
Statistica Sinica 13(2003), 613-623

TWO-WAY CONTINGENCY TABLES UNDER

CONDITIONAL HOT DECK IMPUTATION

Hansheng Wang and Jun Shao

Peking University and University of Wisconsin

Abstract: We consider the estimation of cell probabilities in a two-way contingency

table where the two-dimensional categorical data have nonrespondents imputed by

using a conditional hot deck imputation method. Under simple random sampling,

we establish asymptotic normality of cell probability estimators based on imputed

data and derive explicitly the form of their asymptotic covariance matrix, which

can be used for large sample inference. We also show that estimators based on

imputed data are more efficient than those obtained by ignoring nonrespondents

and re-weighting when the proportion of nonrespondents is large. The results are

extended to stratified sampling, under imputation, within each stratum or across

strata. Two types of asymptotics are studied under stratified sampling. One deals

with the case of a fixed number of strata with large stratum sizes and the other

deals with the situation of a large number of strata with small stratum sizes. Some

simulation results are presented to study finite sample properties of the proposed

procedures.
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1. Introduction

Two-way contingency tables are widely used for the summarization of two-
dimensional categorical data. Each cell (category) in a two-way contingency
table is defined by a two-dimensional categorical variable (A,B), where A and
B take values in {1, . . . , a} and {1, . . . , b}, respectively. Cell probabilities P (A =
i, B = j), i = 1, . . . , a, j = 1, . . . , b, are estimated by the sample cell frequencies
computed based on the observed responses of (A,B) from a sample of units
(subjects).

In sample surveys or medical studies, it is not unusual that one or two of the
categorical responses are missing (nonrespondents). Sampled units whose both
components are missing (unit nonrespondents) can be handled by a suitable
adjustment of sampling weights or sample sizes. If there are many sampled units
having exactly one missing component in their responses (item nonrespondents),
however, weight adjustment results in throwing away observed incomplete data
and may lead to a decrease in efficiency of the statistical analysis. A popular
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alternative approach to handle item nonresponse is imputation, which inserts
values for nonrespondents. Statistical methods based on imputation are usually
not the most efficient because of the artificial noise created during imputation.
However, imputation is widely used for its simplicity and for many practical
(non-statistical) reasons (Kalton and Kasprzyk (1986)).

Analysis of data with nonrespondents (with or without imputation) relies on
an assumption on the response mechanism. Typically, the following assumption
on response mechanism is valid or nearly valid. The population of interest can be
divided into several sub-populations (referred to as imputation classes) according
to the value of an auxiliary variable without nonresponse. Within an imputation
class, sampled units independently have the same probability πA to have observed
A and missing B, πB to have observed B and missing A, πC to have observed A

and B, and 1 − πA − πB − πC to have missing A and B. (The probabilities πA,
πB and πC may be different in different imputation classes.) Once imputation
classes are created, imputation or re-weighting is done within each imputation
class. In many business surveys, imputation classes are strata or unions of strata;
in medical studies, if data are obtained under several different treatments, then
the treatment groups may be used as imputation classes. Another example is
given in Section 5.2.

The main purpose of this paper is to study properties of a conditional hot
deck imputation method for two-way contingency tables, which is described in
Section 2. In hot deck imputation, nonrespondents are imputed by respondents
of the same variable in the same dataset so that imputed values are actually
occurring values, not constructed values. Hot deck imputation is popular in
survey problems and is particularly useful when the variables of interest are
categorical.

A basic requirement for any imputation method is that, after nonrespondents
are imputed, approximately unbiased survey estimators (of cell probabilities) can
be obtained by using formulas designed for the case of no nonresponse and by
treating imputed values as observed data. In Section 2, we show that under
simple random sampling, the conditional hot deck imputation method satisfies
this requirement. Also, asymptotic normality of the estimated cell probabilities
based on conditional hot deck imputation is established and explicit form of the
asymptotic covariance matrix is derived so that consistent variance estimators
can be obtained by substitution. In Section 3, we extend the results in Section
2 to the case where stratified sampling is used to obtain sampled units. Two
types of situations are considered, the case of a small number of strata with large
sizes and the case of a large number of strata with small sizes. Both imputation
within each stratum and imputation across strata are considered. All the proofs
are omitted and can be found in Wang (2001).
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Some simulation results are presented in Section 4 to study finite sample
properties of the conditional hot deck imputation method.

2. Results Under Simple Random Sampling

In this section we consider the case where a simple random sample is ob-
tained. Simple random sampling is frequently used in medical studies. We con-
sider the case of one imputation class so that the sampled units have probability
πA with observed A and missing B, πB with observed B and missing A and
πC with observed A and B. The case of multiple imputation classes can be
treated similarly, since imputation is carried out within each imputation class.
Since units with missing A and B are ignored after a sample size adjustment, we
assume for simplicity that πA + πB + πC = 1.

Consider a sampled unit with observed A = i and missing B. The conditional
hot deck imputation method considered in this paper imputes B by the value of
B of a unit randomly selected from all units with observed B and A = i. Let p̂C

ij

be the usual estimate of pij = P (A = i, B = j) based on the two-way contingency
table constructed using completers (data from units without nonresponse). Then,
conditional hot deck imputation is equivalent to imputing B by j with probability
p̂C

ij/p̂
C
i· , j = 1, . . . , b, where p̂C

i· =
∑c

j=1 p̂C
ij . Conditional hot deck imputation for a

unit with observed B and missing A is similar. All nonrespondents are imputed
independently.

After imputation, the cell probabilities pij are estimated using the stan-
dard formulas in the analysis of data from a two-way contingency table by
treating imputed values as observed data. We denote these estimators by p̂I

ij,
i = 1, . . . , a, j = 1, . . . , b. Let p̂I = (p̂I

11, . . . , p̂
I
1b, . . . , p̂

I
a1, . . . , p̂

I
ab)

′ and p =
(p11, . . . , p1b, . . . , pa1, . . . , pab)′. The following result shows that p̂I under condi-
tional hot deck imputation is consistent, asymptotically unbiased, and asymp-
totically normal. Its proof can be found in Wang (2001). In sample surveys,
sampling is usually without replacement from a finite population, but since the
ratio of the sample size over the population size is nearly 0, we assume that
sampling is with replacement in the asymptotic analysis.

Theorem 1. Assume πC > 0. Under conditional hot deck imputation,

√
n(p̂I − p) →d N(0,MPM ′ + (1 − πC)P ),

where →d denotes convergence in distribution, P = diag{p} − pp′,

M =
1√
πC

(
Iab − πAdiag{pB|A}Ia ⊗ Ub − πBdiag{pA|B}Ua ⊗ Ib

)
, (1)
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pA|B = (p11/p.1, . . . , p1b/p·b, . . . , pa1/p.1, . . . , pab/p·b)′,
pB|A = (p11/p1., . . . , p1b/p1., . . . , pa1/pa·, . . . , pab/pa·)′,

(2)

Ia is an a × a identity matrix, Ub is a b × b matrix with all entries 1, and ⊗ is
the Kronecker product.

The asymptotic covariance matrix of p̂I , Σ = MPM ′ + (1 − πC)P , can be
estimated by replacing pij , πA, πB and πC in Σ by p̂I

ij, π̂A = nA/n, π̂B = nB/n
and π̂C = nC/n, respectively, where nA is the number of sampled units with
observed A and missing B, nB is the number of sampled units with observed
B and missing A, nC is the number of sampled units with observed A and B,
and n = nA + nB + nC . The resulting estimator, denoted by Σ̂, is a consistent
estimator of Σ. This result together with the asymptotic normality of p̂I can be
used for large sample statistical inference.

Let p̂C = (p̂C
11, . . . , p̂

C
1b, . . . , p̂

C
a1, . . . , p̂

C
ab)

′ be the estimator of p obtained by us-
ing the two-way contingency table based on sampled units without nonresponse.
Then

√
n(p̂C − p) →d N(0, π−1

C P ). Intuitively, p̂I is better than p̂C when there
are many nonrespondents. A general comparison of Σ and π−1

C P is not easy
because of the complexity of Σ. As examples, we consider the following two ex-
treme cases. The first example has P (A = B) = 1. In such a case conditional hot
deck imputation actually recovers the original data (since A = B) and Σ = P ,
which is smaller than π−1

C P as long as πC < 1. Hence, it is expected that p̂I is
better than p̂C when A and B are highly correlated. The second example has
A and B independent, which is the least favorable case for conditional hot deck
imputation. Consider the 2 × 2 contingency table:

0.28 0.12
0.42 0.18 .

(3)

The ratio of the variance of p̂I
ij over the variance of p̂C

ij for any (i, j), and some
values of πA, πB and πC , are listed in Table 1. It can be seen from Table 1 that
with any fixed πC , the ratio decreases as πA increases; when πC decreases, the
ratio dose not always decrease because of different combinations for πA and πB,
but there is a clear decreasing trend. In this example, the imputed estimator has
a substantial advantage when πC < 0.5. On the other hand, if P (A = B) = 1,
the variance ratio is always equal to πC .

3. Results Under Stratified Simple Random Sampling

In many business surveys conducted by agencies such as the U.S. Census
Bureau, the U.S. Bureau of Labor Statistics, Westat, and Statistics Canada,
stratified simple random sampling is adopted and imputation classes are either
strata or unions of strata. In this section we extend the result in Section 2 to
this situation.
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Table 1. Ratio of the Var (p̂I
ij) over Var (p̂C

ij) for 2 × 2 contingency Table 3.

Response Variance Ratio
Probability (i, j)
πC πA πB (1,1) (1,2) (2,1) (2,2)
0.9 0.0 0.1 1.058 1.030 1.031 0.993
0.9 0.1 0.0 0.979 1.051 0.998 1.062
0.8 0.0 0.2 1.100 1.045 1.048 0.976
0.8 0.1 0.1 1.018 1.061 1.009 1.035
0.8 0.2 0.0 0.950 1.086 0.986 1.107
0.7 0.0 0.3 1.125 1.048 1.052 0.949
0.7 0.1 0.2 1.039 1.057 1.007 0.998
0.7 0.2 0.1 0.968 1.076 0.977 1.060
0.7 0.3 0.0 0.912 1.106 0.964 1.135
0.6 0.0 0.4 1.133 1.036 1.041 0.912
0.6 0.1 0.3 1.044 1.039 0.990 0.951
0.6 0.2 0.2 0.970 1.052 0.954 1.003
0.6 0.3 0.1 0.911 1.075 0.935 1.068
0.6 0.4 0.0 0.867 1.109 0.931 1.146
0.5 0.0 0.5 1.125 1.011 1.017 0.866
0.5 0.1 0.4 1.032 1.007 0.960 0.894
0.5 0.2 0.3 0.955 1.014 0.918 0.936
0.5 0.3 0.2 0.892 1.031 0.892 0.991
0.5 0.4 0.1 0.845 1.059 0.882 1.059
0.5 0.5 0.0 0.812 1.097 0.888 1.140
0.4 0.0 0.6 1.100 0.973 0.979 0.810
0.4 0.1 0.5 1.004 0.963 0.916 0.828
0.4 0.2 0.4 0.923 0.963 0.868 0.860
0.4 0.3 0.3 0.858 0.973 0.836 0.904
0.4 0.4 0.2 0.807 0.995 0.819 0.962
0.4 0.5 0.1 0.771 1.026 0.819 1.033
0.4 0.6 0.0 0.750 1.068 0.834 1.117
0.3 0.0 0.7 1.058 0.920 0.928 0.744
0.3 0.1 0.6 0.959 0.904 0.858 0.752
0.3 0.2 0.5 0.875 0.898 0.803 0.773
0.3 0.3 0.4 0.806 0.902 0.765 0.808
0.3 0.4 0.3 0.752 0.917 0.743 0.855
0.3 0.5 0.2 0.713 0.942 0.736 0.916
0.3 0.6 0.1 0.688 0.978 0.746 0.990
0.3 0.7 0.0 0.679 1.024 0.771 1.077

Under simple random sampling, nC was the number of sampled units with-
out nonresponse; under stratified sampling, nh,C denotes the same quantity but
restricted to the hth stratum. Quantities nh,A, nh,B, ph, ph,ij, ph,i· and ph,·j are
similarly defined. Within the hth stratum, we assume that a simple random
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sample of size nh is obtained (with or without replacement) and samples across
strata are obtained independently. The total sample size is n =

∑H
h=1 nh, where

H is the number of strata. We assume that the total sampling fraction n/N is
negligible, where N is the number of units in the population. Thus, we may as-
sume that sampling is with replacement in the asymptotic analysis. The overall
cell probability vector is p =

∑H
h=1 whph, where wh is the hth stratum weight.

Again, since unit nonresponse can be handled by re-weighting, we assume for
simplicity that nh,A + nh,B + nh,C = nh.

In practice, we usually encounter one of two situations: H is fixed and all
nh’s are large, or H is large and {nh : h = 1, 2, . . .} is bounded.

When H is fixed and all nh are large, if imputation classes are the same as
strata, then imputation is carried out within each stratum (Section 3.1); if impu-
tation classes are unions of several strata, then imputation is carried out across
strata (Section 3.1). When H is large and all nh’s are small, each imputation
class is typically a union of many strata (so that each imputation class contains
enough respondents for imputation) and imputation is carried out across strata
(Section 3.2).

3.1. The Case of Fixed H and Large ni’s

When H is fixed, all nh’s are large, and imputation classes are the same
as strata, conditional hot deck imputation can be carried out as described in
Section 2 within each stratum. Let p̂I =

∑H
h=1 whp̂I

h be the estimator of p based
on conditionally imputed values. Suppose that nh/n → ρh > 0 as n → ∞,
h = 1, . . . ,H. Then, a direct application of Theorem 1 leads to

√
n(p̂I − p) →d

N(0,Σ), where Σ =
∑H

h=1(w
2
h/ρh)Σh and Σh is the Σ in Theorem 1 but restricted

to the hth stratum.
Consider now the case where H is fixed, all nh’s are large, and imputa-

tion classes are unions of strata. We propose the following conditional hot deck
imputation procedure. For a sampled unit in the kth imputation class with ob-
served B = j and missing A, the missing value is imputed by i according to the
conditional probability

pij|B,k = P (A = i|B = j and A is missing)

=
P ((A,B) = (i, j) and A is missing)

P (B = j and A is missing)

=
∑

h∈Ik
P ((A,B) from strata h, A = i, B = j, and A is missing)∑

h∈Ik
P ((A,B) from strata h, B = j and A is missing)

=
∑

h∈Ik
whπh,Aph,ij∑

h∈Ik
whπh,Aph,.j

(4)
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with ph,ij replaced by p̂C
h,ij and πh,A replaced by π̂h,A, where Ik contains all

h’s that are in the kth imputation class. Similarly, for a sampled unit in the
kth imputation class with observed A = i and missing B, the missing value is
imputed by j according to the conditional probability

pij|A,k =
∑

h∈Ik
whπh,Bph,ij∑

h∈Ik
whπh,Bph,i·

(5)

with parameters replaced by their estimates. Once nonrespondents are imputed,
p̂I can be computed by ignoring imputation classes and treating imputed values
as observed data.

The asymptotic behavior of p̂I is given in the following result.

Theorem 2. Assume that H is fixed, there are K (a fixed number) imputation
classes that are unions of strata, and nh/n → ρh > 0 as n → ∞, h = 1, . . . ,H.
For p̂I based on conditional hot deck imputation across strata,

√
n(p̂I − p) →d

N(0,Σ), where

Σ =
K∑

k=1

∑
h∈Ik

w2
h

ρh
(MhPhM ′

h + πh,AΣA
h + πh,BΣB

h ),

Mh =
1√
πh,C

[
Iab − πh,ANA

k (Ia ⊗ Ub) − πh,BNB
k (Ua ⊗ Ib)

]
,

Ph = diag(ph) − php′h,

ΣA
h = diag(ah) − aha′h,

ΣB
h = diag(bh) − bhb′h,

ah = (p11|A,kph,1., . . . , p1b|A,kph,1. . . . , pa1|A,kph,a., . . . , pab|A,kph,a.)′,

bh = (p11|B,kph,.1, . . . , p1b|B,kph,.b, . . . , pa1|B,kph,.1, . . . , pab|B,kph,.b)′,

NA
k = diag{(p11|A,k, . . . , p1b|A,k, . . . , pa1|A,k, . . . , pab|A,k)},

NB
k = diag{(p11|B,k , . . . , p1b|B,k, . . . , p1a|B,k, . . . , pab|B,k)}.

Note that the results in Theorem 2 holds even if (πh,A, πh,B, πh,C) are dif-
ferent for different strata in the kth imputation class Ik. Thus, the method of
conditional hot deck imputation across strata described in this section is robust
against the assumption that (πh,A, πh,B, πh,C) is constant within imputation class
k (Section 1). This is because πh,A and πh,B are incorporated in the imputation
procedure through pij|B,k’s and pij|A,k’s in (4) and (5), and they can be consis-
tently estimated when we have a large sample size for each stratum.
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When imputation is carried out across strata, the conditional hot deck impu-
tation method described in this section (and Section 3.2) imputes a nonrespon-
dent by selecting a value from a set of respondents with probability depending
on the sampling weights wh, estimates of ph,ij and estimates of πh,A and πh,B.
Thus, it is different from the simple conditional hot deck imputation in Sec-
tion 2 (which selects a value from a set of respondents with equal probability)
and is similar to the weighted hot deck imputation considered in Rao and Shao
(1992). When imputation classes are the same as strata, i.e., each Ik contains
exactly one stratum, the two methods are the same, since pij|B,k = pk,ij/pk,·j and
pij|A,k = pk,ij/pk,i·, k = 1, . . . ,H.

3.2. The Case of Large H and Small nh’s

When all nh’s are small (bounded by a constant c1) and H is large, impu-
tation across strata is necessary. Since nh’s are small, π̂h,A’s and π̂h,B’s are not
consistent estimators and the method described in Section 3.1 is not appropriate.
Under the assumption that (πh,A, πh,B, πh,C) is constant within each imputation
class (Section 1), the missing value of a sampled unit in the kth imputation class
with observed B = j and missing A can be imputed by i according to the condi-
tional probability pij|B,k =

∑
h∈Ik

whph,ij/
∑

h∈Ik
whph,.j with ph,ij replaced by

p̂C
h,ij. Similarly, the missing value of a sampled unit in the kth imputation class

with observed A = i and missing B can be imputed by j according to the con-
ditional probability pij|A,k =

∑
h∈Ik

whph,ij/
∑

h∈Ik
whph,i· with ph,ij replaced by

p̂C
h,ij. Again, p̂I can be computed by ignoring imputation classes and treating

imputed values as observed data.
Let Σh have the ((i1 − 1)b + j1, (i2 − 1)b + j2)th component

1
πh,C

ph,ij +
π2

h,A

πh,C
p2

ij|A,kph,i·+
π2

h,B

πh,C
p2

ij|B,kph,·j−2
πh,Apij|A,k

πh,C
ph,ij−2

πh,Bpij|B,k

πh,C
ph,ij

+2
πh,Aπh,B

πh,C
pij|B,kpij|A,kph,ij + p2

ij|B,kπh,Bp·j + p2
ij|A,kπh,Api· − p2

h,ij

if (i1, j1) = (i2, j2) = (i, j);

π2
h,A

πh,C
pij1|A,kpij2|A,kph,i· − πh,A

πh,C
pij2|A,kph,ij1 −

πh,A

πh,C
pij1|A,kph,ij2

+
πh,Aπh,B

πh,C
pij1|B,kpij2|A,kph,ij1 +

πh,Aπh,B

πh,C
pij2|B,kpij1|A,kpij2

+πh,Apij1|A,kpij2|A,kph,i· − ph,ij1ph,ij2

if i = i1 = i2 and j1 �= j2;

π2
h,B

πh,C
pi1j|B,kpi2j|B,kph,·j − πh,B

πh,C
pi2j|B,kph,i1j − πh,B

πh,C
pi1j|B,kph,i2j
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+
πh,Aπh,B

πh,C
pi1j|B,kpi2j|A,kph,i2j +

πh,Aπh,B

πh,C
pi2j|B,kpi1j|A,kph,i1j

+πh,Bpi1j|B,kpi2j|B,kph,·j − ph,i1jph,i2j

if i1 �= i2 and j = j1 = j2; and −ph,i1j1ph,i2j2 if i1 �= i2 and j1 �= j2, where
i1, i2 = 1, . . . , a, j1, j2 = 1, . . . , b. Let Σk,A have the ((i1−1)b+j1, (i2−1)b+j2)th
component πk,A(pij|A,k − p2

ij|A,k)
∑

h∈Ik
w2

hph,i·/nh if (i1, j1) = (i2, j2) = (i, j);
−πk,Apij1|A,kpij2|A,k

∑
h∈Ik

w2
hph,i·/nh if i1 = i2 = i and j1 �= j2; and 0 if i1 �= i2

and j1 �= j2. Let Σk,B have entries πk,B(pij|B,k − p2
ij|B,k)

∑
h∈Ik

w2
hph,·j/nh if

(i1, j1) = (i2, j2) = (i, j); −πk,Bpij1|B,kpij2|B,k
∑

h∈Ik
w2

hph,·j/nh if j1 �= j2 and
i1 = i2 = i; and 0 if j1 �= j2 and j1 �= j2.

The following result establishes the asymptotic normality of p̂I based on the
method of conditional hot deck imputation across strata.

Theorem 3. Assume that there are K (a fixed number) imputation classes that
are unions of strata and within the kth imputation class Ik, (πh,A, πh,B, πh,C) =
(πk,A, πk,B, πk,C) for all h ∈ Ik and πk,C > 0. Assume further that H → ∞,
n/N → 0, and that there are constants cj , j = 1, . . . , 4, such that nh ≤ c1,
c2 ≤ Hwh ≤ c3, and ph,ij ≥ c4 for all h. Then, (l′V l)−1/2(p̂I − p) →d N(0, 1) for
any l ∈ Rab with l′V l > 0, where

V =
K∑

k=1


 ∑

h∈Ik

w2
h

nh
Σh + Σk,A + Σk,B


 .

A consistent estimator of the asymptotic covariance matrix V can be ob-
tained by substituting ph,ij, πk,A, πk,B, and πk,C by p̂C

h,ij, π̂k,A, π̂k,B, and π̂k,C ,
respectively, where π̂k,A =

∑
h∈Ik

nh,A/
∑

h∈Ik
nh and π̂k,B and π̂k,C are similarly

defined.

4. A Simulation Study

In this section we study by simulation the finite sample performances of the
estimators discussed in Section 3.2, under stratified simple random sampling with
a large number of strata. We created a population based on a dataset from the
survey of victimization incidents conducted by the U.S. Department of Justice
in 1989 (see Lohr (1999, p.443)). We considered three variables in the dataset,
VIOLENT (= 1 if violent crime and = 2 if not violent crime), NUMOFF (number
of offenders involved in crime; = 1 if only one offender, = 2 if more than one
offenders) and SEX (= 1 if victim male and = 2 if victim female). The variable
VIOLENT was used as variable A and NUMOFF was used as variable B in a
2×2 contingency table. That is, we were interested in estimating cell probabilities
related to VIOLENT and NUMOFF. Since some victims reported “don’t know”
to the variables VIOLENT and/or NUMOFF, these variables were considered as
variables with nonresponse. The variable SEX was used to create two imputation



622 HANSHENG WANG AND JUN SHAO

Table 2. Simulation results for a 2 × 2 contingency table under stratified sampling.

Estimation of Cell Probability

Response Probability Bias Standard Deviation

π1,C π1,A π1,B π2,C π2,A π2,B p11 p12 p21 p11 p12 p21

0.8 0.0 0.2 0.8 0.0 0.2 0.007 -0.002 0.016 0.013 0.013 0.017

0.8 0.0 0.2 0.8 0.1 0.1 -0.020 -0.005 -0.004 0.013 0.013 0.017

0.8 0.0 0.2 0.7 0.0 0.3 0.006 0.023 -0.034 0.013 0.013 0.017

0.8 0.0 0.2 0.7 0.1 0.2 0.001 -0.009 0.008 0.013 0.013 0.018

0.8 0.0 0.2 0.6 0.0 0.4 -0.010 -0.002 0.013 0.014 0.014 0.018

0.8 0.0 0.2 0.6 0.1 0.3 -0.013 -0.001 0.007 0.014 0.014 0.018

0.8 0.0 0.2 0.6 0.2 0.2 0.013 -0.003 0.005 0.014 0.014 0.018

0.8 0.0 0.2 0.5 0.0 0.5 0.006 0.003 -0.013 0.015 0.014 0.019

0.8 0.0 0.2 0.5 0.1 0.4 -0.005 0.021 -0.026 0.015 0.014 0.018

0.8 0.0 0.2 0.5 0.2 0.3 -0.007 0.006 0.007 0.015 0.014 0.018

0.8 0.1 0.1 0.8 0.1 0.1 -0.006 -0.006 0.019 0.013 0.013 0.017

0.8 0.1 0.1 0.7 0.0 0.3 -0.021 0.010 0.011 0.013 0.013 0.017

0.8 0.1 0.1 0.7 0.1 0.2 -0.006 -0.015 0.03 0.013 0.013 0.017

0.8 0.1 0.1 0.6 0.0 0.4 -0.011 0.010 0.023 0.014 0.014 0.018

0.8 0.1 0.1 0.6 0.1 0.3 0.000 -0.013 -0.025 0.014 0.014 0.018

0.8 0.1 0.1 0.6 0.2 0.2 -0.012 -0.020 0.021 0.014 0.014 0.018

0.8 0.1 0.1 0.5 0.0 0.5 -0.014 0.006 -0.014 0.015 0.015 0.018

0.8 0.1 0.1 0.5 0.1 0.4 0.002 -0.015 0.012 0.015 0.014 0.018

0.8 0.1 0.1 0.5 0.2 0.3 -0.001 -0.012 0.012 0.015 0.014 0.018

0.7 0.0 0.3 0.7 0.0 0.3 -0.016 0.010 0.001 0.014 0.014 0.018

0.7 0.0 0.3 0.7 0.1 0.2 0.013 -0.016 0.030 0.014 0.014 0.018

0.7 0.0 0.3 0.6 0.0 0.4 -0.025 0.029 0.006 0.014 0.014 0.019

0.7 0.0 0.3 0.6 0.1 0.3 -0.008 0.021 -0.006 0.014 0.014 0.019

0.7 0.0 0.3 0.6 0.2 0.2 0.010 -0.005 0.013 0.014 0.014 0.019

0.7 0.0 0.3 0.5 0.0 0.5 -0.007 0.005 0.005 0.015 0.015 0.019

0.7 0.0 0.3 0.5 0.1 0.4 0.032 0.008 -0.038 0.015 0.015 0.019

0.7 0.0 0.3 0.5 0.2 0.3 -0.007 0.015 -0.018 0.015 0.014 0.019

0.7 0.1 0.2 0.7 0.1 0.2 0.011 -0.002 -0.023 0.014 0.013 0.018

0.7 0.1 0.2 0.6 0.0 0.4 -0.013 0.007 -0.001 0.015 0.014 0.018

0.7 0.1 0.2 0.6 0.1 0.3 -0.004 -0.006 0.013 0.014 0.014 0.018

0.7 0.1 0.2 0.6 0.2 0.2 0.017 -0.027 -0.002 0.015 0.014 0.019

0.7 0.1 0.2 0.5 0.0 0.5 -0.009 0.010 -0.013 0.015 0.015 0.019

0.7 0.1 0.2 0.5 0.1 0.4 0.005 0.020 0.006 0.015 0.015 0.019

0.7 0.1 0.2 0.5 0.2 0.3 -0.011 0.014 0.013 0.015 0.015 0.019

0.6 0.0 0.4 0.6 0.0 0.4 0.007 -0.003 0.001 0.014 0.014 0.019

0.6 0.0 0.4 0.6 0.1 0.3 0.007 -0.010 0.029 0.015 0.014 0.019

0.6 0.0 0.4 0.6 0.2 0.2 -0.017 0.001 0.029 0.015 0.014 0.020

0.6 0.0 0.4 0.5 0.0 0.5 -0.017 0.036 -0.038 0.015 0.015 0.020

0.6 0.0 0.4 0.5 0.1 0.4 0.010 0.005 -0.013 0.015 0.015 0.020

0.6 0.0 0.4 0.5 0.2 0.3 -0.001 0.005 -0.008 0.015 0.015 0.020

0.6 0.1 0.3 0.6 0.1 0.3 -0.018 0.009 -0.010 0.015 0.014 0.019

0.6 0.1 0.3 0.6 0.2 0.2 0.002 -0.002 -0.009 0.015 0.014 0.019

0.6 0.1 0.3 0.5 0.0 0.5 -0.001 0.003 -0.014 0.016 0.015 0.019

0.6 0.1 0.3 0.5 0.1 0.4 0.004 0.002 -0.012 0.016 0.015 0.019

0.6 0.1 0.3 0.5 0.2 0.3 0.001 -0.007 -0.012 0.016 0.015 0.020

0.6 0.2 0.2 0.6 0.2 0.2 0.003 -0.019 0.019 0.015 0.014 0.019

0.6 0.2 0.2 0.5 0.0 0.5 -0.026 0.007 0.018 0.016 0.015 0.019

0.6 0.2 0.2 0.5 0.1 0.4 0.015 -0.016 -0.001 0.016 0.015 0.019

0.6 0.2 0.2 0.5 0.2 0.3 0.020 -0.016 -0.032 0.016 0.015 0.019

0.5 0.0 0.5 0.5 0.0 0.5 -0.009 0.002 -0.011 0.016 0.016 0.021

0.5 0.0 0.5 0.5 0.1 0.4 -0.034 0.000 0.001 0.016 0.016 0.021

0.5 0.0 0.5 0.5 0.2 0.3 0.013 -0.026 0.006 0.016 0.015 0.021

0.5 0.1 0.4 0.5 0.1 0.4 -0.012 -0.024 0.035 0.016 0.016 0.020

0.5 0.1 0.4 0.5 0.2 0.3 0.013 -0.018 -0.009 0.016 0.015 0.021

0.5 0.2 0.3 0.5 0.2 0.3 0.011 0.002 0.004 0.016 0.016 0.020
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classes. The original dataset contains information about sampling weights, but
not strata. For the purpose of running a simulation for stratified sampling with
many strata, we created some artificial strata by using the variable SEX and
combining the units with similar sampling weights. For SEX = 1, there are 54
strata and for SEX = 2, there are 48 strata (i.e., K = 2 and H = 102). Within
each stratum, the true cell probabilities ph,ij were obtained from the original
dataset.

Stratified simple random samples with nh = 10 for all h were generated from
the constructed population. For each sample, nonrespondents were created ac-
cording to response probabilities in two imputation classes (SEX = 1 or 2) (see
Table 2). For simplicity, we still consider only the case of no unit nonresponse.
Nonrespondents were imputed according to the method in Section 3.2, i.e., con-
ditional hot deck imputation across stratum (but within two imputation classes,
SEX = 1 and 2).

Table 2 reports results (based on 10,000 simulation runs) on the bias and
standard deviation in the estimation of the cell probabilities. The true overall
cell probabilities (which are weighted averages of stratum cell probabilities) are
p11 = 0.1649, p12 = 0.1596, and p21 = 0.4897. Overall, the performance of cell
probability estimators are reasonably good.
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