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Abstract: Being the solution to the stochastic linear growth model, the Wiener

process has recently been used to model the degradation (or cumulative decay)

of certain characteristics of test units in lifetime data analyses. When the failure

threshold is constant or linear in time, the failure time, which is defined as the first-

passage time of the Wiener process over the failure threshold, will follow an inverse

Gaussian (IG) distribution. In this paper we consider a time-censored degradation

test where, in addition to the failure times of the failed units, we assume that the

degradation values at the censor time of the censored units are also available. Then,

based on these degradation values, we use a modified EM-algorithm to predict the

failure times of the censored units. The resulting estimator of the mean failure time

is shown to be a consistent estimator, and is also an estimator that maximizes the

(modified) likelihood function of the available failure times and degradation values.

For the scale parameter of the IG distribution, however, the algorithm produces

an inconsistent estimator. We introduce two modified estimators to reduce bias.

Analytical and numerical comparisons show that our proposed estimators perform

well, as compared to the traditional MLEs and the modified MLEs, for both IG

parameters. An example is used to illustrate the proposed methodology.

Key words and phrases: Bias, consistency, degradation test, EM-algorithm, inverse

Gaussian distribution, maximum likelihood estimator, reliability, Wiener process.

1. Introduction

Assume that a product has a critical quality characteristic (QC) whose degra-

dation sample path, {W (t) | t ≥ 0}, follows a Wiener process

W (t) = ηt + σB(t), t ≥ 0, (1)

where η is the drift parameter, σ > 0 is the diffusion coefficient, and B(·) is a

standard Brownian motion. Being a continuous-time version of the discrete-time

cumulative sum (CUSUM) process, W (t) is the solution of the stochastic linear

growth model dWt = ηdt + σdB(t). The product’s failure time (or lifetime),
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denoted T , is then defined as the first-passage time of W (t)(with η > 0) over a

constant failure threshold a(> 0), i.e.,

T = inf{t ≥ 0 | W (0) = 0,W (t) ≥ a}. (2)

It is well-known that T follows an inverse Gaussian distribution, denoted by

IG(µ, λ), with the location and scale parameters

µ =
a

η
, and λ =

a2

σ2
, (3)

respectively. The p.d.f. and c.d.f. of T are given, respectively, by

f(t) =

√
λ

2πt3
exp

{
− λ(t − µ)2

2µ2t

}
, t > 0, (4)

F (t) = Φ

(√
λ

t

( t

µ
− 1

))
+ exp

(2λ

µ

)
Φ

{
−

√
λ

t

( t

µ
+ 1

)}
, t > 0. (5)

Chhikara and Folks (1989) and Seshadri (1999) provide systematic overviews on

the IG distribution.

The Wiener/IG model has found applications in certain studies. For exam-

ple, Sherif and Smith (1980) and Bhattacharyya and Fries (1982) consider a fa-

tigue failure model in which accumulated decay is governed by a Wiener process.

Whitmore and Schenkelberg (1997) also use a time-transformed Wiener process

to model resistance of self-regulating heating cables. Doksum and Normand

(1995) assume a Wiener process for the level of a biomarker process such as

calibrated log CD4 blood cell counts in their HIV study. Singpurwalla (1995)

also proposes a Wiener process for cracks caused by fatigue (with healing).

Tseng, Tang and Ku (2003) suggest a transformed Wiener process for light in-

tensity of light emitting diode (LED) lamps for contact image scanners (CISs).

Doksum and Hoyland (1992) use a time-transformed Wiener process to model

an accelerated degradation sample path.

If n independent units are tested until failure to obtain the complete failure

times t1, . . . , tn on T , then the maximum likelihood estimators (MLEs) of µ and

λ are

µ̂ = T , (6)

λ̂ =
n

V
, (7)

where T =
∑n

i=1 Ti/n and V =
∑n

i=1(1/Ti − 1/T ). Since IG distributions

form an exponential family, (T ,
∑n

i=1 1/Ti) is a minimal complete sufficient set



A MODIFIED EM-ALGORITHM 875

of statistics for (µ, λ), and hence the uniform minimum variance unbiased esti-

mators (UMVUEs) of µ and λ are T and (n−3)/V , respectively (Seshadri (1999,

Chap.2)).

However, censoring is often implemented in practice, especially when testing

highly reliable products. Furthermore, for estimating the IG parameter, one

often assumes that only failure times of the failed units and the censor times of

the censored units are available.

In this paper we consider a time-censored degradation test where, in addition

to the common censor time, we assume the degradation values of the censored

units at the censor time are also available. Then, based on these degradation

values, a modified EM algorithm is proposed in Section 2 to predict the corre-

sponding (expected) failure times; a closed-form estimate of the IG mean failure

time is obtained in Section 2.1, denoted MEME. This estimator, which is also a

modified maximum likelihood estimator (MMLE), is shown in Section 2.2 to be a

consistent estimator of the true mean failure time. For the scale parameter of the

IG distribution, however, the algorithm produces an inconsistent estimator. We

introduce two methods for reducing the bias. We also discuss the MMLE of the

IG scale parameter, and the results are given in Section 3. In Section 4 we first

demonstrate that, by incorporating the degradation values of the censored units,

the resulting MMLEs indeed reduce the asymptotic variances of the traditional

MLEs for both IG parameters. We then numerically evaluate the performances of

the MEMEs, MMLEs, and MLEs for both IG parameters for small-sample cases.

We also study the performances of the MEMEs under the two bias reduction

techniques given in Section 3. An example on LED lamps is used in Section 5 to

illustrate the proposed methodology. Concluding remarks are given in Section 6.

2. Modified EM-Algorithm and Estimate of the Mean Failure Time

Assume that n independent units were tested and, by fixed time τ , m of

them have failed, with failure times t1, . . . , tm, and the remaining units were

censored with degradation values, wm+1(τ), . . . , wn(τ), at time τ . Here m is an

observed value of the random variable M for the member of uncensored units in

this time-censored test.

The following procedure is used to estimate the IG parameters.

Step 1. Predict the failure times, denoted t
(1)
m+1, . . . , t

(1)
n , for the censored units

based on their degradation values at τ . The prediction is made using a

modified expectation maximization (EM) alothrithm.

Step 2. Use the complete pseudo failure times, t1, . . . , tm, t
(1)
m+1, . . . , t

(1)
n to ob-

tain the pseudo UMVUEs, Θ̂(1), of the IG parameters.
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Step 3. At iteration k, use the estimates of the IG parameters from the previous

step to update the predicted failure times, denoted by t
(k)
m+1, . . . , t

(k)
n , for

the censored units.

Step 4. Use the complete pseudo failure times, t1, . . . , tm, t
(k)
m+1, . . . , t

(k)
n , to find

the pseudo UMVUE, Θ̂(k), of the IG parameters.

Steps 3 and 4 are repeated until the limit of Θ̂(k), as k → ∞, can be obtained, or

the elements of |Θ̂k+1− Θ̂k| are all smaller than a pre-determined tolerance. The

estimates thus obtained will be called the modified EM estimates (MEMEs).

2.1. The MEME of µ

We apply the above procedure to obtain a closed-form estimate for the IG

mean. For Step 1, since the expected degradation path is linear in time with

slope η, the line through (0, wi(0)) and (τ, wi(τ)) will pass the failure threshold

a at

t
(1)
i =

aτ

wi(τ)
, for i = m + 1, . . . , n. (8)

The complete pseudo failure times, t1, . . . , tm, t
(1)
m+1, . . . , t

(1)
n , are then used in

Step 2 to obtain the first pseudo UMVU estimate of µ, using (6),

µ̂(1) = t
(1)

=
1

n

( m∑

i=1

ti +
n∑

i=m+1

t
(1)
i

)

=
1

n

m∑

i=1

ti +
aτ

n

n∑

i=m+1

1

wi(τ)
. (9)

Note that the estimated slope is η̂(1) = a/µ̂(1). For Step 3, with k = 2, we again

use a linear degradation path after τ to obtain the predicted failure times for

censored units as

t
(2)
i = τ +

a − wi(τ)

η̂(1)

= τ +
a − wi(τ)

na

( m∑

j=1

tj+

n∑

j=m+1

aτ

wj(τ)

)
, for i = m+1, . . . , n.

Hence for Step 4 we have, using (6),

µ̂(2) =
1

n

( m∑

i=1

ti +

n∑

i=m+1

t
(2)
i

)
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=
1

n

m∑

i=1

ti +
1

n

n∑

i=m+1

(
τ +

(
1 − wi(τ)

a

)
µ̂(1)

)

= C + D · E, say,

where C =
∑m

i=1 ti/n + (1 − m/n)τ , and D = (1 − m/n) − ∑n
i=m+1 wi(τ)/an,

and E = (
∑m

i=1 ti + aτ
∑n

i=m+1 1/wi(τ))/n.

If we iterate the algorithm k times, we obtain

µ̂(k) = C + D(C + D(C + D(C + D(· · · + D(C + D · E))))), (10)

where there are (k − 1)C ′s, (k − 1)D′s, and one E. Because 0 < D < 1, with

probability 1, µ̂(k) in (10) will converge with probability 1 as k → ∞ to a limit

denoted by µ̂n (subscript n is added to denote the fixed sample size here), where

µ̂n =
C

1 − D
=

1
n

m∑
i=1

ti + 1
n(n − m)τ

1
n(m +

n∑
i=m+1

wi(τ)
a )

=

m∑
i=1

ti + (n − m)τ

m +
n∑

i=m+1

wi(τ)
a

. (11)

To interpret (11) we first note that, based on the argument used to obtain (8),

the average failure time of the censored units is a weighted average of their ex-

pected failure times τ/(wj(τ)/a), j =m+1, . . . , n, weighted by (wj(τ)/a)/[
∑n

i=m+1

(wi(τ)/a)] for the jth unit. This average turns out to be (n − m)τ/
∑n

i=m+1

(wi(τ)/a). The average failure time of the uncensored units is
∑m

i=1 ti/m. The

estimate in (11) is the weighted average of these two sub-averages.

Modified Maximum Likelihood Estimate (MMLE) of Mean Failure

Time

For the mean failure time, the estimate (11) happens to be an MMLE. To

see this and to compare the MMLE with the traditional MLE, we take δi = 1

if Ti ≤ τ , δi = 0 if Ti > τ . Then the conditional distribution of Ti, given that

δi = 1, is P (Ti = ti | Ti ≤ τ) = f(ti)/F (τ), for ti ≤ τ . Thus the joint distribution

of Ti at ti and δi = 1 is

P (Ti = ti, Ti ≤ τ) = P (Ti = ti | Ti ≤ τ)P (Ti ≤ τ)

=
f(ti)

F (τ)
F (τ) = f(ti), ti < τ,

and the joint likelihood for the uncensored observations is
∏m

i=1 f(ti). For the

censored observations, we have

P (Wi(τ) = wi, δi = 0) = P (Wi(τ) = wi, Ti > τ)
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= P (Wi(τ) = wi, sup
0≤t≤τ

Wi(t) < a)

=
1√

2πτa2

λ

exp

{
−

λ(wi − aτ
µ )2

2τa2

}(
1 − exp

{
− 2λ(a − wi)

aτ

})

= h(wi), say, for 0 ≤ wi < a, i = m + 1, . . . , n. (12)

A simple proof of (12) is given in the Appendix; also see (Cox and Miller (1965,

Chap.5)). Then the modified likelihood function is the joint distribution of the

given data:

m∏

i=1

f(ti)

n∏

i=m+1

h(wi). (13)

The MMLE, which maximizes (13), of the mean failure time µ can be shown

to be same as (11). Padgett and Tomlinson (2004) also consider (13), but they

misinterpreted h(wi) as a conditional distribution. If one has only τ for the

censored units, then traditional likelihood function is (Lawless (1982, Chap.2))

n∏

i=1

f(ti)
δi(1 − F (τ))1−δi =

( m∏

i=1

f(ti)

)
(1 − F (τ))n−m. (14)

2.2. The Consistency of the MEME/MMLE of µ

In this section we prove the large-sample property of the MEME/MMLE, µ̂n,

of (11), where failure times, degradation values, and failure number are all treated

as random. First recall from the last section that the conditional distribution

of T1, . . . , TM is a truncated IG(µ, λ). The censor number M is binomial with

failure probability F (τ). The conditional joint p.d.f. of T1, . . . , TM and M , given

Ti ≤ τ , i = 1, . . . ,M , and M ≥ 1, is

f(t1, . . . , tm,m | Ti ≤ τ, i = 1, . . . ,M,M ≥ 1)

= f(t1, t2, . . . , tm | Ti ≤ τ, i = 1, . . . ,M = m ≥ 1)P (M = m | M ≥ 1)

=

(
n

m

)
(1−F (τ))n−m

1−(1−F (τ))n

m∏

i=1

f(ti), for 0 < t1, . . . , tm ≤ τ and m = 1, . . . , n,

where f(·) and F (·) are given in (4) and (5), respectively. Then the conditional

expectation
∑M

i=1 Ti is (in what follows, Ti ≤ τ means Ti ≤ τ , i = 1, . . . ,M)

E(

M∑

i=1

Ti | Ti ≤ τ)
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= E(

M∑

i=1

Ti | Ti ≤ τ,M ≥ 1)P (M ≥ 1)+E(

M∑

i=1

Ti | Ti ≤ τ,M = 0)P (M = 0)

= E(
M∑

i=1

Ti | Ti ≤ τ,M ≥ 1)P (M ≥ 1)

= n

∫ τ

0
tf(t)dt

= nµ

{
Φ

(√
λ

µ
(
τ

µ
− 1)

)
− e

2λ
µ

[
1 − Φ

(√
λ

µ
(
τ

µ
+ 1)

)]}
. (15)

Similarly, by the i.i.d. property of T ′
is, we have

E
(
(

M∑

i=1

T 2
i ) | Ti ≤ τ

)
= E

( M∑

i=1

T 2
i +

M∑

i=1

M∑

i6=j

TiTj | Tk ≤ τ, k = 1, . . . ,M
)

= n

∫ τ

0
t2f(t)dt + n(n − 1)

( ∫ τ

0
tf(t)dt

)2
.

Then

Var
( M∑

i=1

Ti | Ti ≤ τ
)

= E
(
(

M∑

i=1

Ti | Ti ≤ τ)2
)
−

(
E

( M∑

i=1

Ti | Ti ≤ τ
))2

= n

∫ τ

0
t2f(t)dt + n(n − 1)

( ∫ τ

0
tf(t)dt

)2
− n2

(∫ τ

0
tf(t)dt

)2

= n

[∫ τ

0
t2f(t)dt −

(∫ τ

0
tf(t)dt

)2
]
.

So the conditional variance of n−1
∑M

i=1(Ti | Ti < τ) converges to 0 as n → ∞,

since
∫ τ
0 t2f(t)dt and

∫ τ
0 tf(t)dt are both finite. Thus n−1

∑M
i=1(Ti | Ti < τ)

converges in probability to
∫ τ
0 tf(t)dt.

For the censored units (i = M + 1, . . . , n), the conditional distribution of

Wi(τ), given that Ti > τ , is

P (Wi(τ) = wi | Ti > τ) = P
(
Wi(τ) = wi | sup

0≤t≤τ
Wi(t) < a

)
=

h(wi)

1 − F (τ)
,

where h(wi) is given in (12). We have the conditional joint distribution of

WM+1(τ), . . . ,Wn(τ) and failure number M as

f(wm+1, . . . , wn,m | M ≤ n − 1, Tj > τ, j = M + 1, . . . , n)

=
h(wm+1)

1 − F (τ)
· · · h(wn)

1 − F (τ)

(
n

m

)
F (τ)m(1 − F (τ))n−m 1

P (M ≤ n − 1)
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=
( n∏

i=m+1

h(wi)
)
F (τ)m

(
n

m

)
1

P (M ≤ n − 1)
, for 0 ≤ m ≤ n − 1

and 0 < wm+1, . . . , wn < a.

Now, conditioned on Ti > τ for i = M + 1, . . . , n, we have

E

( n∑

i=M+1

Wi(τ) | Ti > τ

)

= E

( n∑

i=M+1

Wi(τ) | Ti > τ,M ≤ n − 1

)
P (M ≤ n − 1)

=

n−1∑

m=0

(
n

m

)
(F (τ))m

∫ a

−∞

· · ·
∫ a

−∞

( n∑

i=m+1

wih(wi)
)
dwm+1 · · · dwn

= n
(
F (τ) +

∫ a

−∞

h(w)dw
)n−1

∫ a

−∞

wh(w)dw, (by i.i.d. of Wi(τ))

= n

∫ a

−∞

wh(w)dw (by
∫ a
−∞

h(w)dw = 1 − F (τ))

= na

{
τ

µ

(
1 − Φ

(√
λ

τ
(
τ

µ
− 1)

))
− (2 +

τ

µ
)e

2λ
µ Φ

(
−

√
λ

τ

( τ

µ
+ 1

))}
. (16)

Furthermore, by the i.i.d. property of the Wi(τ)′s, we have

E

(( n∑

i=M+1

Wi(τ)
)2

| Ti > τ

)

= E

( n∑

i=M+1

Wi(τ)2+
n∑

i,j=M+1
i6=j

Wi(τ)Wj(τ) | Ti > τ,M ≤ n − 1

)
· P (M ≤ n − 1)

=

n−1∑

m=0

∫ a

−∞

· · ·
∫ a

−∞

( n∑

i=m+1

w2
i+

n∑

i,j=M+1
i6=j

wiwj

)(
n

m

)
· (F (τ))m

( n∏

i=m+1

h(wi)dwi

)

= n

∫ a

−∞

w2h(w)dw + n(n − 1)
( ∫ a

−∞

wh(w)dw
)2

.

Then

Var

(∑n
i=M+1 Wi(τ)

n
| Ti > τ

)

=
1

n

∫ a

−∞

w2h(w)dw− 1

n

(∫ a

−∞

wh(w)dw
)2

→ 0, as n → ∞.
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That is, we have shown that

1

n

n∑

i=M+1

Wi(τ)
P−→

∫ a

−∞

wh(w)dw, as n → ∞.

Now, since (1/n)
∑M

i=1 Ti + [(n − M)/n]τ
P−→

∫ a
−∞

tf(t)dt + (1 − F (τ))τ and

M/n + (1/an)
∑n

i=M+1 Wi(τ)
P−→ F (τ) + (1/a)

∫ a
−∞

wh(w)dw, by the Slusky

Theorem we have

µ̂n =

M∑
i=1

Ti + (n − M)τ

M + 1
a

n∑
i=M+1

Wi(τ)

P−→
∫ a
−∞

tf(t)dt + (1 − F (τ))τ

F (τ) + 1
a

∫ a
−∞

wh(w)dw
,

which can be shown to be µ, using (15) and (16). That is, µ̂n
P−→ µ as n → ∞.

3. Estimates of the Scale Parameter λ of IG Distribution

3.1. The MEME of λ

Since the UMVUE of λ is (n−3)/V when complete failure data are available,

we have an estimate of λ for iteration k as λ̂(k) = (n − 3)/v̂k , where

v̂(1) =
m∑

i=1

1

ti
+

n∑

i=m+1

1

t
(1)
i

− n

t
(1)

=

m∑

i=1

1

ti
+

1

aτ

n∑

i=m+1

wi(τ) − n

µ̂(1)
,

and, for k ≥ 2,

v̂(k) =

m∑

i=1

1

ti
+

n∑

i=m+1

1

t
(k)
i

− n

t
(k)

=

m∑

i=1

1

ti
+

n∑

i=m+1

1

τ +
(
1 − wi(τ)

a

)
µ̂(k)

− n

µ̂(k)
.

Since µ̂(k) converges to µ̂n as k → ∞, t
(k)
i will converge to τ + (1 − wi(τ)/a)µ̂n.

Thus, as k → ∞, v̂(k) will converge to v̂n say, where

v̂n =
m∑

i=1

1

ti
+

n∑

i=m+1

1

τ +
(
1 − wi(τ)

a

)
µ̂n

− n

µ̂n
. (17)
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Hence, an MEME of λ is

λ̂n =
n − 3

v̂n
. (18)

The MMLE, λ̂′
n, can be shown from (13) to satisfy

λ̂′
n = n




m∑

i=1

(ti−µ̂n)2

2µ̂2
nti

+
n∑

j=m+1

(wj− aτ
µ̂n

)2

a2τ
−

n∑

j=m+1

4(a−wj)
aτ exp

{
−2λ̂′

n(a−wj)
aτ

}

1−exp

{
−2λ̂′

n(a−wj)
aτ

}




−1

.

(19)

There is no closed-form solution for λ̂′
n, so we have to rely on numerical proce-

dures to compute it. Note that, unlike the case for µ, the MEME (in (18)) and

the MMLE (in (19)) of λ are not the same.

3.2. Inconsistency of λ̂n and bias reduction

In this section we demonstrate that the MEME λ̂n(= (n − 3)/V̂n) of (18)

converges in probability to a value different from λ. First note from (17) that

V̂n

n
=

M

n

1

M

M∑

i=1

1

Ti
+

n − M

n

1

n − M

n∑

i=M+1

1

τ +
(
1 − Wi(τ)

a

)
µ̂n

− 1

µ̂n
. (20)

For each fixed Wi(τ), [τ+(1−Wi(τ)/a)µ̂n]−1 → [τ+(1−Wi(τ)/a)µ]−1 in probabil-

ity as n → ∞, and hence we expect that
∑n

i=M+1[τ +(1−Wi(τ)/a)µ̂n]−1/(n−M)

will converge in probability to E∗
τ ([τ + (1 − W (τ)/a)µ]−1), where W (τ) and

Wi(τ) are i.i.d., and the expectation E∗
τ denotes the joint expectation with

I(T > τ), or I(sup0<t<τ W (t) < a). Also,
∑M

i=1(1/Ti)/M will converge to

E(1/T | T ≤ τ) =
∫ τ
0 t−1f(t)dt/F (τ), where T and Ti, 1 ≤ i ≤ M , have the same

distribution. Since E(1/T ) = 1/µ+1/λ, if E∗
τ (1/T ) = E∗

τ (1/[τ +(1−W (τ)/a)µ])

then λ̂n
P→ λ. But the last equality is not true in general, implying that the

MEME is asymptotically biased with

E∗
τ (

1

T
) − E∗

τ (
1

τ +
(
1 − W (τ)

a

)
µ

)

= −
∫ ∞

τ

1

y

√
λ√

2πτµ2

{
exp

(
− λ(y − µ)2

2τµ2

)
−exp

(2λ

µ

)
exp

(
−λ(y+µ)2

2τµ2

)}
dy

+

∫ ∞

τ

1

t

√
λ√
2π

t
−3

2 exp
(
−λ(t−µ)2

2µ2t

)
dy, (21)
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which is obviously not equal to 0. The expectations in (21) are obtained using

the joint distribution of W (τ) = w and T > τ , which is h(w) in (12).

To reduce the bias, first define Y = τ + µ(1 − W (τ)/a) and then, by Taylor

series expansion of 1/Y about µ, we have

E∗
τ (

1

Y
) =

1

µ
− 1

µ2
E∗

τ (Y − µ) +
1

µ3
E∗

τ (Y − µ)2 − 1

µ4
E∗

τ (Y − µ)3 · · · . (22)

Now, from the definition of Y and the normality of W (τ), E(Y − µ)k is zero

for odd k and proportional to (τµ2/λ)k for even k, which may not converge as

k → ∞ in some special cases. However, in industrial applications, λ and µ are

typically large such that Var (T ) = µ3/λ is relatively small. With this and the

fact that E∗
τ (Y − µ)k ≤ E(Y − µ)k, we may truncate (22) since the higher order

terms are negligible.

Define A =
√

λ/τ (τ/µ − 1) and B =
√

λ/τ (τ/µ + 1). Then with some

algebras we can show (with first three terms in (22))

E∗
τ (

1

Y
) − E∗

τ (
1

T
) ≈ τ

λµ

{
[1 − Φ(A)] + exp

(2λ

µ

)
[1 − Φ(B)]

}

− 1

λ

{
1 − Φ(A) − exp

(2λ

µ

)
Φ(−B)

}
+ 2

( τ2

λµ
+

1√
λτ

)
φ(A)

≈ τ

λµ

{
[1 − Φ(A)] + exp

(2λ

µ

)
[1 − Φ(B)]

}

− 1

λ

{
1 − Φ(A) − exp

(2λ

µ

)
Φ(−B)

}
. (23)

Remark 3.2.1. (The MEME3). By (23) we modify the V̂n in MEME as

V̂n =

m∑

i=1

1

Ti
+

n∑

i=m+1

1

τ +
(
1 − Wi(τ)

a

)
µ̂n

− n

µ̂n
− (1 − F̂ (τ))

× τ

λ̂nµ̂n

{
{[1−Φ(Â)]+exp

2λ̂n

µ̂n
[1−Φ(B̂)]}− 1

λ̂n

{1−Φ(Â)−exp
2λ̂n

µ̂n
Φ(−B̂)}

}
,

(24)

where Â =

√
λ̂n/τ(τ/µ̂n − 1) and B̂ =

√
λ̂n/τ(τ/µ̂n + 1), and λ̂n and µ̂n are the

unmodified MEM estimates.

Remark 3.2.2. (The MEME2). We may correct some bias in the modified EM

procedures by modifying the predictions of failure times for the censored units

as follows. Let t′i be the additional time (after τ) to failure (i.e., to reach the

failure threshold a) for the censored unit i(≥ M + 1) if we were to continue the
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degradation test. Then wi(τ)+ηt′i +σB(t′i) = a, where B(t′i) is (a realization of)

the standard Brownian motion. Since the random B(t′i)/
√

t′i follows the standard

normal distribution, we propose to replace this quantity by B̂i = Φ−1((i−m)/(n−
m + 1)), the [(i−m)/(n −m)]-the quantile of the standard normal distribution.

So

wi(τ) + η̂t′i +
√

t′iσ̂B̂i = a, (25)

or

t′i = µ̂n(1− wi(τ)

a
) +

µ̂2
n

2

(
B̂2

i

λ̂n

∓ B̂i√
λ̂n

√
B̂2

i

λ̂n

+
4(a − wi(τ))

aµ̂n

)
.

Thus we have the predicted failure time for the ith unit as

T ′
i = τ+µ̂n(1−Wi(τ)

a
)+

µ̂2
n

2

(
B̂2

i

λ̂n

∓ B̂i√
λ̂n

√
B̂2

i

λ̂n

+
4(a−Wi(τ))

aµ̂n

)
, i = M +1, . . . , n.

(26)

Since the B̂i’s are symmetric, one can use either “+” or “−” in (26). The

proposed iterative method in Section 2 will be followed to calculate λ̂n. There

are no significant changes in our comparisons and conclusions in the next section

when Φ−1((i−m−1/2)/(n−m)), suggested by (David (1981, Chap.4)) are used

to approximate the normal percentiles.

4. Comparisons

First, if we write the IG c.d.f. in (5) as FT (t), then FcT (ct) = FT (t) for any

constant c > 0, i.e., the c.d.f. is invariant to positive scale transformations. This

implies that c can be judiciously chosen so that it is only necessary to vary one

of the IG parameters, or through (3), to vary one of the Wiener parameters in

our numerical study.

Large-sample Results

The traditional MLEs are known to be consistent (under mild conditions),

and we proved the consistency of the MEME/MMLE for the mean failure time

in Section 2.2. Now we show that the degradation values of the censored units

at the censor time are indeed useful in reducing the asymptotic variance. First

it can be shown that

Avar(µ̂MMLE) = (
µ4

λ
)[τ(1 − F (τ)) + E(δT )]−1, (27)
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with E(δT ) = µ{Φ(A) − exp(2λ/µ)Φ(−B)}. Then, a sufficient condition for

Avar(µ̂MLE) ≥ Avar(µ̂MMLE) is

λ

µ4

{
τ
[
1−Φ(A)− e

2λ
µ Φ(−B)

]
− 2

√
τλe

2λ
µ

[
2

√
λ

τ

1 − Φ(A)

1 − F (τ)
Φ(−B)− φ(B)

]}
≥ 0.

As a function of λ and τ (with fixed µ = 100), various software packages indicated

the inequality is true, implying Avar(µ̂MLE) > Avar(µ̂MMLE). Similarly,

Avar(λ̂MMLE) =
{
(

1

2λ2
) + (1 − F (τ))e

2λ
µ D

}−1
, (28)

with

D=

∫ a

−∞

√
λ√

2πτa2

(2(a−w)

aτ

)2(
1−exp

{
−2λ(a−w)

aτ

})−1
exp

{
−

λ(w− aτ
µ −2a)2

2τa2

}
dw.

Again, a sufficient condition for Avar(λ̂MLE) − Avar(λ̂MMLE) ≥ 0 is

(1−F (τ))
( 1

2λ
+

1

2λ2

)
+(1−F (τ))

{ 4

µ2
(1−Φ(A))− 4

τλ
(B2−1)(1−F (τ))2

}
e

2λ
µ Φ(−B)

+
1

1 − F (τ)

{[
12

τ2
+

4

µτ
− 8√

λτ3

]
(1 − F (τ))+

(
B

µλ
− 1+A2

2
√

λ3τ

)

+
1

τλ
e

2λ
µ

[
φ(B) − 4

√
λτ

µ
Φ(−B)

]}
φ(A) ≥ 0. (29)

Among the quantities in the last term of the left hand side of (29), 12/τ2 +

4/(µτ)− 8/
√

λτ3 is likely to be positive (for large λ). Since others quantities are

< 1, the last term is non-negative if τ is not too large (so 1 − F (τ) is not too

small). Note that B/µλ − (1 + A2)/2
√

λ3τ will be negative only when τ < µ

or λ < µ. But when τ > µ and λ < µ, the IG distribution has a long tail such

that (1 − F (τ)) is not too small, and this makes the last term of (29) positive.

The second term is negative only when τ is very small and λ is sufficiently large.

But, under these conditions, e2λ/µΦ(−B) will be very small and then the second

term is very small. The first term of (29) is always positive. Hence, we have

demonstrated that Avar(λ̂MLE) ≥ Avar(λ̂MMLE), which has been verified by

graphical methods.

Small-sample Results

Next, we evaluate the small-sample performances of the MEMEs, MMLEs,

and MLEs for both IG parameters. In our simulation, we choose to fix η = 0.1

and a = 10, which will in turn fix µ = 100. We consider σ = 0.2 and 0.1, which

corresponds to λ = 2, 500, and 10, 000, respectively. Instead of fixing the censor
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time τ for comparisons, it is more appropriate to fix the failure probabilities,
which are set at p = 0.2, 0.5 and 0.8 (the censor probabilities are 0.8, 0.5 and 0.2,
respectively). For given µ, λ and p, the corresponding censor time is computed
from p = F (τ | µ, λ), where F is given in (5). For example, when µ = 100,
λ = 2, 500, and p = 0.2, τ = 82.84.

The values of the Wiener process considered in Tseng, Tang and Ku (2003)
are such that their λ/µ is larger than the cases considered above; but when
λ/µ is large, the IG distribution resembles a normal distribution and, from our
comparisons below, our proposed estimators of both IG parameters are better
than the corresponding traditional estimators.

The degradation test is simulated 200 times for each case of (µ, λ, p) to obtain
the simulated estimates and the corresponding standard errors (s.e.). The results
are given in Tables 1a−1b.

Table 1a. Comparison of MEME, MMLE and MLE(µ = 100, λ = 2, 500).

p MEME(s.e.) MMLE(s.e.) MLE(s.e.) Actual p

µ λ µ λ µ λ

n = 16

0.2 100.25 2713.13 100.25 2891.17 102.59 10414.20 0.201

(5.96) (1142.43) (5.96) (1130.86) (20.81) (48757.45)

0.5 100.13 2463.14 100.13 2881.24 101.26 3335.07 0.496

(5.46) (948.37) (5.46) (1096.58) (9.42) (2305.71)

0.8 99.97 2437.51 99.97 2989.31 100.41 2989.60 0.795

(5.43) (998.46) (5.43) (1209.30) (5.92) (1412.91)

n = 32

0.2 100.14 2828.27 100.14 2731.76 101.32 3976.13 0.196

(3.96) (765.01) (3.96) (707.36) (11.91) (4735.44)

0.5 100.07 2602.49 100.07 2735.26 100.42 2895.78 0.497

(3.61) (715.74) (3.61) (749.15) (4.86) (1271.72)

0.8 99.98 2525.25 99.98 2766.05 100.19 2768.56 0.801

(3.55) (688.48) (3.55) (734.52) (3.82) (902.19)

n = 64

0.2 100.12 2809.56 100.12 2587.70 100.73 2866.08 0.198

(2.78) (503.18) (2.78) (450.70) (7.65) (1152.81)

0.5 100.19 2572.5 100.19 2579.46 100.47 2614.25 0.494

(2.55) (428.22) (2.55) (422.78) (3.30) (743.97)

0.8 100.13 2495.29 100.13 2605.52 100.35 2558.04 0.795

(2.52) (408.93) (2.52) (415.16) (2.71) (539.53)

n = 128

0.2 100.06 2828.80 100.06 2537.78 100.20 2717.15 0.199

(1.90) (364.16) (1.90) (311.91) (4.87) (801.96)

0.5 100.14 2592.28 100.14 2532.41 100.24 2564.76 0.497

(1.86) (306.64) (1.86) (295.56) (2.30) (507.11)

0.8 100.13 2508.60 100.13 2552.24 100.24 2525.3 0.797

(1.84) (297.02) (1.84) (296.19) (1.91) (366.61)
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Table 1b. Comparison of MEME, MMLE and MLE(µ = 100, λ = 10, 000).

p MEME(s.e.) MMLE(s.e.) MLE(s.e.) Actual p

µ λ µ λ µ λ

n = 16

0.2 100.04 11057.53 100.04 12597.58 102.30 28589.33 0.197

(2.81) (4900.35) (2.81) (5526.91) (18.45) (42857.46)

0.5 100.01 10465.36 100.01 12527.39 100.05 15098.72 0.512

(2.68) (4701.39) (2.68) (5716.70) (3.57) (11138.61)

0.8 100.04 10201.81 100.04 12494.00 100.13 12741.94 0.800

(2.66) (4777.61) (2.66) (5837.85) (2.81) (6662.38)

n = 32

0.2 100.10 10943.91 100.10 11169.92 100.61 18269.33 0.193

(1.93) (3158.13) (1.93) (3165.70) (6.63) (24262.41)

0.5 100.12 10429.58 100.12 11200.39 100.13 12335.60 0.502

(1.94) (2959.83) (1.94) (3218.72) (2.42) (5894.81)

0.8 100.15 10186.92 100.15 11138.21 100.17 11398.90 0.798

(1.90) (3099.30) (1.90) (3398.92) (1.96) (4056.05)

n = 64

0.2 99.99 10734.75 99.99 10414.53 99.96 13426.46 0.200

(1.34) (1813.43) (1.34) (1736.72) (3.35) (11182.31)

0.5 100.02 10243.33 100.02 10450.20 100.03 11058.53 0.502

(1.34) (1736.70) (1.34) (1773.43) (1.71) (3500.61)

0.8 100.04 10002.27 100.04 10417.32 100.05 10526.68 0.799

(1.31) (1744.50) (1.31) (1832.72) (1.36) (2173.44)

n = 128

0.2 100.03 10711.80 100.03 10144.37 100.11 11051.64 0.199

(0.90) (1274.31) (0.90) (1185.74) (2.40) (3605.53)

0.5 100.06 10228.90 100.06 10192.67 100.06 10458.86 0.499

(0.90) (1252.56) (0.90) (1279.00) (1.15) (2169.23)

0.8 100.08 10002.04 100.08 10178.55 100.09 10194.82 0.797

(0.88) (1221.92) (0.88) (1250.00) (0.93) (1468.72)

For estimating µ, the MEME and MMLE are identical, as indicated in Sec-

tion 2. The MEME/MMLE generally perform better than the corresponding

MLE, and with smaller standard errors. For larger p (with little censoring), the

three estimates tend to perform equally well, as expected. Other than the stan-

dard error, the values of MEME/MMLE are not greatly affected by the sample

size.
For estimating λ on the other hand, the MEMEs generally perform better

than the MMLEs for larger p (e.g., p = 0.5 and 0.8). For small p, MEME tends
to overestimate λ. This is because predicting the failure times for the censored
units by their expected failure times is likely to underestimate Var (T ) = µ3/λ,
and hence overestimate λ. Therefore, focus should be on how to improve the
MEME for small p. Using the bias reduction techniques in Remarks 3.2.1 and
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3.2.2, MEME2 and MEME3 are computed for λ = 2, 500 and p = 0.2. We see in
Table 2 that the bias of MEME3 is smaller than that of other estimators.

Table 2. Comparisons of MEME, MMLE, MME2, and MME3(µ = 100,

λ = 2, 500, p = 0.2).

n MEME(s.e.) MMLE(s.e.) MEME2(s.e.) MEME3(s.e.)

16 2713.13 (1142.43) 2891.17 (1130.86) 2337.66 (1056.67) 2478.37 (952.18)

32 2828.27 (765.01) 2731.76 (707.36) 2398.27 (707.73) 2587.81 (650.76)
64 2809.56 (503.18) 2587.70 (450.70) 2361.04 (467.59) 2576.28 (438.39)

128 2828.80 (364.16) 2537.78 (311.91) 2357.10 (341.51) 2594.52 (317.83)

Censored Data versus Complete Data

It may be of interest to compare MMLEs of the IG parameters when (a)

some units failed before the censor time and others were censored but with their

degradation values available (i.e., the case considered in this paper), (b) failure

times of all units were observed, and (c) all test units are censored with their

degradation values available. First, for case (a), the asymptotic variances of the

MMLEs for both IG parameters are given in (27) and (28). For case (b) to

occur, its censor time τb must be very large (µ < τ < τb). Since we assume we

have complete data in case (b), the censor time is basically irrelevant, so the

traditional MLEs and MMLEs of both IG parameters have

Avar(µ̂b) = µ3λ−1, (30)

Avar(λ̂b) = 2λ2. (31)

Assume that all units were censored in case (c) under a very small censor

time τc (τc < τ < µ), so we will use the degradation values of all units at the

censor time to estimate both IG parameters. It is straightforward to show that

Avar(µ̂c) = µ4(τcλ)−1, (32)

Avar(λ̂c) = 2λ2. (33)

By comparing (28) and (31) we see that, for estimating λ, the asymptotic

variance of the MMLE of case (a) is smaller than that of the MMLE of case (b).

For estimating µ, the difference of the two asymptotic variances in (27) and (30)

is (τ/µ) − ((τ/µ) − 1)Φ(A) − ((τ/µ) + 1)e2λ/µΦ(−B) − 1. Numerically we can

verify that this difference is greater than 0, approximately, when τ > µ. We

conclude that the Avar of the MMLE of case (b) of µ is larger than that of

the corresponding MMLE of case (a) when τ > µ. And the opposite is true for

estimate of λ.
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Comparing (32) and (27) with τ = τc, we need only check if the difference

(1−µ/τc)Φ(A)+ (1+ µ/τc)e
2λ/µΦ(−B) is greater than 0 or not. First, if τc > µ,

this term is greater than 0. On the other hand if τc < µ, the difference may be

positive or negative. So we can conclude that the Avar of the estimator of µ for

case (c) is larger than that in our model (case (a)) when τc > µ. And the Avar

of case (c) is smaller than that of case (a) when estimating λ.

5. LED Example

Degradation measures for censored units at the censor time are available

in many applications; for example, crack sizes in a fatigue-crack-growth study

in Bogdanoff and Kozin (1985), and fatigue crack data and carbon-file resistors

data in Padgett and Tomlinson (2004). In this section we illustrate our method

using the light emitting diode (LED) lamp example from Tseng, Tang and Ku

(2003), where they study the problem of determining the termination time for a

burn-in test.

A contact image sensor (CIS) module is a contact type image sensing mod-

ule that is composed of a line of LED lamps; the light intensity (brightness)

of a LED lamp has a high correlation with its lifetime. A CIS can be used in

a fax machine, document scanner, copy machine, mark reader, and other office

automation equipment. Due to market competition and expected high reliabil-

ity of LED lamps, manufacturers normally test their CISs using an accelerated

degradation test (ADT) at higher-than-normal stress, allowing time-censoring to

collect timely data for accessing the reliability of their products.

Let L(t) be standardized brightness of a LED with L(0) = 1. A LED lamp

is technically defined as failed when its brightness first decreases to 0.5, whether

it is under normal or accelerated conditions. The following data were obtained

from one of the leading LED manufacturers in Taiwan, using an ADT under

electric current = 10 amperes and temperature = 105◦C. The normal operating

conditions are 10 amperes and 25◦C. The censor time for the accelerated test is

6,480 hours. The sample size is n = 24 with m = 18 boundary-crossing times

of L(t)’s below 0.5: 6274.826, 6164.547, 6144.000, 6102.000, 5430.000, 6291.087,

6259.672, 5261.236, 3963.600, 6034.026, 4866.947, 3508.613, 5008.976, 2893.333,

6172.000, 6158.170, 3494.400, and 4801.878. These times were not the true failure

times (lifetimes) since they were obtained from an ADT. The brightness of the

six censored units at censor time are: 0.5027, 0.5438, 0.5768, 0.5516, 0.5267, and

0.5639. These L(t)’s do not following a Wiener process, but Tseng, Tang and Ku

(2003) and (Yu and Tseng (1999, 2002)) demonstrate that W (t) = − ln(L(tδ))

can be modeled as W (t) = ηt + σB(t) in (1). The boundary for W (t) is a =

− ln(0.5) = 0.6932. The boundary-crossing time T of W (t) is defined in (2).

To apply our results, we transform the boundary-crossing and censor times by
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taking δ-th powers (with δ = 0.60, see Lee (2006)) and take the negative values

of natural logarithms of the brightness for the censored units. These transformed

values will be our ti, τ and wi(τ) in Sections 2 and 3. We now apply our results

to obtain various estimates of µ and λ of the IG distribution for T , see Table 3.

The distribution of T can be estimated by F (t | µ̂, λ̂), using (5).

Note that the data above were obtained under an ADT, but our interest is

in estimating the failure time under normal conditions. Although it is not the

focus of the current paper, we briefly describe how we transform our results; more

details can be found in Lee (2006). We follow the model in Doksum and Hoyland

(1992), where the unaccelerated degradation process, W0(t), is assumed to satisfy

W (t) = W0(β(t)) for some continuous, increasing, and nonnegative function β(t).

In our case β(t) = β0t for some constant β0(≥ 1) is a reasonable choice, since

the accelerated stress was held constant at 105◦C throughout the ADT. For our

example, β0 = 2.61. So, if T0 denotes the true failure time for W0(t) under

normal operating conditions, then

Ê(T0) = E((β0T )
1

δ ) = β
1

δ

∫ ∞

0
t

1

δ dF (t | µ̂, λ̂).

The results are given in the last column of Table 3. Note that T0 does not follow
an IG so there is no λ̂ to consider. The results in Table 3 for various estimators
are fairly close, which is consistent with our findings in Tables 1a-1b, since the
failure probability, p = 12/18 ≈ 0.7, is rather high. This is due to the unusally
high testing time of 6,480 hours, which is about 9 months. If we were to shorten
the testing time, we would expect to see fewer failures (so, p would decrease).
Then, from the findings in Tables 1a-1b, our proposed estimators can be expected
to perform better.

Table 3. Results of MEMEs, MMLEs, and MLEs for the LED Example.

Estimators µ̂ λ̂ Ê(T0)

MLE 471.39 17298 28982

MMLE 473.45 15306 29251

MEME 473.45 15015 29260
MEME2 473.45 16518 29215

MEME3 473.45 14521 29277

Note. µ̂ = Ê(T ). T0 is the failure time under normal conditions.

6. Concluding Remarks

The traditional maximum likelihood estimators for the parameters of a fail-

ure time distribution assume that only failure times of the failed units and the
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censor times of the censored units are available. In this paper we assume that

the degradation follows a Wiener process and that degradation values at the

censor time for the censored units are also available. These degradation values

are then used to predict the failure times of the censored units, using a modified

EM algorithm. The algorithm provides closed-form estimates of both the mean

and the scale parameter of the IG distribution. On the other hand, the estimate

of the scale that maximizes the likelihood of all available data does not have a

closed form so one must rely on numerical procedures to compute it. We then

demonstrate that with the help of the degradation values of the censored units,

one can reduce the asymptotic variances of the estimators for both IG parame-

ters. Small-sample performances of the proposed estimators are also compared

with the traditional estimators.

Finally, a possible direction for future research is to see whether it is better

to collect first-passage times of the degradation sample paths over certain non-

failure thresholds, instead of collecting degradation values at prescribed time

points as considered in this paper.

Appendix. Derivation of (12)

Let (R,B, P ) be the real space with Borel sigma-algebra B and Lebesque

measure P , under which B(t) is a Brownian motion. Define M(τ) = max0≤t≤τ

B(t), then we have (Hida (1980))

P (B(τ) < b,M(τ) > m) = P (B(τ) > 2m − b)

=

∫ ∞

2m−b

1√
2πτ

exp

{−x2

2τ

}
dx, for m ≥ 0 and m > b,

from which the joint p.d.f of B(τ) and M(τ) with respect to P is obtained by

differentiating the above probability:

f(b,m) =
2(2m − b)√

2πτ3
exp

{
− (2m − b)2

2τ

}
, m ≥ 0, m > b. (A.1)

Let B(t) = θt + B(t) for t ≤ T , where T ≤ ∞, and put Mt = exp{−θB(t)−
(1/2)θ2t}, t ∈ [0, T ]. Define the measure P on (R,B) by

P (A) =

∫

A
MtdP, for all A ∈ B.

Then by Girsanov’s Theorem (Oksendal (2000, p.153)), B(t) = θt + B(t) is a

Brownian motion w.r.t. P . Here Mt = exp{−θB(t) + θ2t/2}, written in terms

of B(t), is called the Radon-Nikodym derivative of P w.r.t. P . Define M(τ) =

max0≤t≤τ B(t). Similar to (A.1), the p.d.f .of (B(τ),M (τ)) w.r.t. P is (A.1)
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with m and b replaced by m and b, respectively. The joint p.d.f. of M(τ) and

B(τ) with respect to the measure P is obtained by multiplying the p.d.f. of

(B(τ),M (τ)) by 1/Mt, as

f(b,m) =
2(2m − b)√

2πτ3
exp

{
− (2m − b)2

2τ

}
· exp

{
θb− 1

2
θ2τ

}
, for m > 0,m > b.

(A.2)

If we let W (t) = σB(t) = σθt+σB(t) and η = σθ(σ > 0), then W (t) = ηt+σB(t)

as defined in (1), and M̃(τ) = max0≤t≤τ W (t) = σM (τ). Now, from (A.2) with

the standard transformation technique, we can obtain the joint p.d.f., denoted

by f(w, m̃), of W (τ) and M̃(τ), with respect to P . Finally, from P (W (τ) =

w, M̃ ≤ a) =
∫ a
w f(w, m̃)dm̃, we obtain (12).
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