variance σ2 = 52, based on

n = 100 i.i.d. samples. The power to detect a single hypothesis at level α is then

Φ(Φ−1(α) +
√

n θ/σ) where Φ is the cdf of N(0, 1). We first assume that there

are 1,000 hypotheses among which 100 are from the alternative population, and

50 have µ1 = 1 while the remaining 50 have µ1 = 1.5. To control FDR at 5%

and 10%, one can reject all hypotheses with (unadjusted) p-values ≤ 0.0022 and

0.0062 respectively (Sun et al. (2006)). Table A summarizes the results.

Suppose that an additional set of 1,000 hypotheses would be included. It

is likely that the second set contains fewer true hypotheses. For example, in an
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Table A: NDR and FNR when there are 900 null and 100 alternative hy-
potheses.

Control FDR at 5% Control FDR at 10%

Declared Declared Declared Declared Total

non-significant significant non-significant significant

Truth: H0 898 2 894.5 5.5 900
Truth: H1 62 38 50 50 100

Total 960 40 944.5 55.5 1000

NDR = 0.62 NDR = 0.50

FNR = 0.06 FNR = 0.05

Table B: NDR and FNR when there are 1890 null and 110 alternative hy-

potheses.

Control FDR at 5% Control FDR at 10%

Declared Declared Declared Declared Total

non-significant significant non-significant significant

Truth: H0 1888.3 1.7 1885.2 4.8 1890

Truth: H1 78 32 66.5 43.5 110

Total 1966.3 33.7 1951.7 48.3 2000

NDR = 0.71 NDR = 0.60

FNR = 0.04 FNR = 0.03

exploratory analysis of gene-expression data a large number of secondary genes

might be added to the set containing high priority genes; in genome-wide linkage

and association studies, a large number of genetic markers are included to cover

the genome in addition to the ones selected from targeted regions. Assume

that there are in fact only 10 alternatives among which 5 have µ1 = 1 and the

remaining 5 have µ1 = 1.5. Because the proportion of the noise as measured

by π0 is greater, it would be more difficult to identify the alternatives. In other

words, a more stringent criterion is required to control FDR at the same level.

(Controlling FDR at 5% and 10% is equivalent to rejecting all hypotheses with

unadjusted p-values ≤ 0.0009 and 0.0026 respectively.) This is reflected by the

NDR measure which increases from 0.62 to 0.71 for FDR at the 5% level, and

from 0.5 to 0.6 for FDR at 10%. In contrast, FNR decreases from Table A to

Table B, a result of increased m0 rather than a true reduction of false negatives.
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