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Abstract: We consider the behavior of likelihood ratio statistics for testing a finite

dimensional parameter, or functional of interest, under local alternative hypotheses

in regular semiparametric problems. These are problems where
√

n–regular esti-

mates of the parameter/functional of interest exist and, in particular, the MLE

converges at
√

n rate to the true value and is asymptotically normal and effi-

cient. We show that in regular problems, the likelihood ratio statistic for testing

H0 : θ(ψ) = θ(ψ0) = θ0 ( where ψ0 is a fixed point in the infinite–dimensional

parameter space Ψ and θ(ψ) is a finite-dimensional (sub)parameter or functional

of interest) converges in distribution under local (contiguous) alternatives of the

form ψn = ψ0 + n−1/2 h + o(n−1/2) to a non-central χ2 random variable, with

non-centrality parameter involving the direction of perturbation h and the efficient

information matrix for θ under parameter value ψ0. This conforms to what happens

in the case of regular parametric models in classical statistics.

Key words and phrases: Asymptotic distribution, χ2 distribution, confidence sets,

contiguity, Cox model, least favorable submodels, likelihood ratio, local alterna-

tives.

1. Introduction

Let X1, . . . , Xn be a random sample from the distribution Pψ, ψ belonging

to a set Ψ. We assume a topology on the set Ψ; in applications Ψ is usually

a subset of a Banach or Hilbert space. Let lik(ψ, x) denote the likelihood for

an observation. In contrast to classical parametric statistics, lik(ψ, x) in many

cases is a modification of p(ψ, x) where p(ψ, ·) = dPψ/dµ , µ being some common

dominating σ - finite measure. The likelihood ratio statistic (henceforth LRS)

for testing the null hypothesis H0 : θ(ψ) = θ0 for some functional θ is given by:

lrtn(θ0) = 2
{

supψ∈Ψ

(

n
∑

i=1

log lik(ψ,Xi)
)

− supψ:θ(ψ)=θ0

(

n
∑

i=1

log lik(ψ,Xi)
)}

= 2nPn(log(lik(ψ̂))) − 2nPn(log(lik(ψ̂0))) ;
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here ψ̂ is the unconstrained maximizer of the log–likelihood and ψ̂0 is the maxi-

mizer under the constraint imposed by H0, while Pn denotes the empirical mea-

sure of the observations X1, . . . , Xn. In the cases we consider, θ takes values in

R
k.

The behavior of lrtn(θ0) under H0, for a 1–dimensional parameter θ, was es-

tablished in Theorem 3.1 of Murphy and Van der Vaart (1997) for a broad class

of semiparametric models characterized by the requirement that the MLE of θ

converges at the “regular”
√
n rate to a normal limit and admits an asymptotic

linear representation. It was shown that the LRS converges to a χ2
1 distribution.

This approach extends readily to the case of a vector–valued parameter (here,

the limit distribution is χ2
k, k being the dimension of θ) and was investigated by

Murphy and Van der Vaart (2000) in a profile–likelihood setting. In this paper we

focus on the behavior of the LRS in these regular semiparametric models under

a sequence of local alternatives that converge to a point in the null hypothesis

with increasing sample size. More specifically, let ψn = ψ0 +(1/
√
n)h+o(1/

√
n),

where θ(ψ0) = θ0. We study the limiting behavior of lrtn(θ0) based on i.i.d. data

X1, . . . , Xn, when Pψn is taken to be the true underlying distribution at stage

n. The alternatives {ψn} correspond to the curve ψ(t) ≡ ψ0 + t h + o(t) with

gradient h at the point 0. We show that the likelihood ratio statistic is asymp-

totically distributed as a non–central χ2
k random variable with non–centrality pa-

rameter ∆ which involves I0, the efficient information for the finite–dimensional

parameter θ under parameter value ψ0, and the direction of perturbation of ψ0.

In the case where the parameter ψ can be partitioned as (θ, η) (with η being

infinite–dimensional), the expression for the non–centrality parameter matches

that obtained for regular parametric models.

Before proceeding to the key results in the next section, we impose some

structural requirements on the underlying model {Pψ : ψ ∈ Ψ} and the functional

of interest θ.

Hellinger Differentiability: Assume that the parameter ψ lies in a subset Ψ

of some Hilbert space H. Consider the path in Ψ given by ψt = ψ + h t + o(t);

thus h is the gradient of the path at t = 0. Let s(ψ, ·) = (dPψ/dµ)1/2, where µ is

a σ-finite measure dominating the Pψ’s. The Hellinger differentiability condition

can then be stated as:

∫ [

s(ψt, ·) − s(ψ, ·)
t

− 1

2
(Ah)s(ψ, ·)

]2

dµ(·) → 0 as t→ 0 . (1.1)

Here A is a bounded linear operator defined on Ḣ, the closed linear span of the

h’s (the gradients of the ψt’s) and assumes values in L0
2(Pψ). In fact, Hellinger

differentiability implies that the range of A is contained in L0
2(Pψ), the subset
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of square integrable functions under the measure Pψ that have mean 0 (see, for

example, Section 2.1 of Bickel, Klaassen, Ritov and Wellner (1998)).

Differentiability of θ: The functional of interest θ, treated as a function of

ψ, i.e., θ : Ψ → R
k, is differentiable in the sense that (∂/∂t)(θ(ψt)) |t=0= L(h)

where L is a bounded linear map from Ḣ → R
k . Observe that by the charac-

terization of real-valued functionals defined on Hilbert spaces, we have L(h) =

(〈θ̇10, h〉, . . . , 〈θ̇k0, h〉)T for some θ̇10, . . . , θ̇k0 all belonging to Ḣ.

2. The Asymptotic Distribution of the Likelihood Ratio Statistic:

Main Results

We first formulate an extension of Theorem 3.1 of Murphy and Van der

Vaart (1997) (dealing with the behavior of lrtn(θ0) under the null hypothesis)

that applies to vector–valued functionals θ of any dimension. This is exploited

along with results from contiguity theory to derive the limit distribution of the

likelihood ratio statistic under a sequence of local alternatives of the type con-

sidered in the previous section. The use of contiguity theory stems from the fact

that the model Pψ is Hellinger differentiable along the curve Pψt which implies,

through a LAN (local asymptotic normality) expansion of the log-likelihood ra-

tio log dP nψn/dP
n
ψ0

, that the sequence of probability measures {P n
ψn

} (the n–fold

product of Pψn) and {P nψ0
} (the n-fold product of Pψ0

) are mutually contiguous.

The General Semiparametric Likelihood Ratio Statistic Theorem: Sup-

pose that ψ0 is the true value of the parameter with θ(ψ0) = θ0 (thus Ψ0 ∈ H0)

and denote Pψ0
by P0.

A.1 Assume that as n→ ∞ the MLE θ̂ = θ(ψ̂) satisfies

√
n(θ̂ − θ0) =

√
nI−1

0 Pn(l̃) + op(1) (2.1)

under P0, where P0(l̃) = 0 and I0 = P0(l̃ l̃
T ) . Thus l̃ ∈ L0

2(P0)
k.

A.2 Assume that, for every t in a neighborhood U of θ0 and every ψ in a neigh-

borhood V of ψ0, there exists a surface t 7→ ξ(t, ψ) taking values in Ψ that

satisfies the following:

(a) θ(ξ(t, ψ)) = t;

(b) ξ(t, ψ) |t=θ(ψ)= ψ;

(c) t 7→ l(x; t, ψ) = ln(lik(ξ(t, ψ), x)) is twice continuously differentiable in

t for every x with derivatives l̇ and l̈ with respect to t;

(d) l̇(·; θ0, ψ0) = l̃ and − Pn(l̈(·; θ̃, ψ̃)) →P P0(l̃ l̃
T ) = I0 for any random

θ̃ →P θ0 and ψ̃ →P ψ0 under P0 and
√
n Pn(l̇(·; θ0, ψ̂0) − l̃) →P0

0.

A.3 Suppose that both the unconstrained and constrained maximizers of the

likelihood, ψ̂ and ψ̂0, are consistent under P0.
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Theorem 2.1. If A.1, A.2 and A.3 hold, then

lrtn(θ0) =
√
n
(

θ̂n − θ0
)T

I0
√
n
(

θ̂n − θ0
)

+ op(1) →d Z
T I0 Z ∼ χ2

k,

where Z ∼ Nk(0, I
−1
0 ) .

The proof of this theorem is skipped. The function l̃ that appears in (2.1)

is actually the efficient score function in regular semiparametric models. For the

details, see Banerjee (2000, Chap.2).

Power under Local (Contiguous) Alternatives. The following theorem

characterizes the limiting power of the likelihood ratio test under a sequence of

local alternatives converging to the true value of the parameter.

Theorem 2.2. Consider the likelihood ratio statistic lrtn(θ0) for testing the null

hypothesis θ = θ0 ≡ θ(ψ0). Assume that the model is Hellinger differentiable

along the curve ψt = ψ0 + t h+o(t) with derivative operator A. Also assume that

conditions A.1 to A.3 of Theorem 2.1 hold under Pψ0
. Then, under the sequence

of local alternatives Pψ0+h/
√
n+o(1/

√
n), the likelihood ratio statistic lrtn(θ0) con-

verges in distribution to L where L follows a χ2
k distribution with non-centrality

parameter cT I0 c; here, I0 is the covariance matrix of l̃ and c is the covariance

between Ah and l̃ in L0
2(Pψ0

) scaled by I0, or c = I−1
0 〈Ah , l̃〉Pψ0

.

Comments: Note that A in (1.1) is taken to be a bounded linear (score) operator

defined on the closed linear span of gradients. However, the above theorem goes

through without the requirement of a score operator so long as we have Hellinger

differentiability along the path ψ0 + h t + o(t) with some g ∈ L0
2(Pψ0

) playing

the role of Ah in (1.1). The conclusion in the statement of Theorem 2.2 remains

valid with Ah replaced by g.

Proof of 2.2. Hellinger differentiability of the model along the curve ψt implies

that
∫

[dP
1/2
ψt

− dP
1/2
ψ0

t
− 1

2
(Ah)dP

1/2
ψ0

]2
→ 0

as t→ 0. Now set

Λn = log
(

dP n
ψ0+ h√

n
+o( 1√

n
)

dP nψ0

)

.

This is the log likelihood ratio based on observations X1, . . . , Xn at stage n . By

Lemma 3.10.11 of Van der Vaart and Wellner (1996), we get a LAN expansion

for the log–likelihood ratio as

Λn = log

dP n
ψ0+ h√

n
+o( 1√

n
)

dP nψ0

=
1√
n

n
∑

i=1

Ah(Xi) −
1

2
‖Ah‖2 + oPn

ψ0

(1) .
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It follows that Λn →d W where W ∼ N(−(1/2)‖Ah‖2 , ‖Ah‖2), under P nψ0
.

Therefore, under {Pψn
0
},

exp (Λn) ≡
dP n

ψ0+ h√
n

+o( 1√
n

)

dP nψ0

→d exp W .

But E(exp (W )) = exp (−(1/2)σ2 +(1/2)σ2) = 1, using the formula for the mo-

ment generating function of the normal distribution. By Le Cam’s first lemma

(Van der Vaart (1998, p.88)), we conclude that the sequences of probability

measures {P n
ψ0+h/

√
n+o(1/

√
n)
} and {P nψ0

} are contiguous. Consequently the con-

vergences in probability that hold under P n
ψ0

also hold under P n
ψ0+h/

√
n+o(1/

√
n)

,

and vice-versa.

Consider now the joint distribution of Tn =
√
nPnI

−1
0 l̃ and Λn under P nψ0

.

From
(

Tn
Λn

)

=





1√
n

∑

I−1
0 l̃(Xi)

1√
n

∑

Ah(Xi) − 1
2‖Ah‖2



+ oPn
ψ0

(1) ,

the CLT in conjunction with Slutsky’s theorem yields:
(

Tn
Λn

)

→d Nk+1(µ,Σ)

under P nψ0
with µ = (0k×1,−(1/2)‖Ah‖2)T , and

Σ =

(

I−1
0 cT

c ‖Ah‖2

)

.

Here c=Cov (Ah, I−1
0 l̃)= I−1

0 Cov (Ah, l̃) = I−1
0 〈Ah , l̃〉Pψ0

. Note that 〈Ah, l̃〉Pψ0

= (
∫

(Ah)l̃1dPψ0
, . . . ,

∫

(Ah)l̃kdPψ0
)T . Now by Le Cam’s third lemma (Van der

Vaart (1998, p.90)), the limiting distribution of (Tn,Λn)
T under the sequence

P n
ψ0+h/

√
n+o(1/

√
n)

is Nk+1(µ̃,Σ), where µ̃ = (c, (1/2)‖Ah‖2)T . This shows that

Tn →d N(c , I−1
0 ) under P n

ψ0+(h/
√
n)+o(1/

√
n)
. We now note that conditions A.2

and A.3 in Theorem 2.1 continue to hold under P n
ψ0+h/

√
n+o(1/

√
n)

, and condition

A.1 is modified to
√
n(θ̂ − θ0) = Tn + op(1) under P n

ψ0+(h/
√
n)+o(1/

√
n)

with Tn

converging in distribution to N(c, I−1
0 ). Consequently lrtn(θ0), which in this case

is still
√
n(θ̂ − θ0)

T I0
√
n(θ̂ − θ0) + op(1), converges to χ2

k (cT I0c).

The covariance vector c is the derivative of the curve θ(ψt) at t = 0 when θ

is “pathwise norm differentiable” in the sense of Van der Vaart (1991). To see

this, we briefly review the concept of pathwise norm differentiability. Consider θ

as a functional from the space of probabilities to R
k; hence write θ(ψt) ≡ θ(Pψt).
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Then θ is called pathwise norm-differentiable if there exists a bounded linear map

θ̇ from R(A) → R
k such that

L(h) = lim
t→0

[

θ(Pψt) − θ(Pψ)

t

]

= θ̇ (Ah) .

A necessary and sufficient condition for pathwise norm differentiability due to

Van der Vaart (see Van der Vaart (1991)) is given by R(L∗) ⊂ R(A∗), and

failure of this condition implies the non-existence of
√
n–regular estimators of θ.

When the condition for differentiability is satisfied we have that L = θ̇◦A so that

L∗ = A∗ ◦ θ̇∗. It is easily shown that the above necessary and sufficient condition

is equivalent to the following: for each 1 ≤ j ≤ k there exists a (necessarily

unique) solution to the equation A∗x = θ̇j0 in R(A). We denote the unique

vector of solutions by g0 = (ġ10, . . . , ġk0). Since it is also the case that for each j,

θ̇j0 = L∗(ej) = A∗(θ̇∗(ej)) (where ej denotes the j’th canonical basis vector) and

θ̇∗ assumes values in R(A), we conclude that ġj0 = θ̇∗(ej). We call θ̇∗ the efficient

influence function and identify it with the vector g0, its values at the canonical

basis vectors. In many semiparametric situations it is this vector that provides

the linear approximation to the centered and scaled MLE of θ, the parameter of

interest, i.e., g0 = I−1
0 l̃.

Corollary 2.1. If θ is pathwise norm-differentiable and the efficient influence

function for the estimation of θ at ψ0 , g0 = I−1
0 l̃, then c = (∂/∂t)θ(ψt) |t=0.

Proof. We have c = Cov (Ah , I−1
0 l̃) = Cov ((ġ10, . . . , ġk0)

T , Ah) = (〈ġ10 , Ah〉,
. . . , 〈ġk0 , Ah〉)T = (〈A∗ġ10 , h〉, . . . , 〈A∗ġk0 , h〉)T = (〈θ̇10 , h〉, . . . , 〈θ̇k0 , h〉)T =
∂
∂tθ(ψt) |t=0.

For yet another characterization of c in terms of least favorable directions, see

Banerjee (2000, Chap.2). Also note that Theorem 2.2 and Corollary 2.1 remain

valid for a Banach space valued parameter ψ (pathwise norm differentiability is

characterized in exactly the same way as in the Hilbert space case if adjoints are

given the proper interpretations).

3. Partitioned Parameters

Here we use the results of the previous section to obtain expressions for the

power of the likelihood ratio test under local alternatives when the parameter

is naturally partitioned into two components: the first, θ, which is also the pa-

rameter of interest, belonging to a Euclidean space and the second, η, being

infinite dimensional. This situation arises extensively in semiparametric models

(and is therefore deemed important in its own right), with perhaps the most

common example being the Cox Proportional Hazards setting where the haz-

ard function corresponding to the survival time of an individual is modeled as
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Λ(t | Z) = eθ
T Z Λ(t). Here the parameter vector is ψ = (θ,Λ), with θ the Eu-

clidean regression parameter measuring the effect of measured covariates on the

survival time, and Λ the baseline hazard function taking values in the space of

all cadlag functions defined on a bounded interval. Other useful models, where

the parameter is naturally partitioned, include frailty models (for example, the

Gamma frailty models considered in Murphy and Van der Vaart (1997), Murphy

and Van der Vaart (2000) and the exponential frailty model also considered in

these papers), case control studies for missing covariates (Roeder, Carroll and

Lindsay (1996), Murphy and Van der Vaart (2000) and Murphy and Van der

Vaart (2001)), partially linear regression models (see, for example Green (1984),

Engle et al. (1986) and Van der Vaart (1998)) and semiparametric mixture mod-

els.

Let P = {Pθ,η : θ ∈ Θ, η ∈ H}, where Θ is an open subset of R
k and H

is some subset of a Banach space G. Consider a fixed set of paths in H of the

form ηt = η + βt + o(t) with β ∈ G. Let C denote the closed linear span of the

β’s. Now consider paths of the form (θ + th, ηt) ∈ Θ ×H, and assume Hellinger

differentiability with respect to this set of paths. Thus

lim
t→0

∫

[dP
1/2
θ+th,ηt

− dP
1/2
θ,η

t
− 1

2
(l̇Tθ h+ l̇ηβ)dP

1/2
θ,η

]2
= 0 .

Now, R
k × C is a Banach space itself with the product topology and in this

situation the score operator A : R
k×C → L0

2(Pθ,η) is given by A (h, β) = l̇Tθ h+l̇ηβ,

where l̇θ ∈ L0
2(Pθ,η)

k is the score function for θ and the score operator for η, the

nuisance parameter, is the bounded linear map l̇η from C → L0
2(Pθ,η) with adjoint

operator l̇∗η : L0
2(Pθ,η) → C∗. Note that A∗ : L0

2(Pθ,η) → (Rk × C)∗, the adjoint

operator of A, is given by A∗u (h, β) = 〈u , A(h, β)〉 = hT 〈l̇θ , u〉Pθ,η + l̇∗η(u)(β).

Let the functional χ : Θ → R
m with m ≤ k be differentiable with respect

to θ, and let χ
′
(θ)m×k be its derivative. Consider the score operator for θ,

l̇θ = (l̇θ1, . . . , l̇θk)
T . Now for each j = 1, . . . , k write l̇θj = l̇∗θj + l̇∗∗θj where l̇∗∗θj is

the orthogonal projection of l̇θj into the closure of the range of l̇η. Thus l̇∗θj is the

orthogonal projection of l̇θj into R(l̇η)
⊥
. We call l̇∗θ = (l̇∗θ1, . . . , l̇

∗
θk)

T the efficient

score function for θ, and the efficient information for θ is then given by

Iθ,η =

∫

l̇∗θ l̇
∗T
θ dPθ,η .

Consider now the map κ : P → R
m given by κ(Pθ,η) = χ(θ) . Also consider χ(θ)

as a function of the full parameter; thus χ(θ) = µ(θ, η). It is now easy to see
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that

∂

∂t
(κ(Pθ+th,ηt))

∣

∣

∣

t=0
=

∂

∂t
(µ(θ + th, ηt))

∣

∣

∣

t=0

= lim
t→0

χ(θ + th) − χ(θ)

t
= χ

′
(θ)h = µ̇ (h, β) ,

µ̇ being a bounded linear map from R
k × C → R

m. As before, a necessary and

sufficient condition for pathwise norm differentiability of κ is the existence of

ġi0 ’s in R(A) for i = 1, . . . ,m such that µ̇∗(ei) = A∗ġi0 for each i. Using

arguments similar to Van der Vaart (1991) we can easily show that the necessary

and sufficient condition translates to N (Iθ,η) ⊂ N (χ
′
(θ)), which is the case if

Iθ,η is invertible. In what follows, we assume that this is the case. We also

assume that χ
′
(θ) is of full row rank (m). The efficient influence function g0 =

(ġ10, . . . , ġm0) (as before identified with the values at the basis vectors) is then

given by g0 = χ
′
(θ)I−1

θ,η l̇
∗
θ , and the dispersion matrix for g0, which acts as the

information bound for the estimation of χ, is given by J = χ
′
(θ)I−1

θ,ηχ
′
(θ)T and

is invertible under our assumptions.

Denote the parameter (θ, η) by ψ. Consider the problem of testing the null

hypothesis χ = χ0 against χ 6= χ0. Let (θ0, η0) ∈ H0 be the true value of the

parameter. Assume that all conditions of Theorem 2.1 hold and that (2.1) is

satisfied with I−1
0 l̃ = g0. Here χ plays the role of θ in Theorem 2.1 while (θ, η)

plays the role of ψ; thus we have
√
n (χ̂− χ0) =

√
nI−1

0 Pnl̃+op(1) under ψ0 with

I0 =
(

χ
′
(θ)I−1

θ,ηχ
′
(θ)T

)−1
= J−1 and l̃ = I0g0. Now, consider local alternatives

of the form

ψn = ψ0 +
h√
n

+ o

(

1√
n

)

= (θ0 + h1/
√
n, η0 + h2/

√
n+ o(1/

√
n)) .

Using Theorem 2.2 we readily deduce that under ψn, lrtn(χ0) →d χ
2
m (cT Ic) with

c = I−1
0 〈Ah , l̃〉Pψ0

and h = (h1, h2). Since χ, considered as a functional defined

on the space of probabilities (the map κ), is pathwise norm differentiable at ψ0,

by the assumption of invertibility of Iθ0,η0 we have that

c =
∂

∂t

(

κ(Pθ0+th1,η0+th2+o(t))
) ∣

∣

∣

t=0
= χ

′
(θ0)h1 .

Thus the final form for the non-centrality parameter ∆ is

∆ = hT1 χ
′
(θ0)

T
(

χ
′
(θ0)I

−1
θ0,η0

χ
′
(θ0)

T
)−1

χ
′
(θ0)h1 .

When χ(θ) = θ ( which happens in many cases), χ
′
(θ0) is the identity matrix

and the expression for the non-centrality parameter reduces to ∆ = hT1 Iθ0,η0h1;
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here Iθ0,η0 is the efficient information for estimating θ at parameter value ψ0.

This expression is exactly what one gets in the regular parametric case, where η

is finite dimensional, since the discussion above includes the special case when η,

the nuisance parameter varies in a finite dimensional space.

Application to the Cox Proportional Hazards Models. The Cox Pro-

portional Hazards Model is probably the most widely used of all semiparametric

models. The distribution of the likelihood ratio statistic for testing H0 : θ = θ0 in

the Cox Proportional Hazards setting has been studied under various censoring

schemes. Two important schemes are the following: (i) Right Censoring – here

we observe X = (T ∧ C, 1 {T ≤ C}, Z) where, given (the covariate) Z, the vari-

ables T (survival time) and C (observation time) are independent and T follows

the Cox Model. (ii) Interval Censoring – here we observe X = (1 {T ≤ C}, Z);

thus, we have less information on the survival time distribution compared to the

right censoring scenario. For both right censoring and interval censoring, θ is

estimable at
√
n rate by its MLE which is asymptotically normal and efficient,

and the likelihood ratio test for testing H0 : θ = θ0 converges under the null

hypothesis to a χ2 distribution. With right-censoring Λ, the baseline hazard, can

be estimated at
√
n rate (by its MLE), but with interval censoring the rate slows

to n1/3. For more details on likelihood based estimation and inference on the Cox

Model with right censored data see, for example, Van der Vaart (1998), Banerjee

(2000) and Murphy and Van der Vaart (2000). Maximum likelihood estimation in

the Cox model with interval censored data was first considered in Huang (1996),

where the MLE of θ was shown to asymptotically normal and efficient. The

likelihood ratio statistic for testing H0 : θ = θ0 was shown to be asymptotically

χ2
d (d being the dimension of θ) under the null hypothesis by Murphy and Van

der Vaart (1997, 2000), under appropriate regularity conditions. Natural local

alternatives to consider in the Cox PH setting with right-censored data are of the

form (θ0 + h1/
√
n , Λ0 + (1/

√
n)
∫ ·
0 h2 dΛ0), where h2 is a bounded function in

L2(Λ0). Using the ideas of this paper, we can show (under appropriate assump-

tions) that lrtn(θ0), the likelihood ratio statistic for testing θ = θ0, converges

in distribution, under the sequence of local alternatives above, to χ2
d(h

T
1 I0 h1),

where I0 is the efficient information for θ in the right censored problem at pa-

rameter value (θ0,Λ0). For the details, see Banerjee (2000). In the Cox PH

setting with interval–censored data, the natural local alternatives take the form

(θ0 + h1/
√
n,Λ0 + h2/

√
n) where h2 is a non-negative non-decreasing contin-

uous function. Once again, it can be shown that the power of the likelihood

ratio statistic for testing H0 : θ = θ0 converges, under the above sequence of

local alternatives, to χ2
d(h

T
1 Ĩ0 h1); here Ĩ0 is the efficient information for θ in the

interval–censoring set-up. For an explicit representation of Ĩ0, see Huang (1996).
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For more concrete applications of the results in this paper, we refer the reader

to Chapter 2 of Banerjee (2000).
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