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Abstract: Testing for lifetime utility or cost is complicated with incomplete follow-

up data. First, the marginal distribution in each sample is potentially nowhere

identifiable. Second, the associated survival time may distribute differently across

samples, whereas the difference is a nuisance. To overcome these difficulties, we

propose to test the equivalence of the joint distributions of the variable of interest

and survival time after calibrating the latter under the accelerated failure time

model. Formulating the problem in the marked point process framework, we build

upon and extend the well-known weighted log-rank statistics. Asymptotic theory

has been developed and optimal weight functions derived. These tests are applied to

a randomized clinical trial. Simulations show that they perform well with practical

sample sizes.
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1. Introduction

In many medical studies, comparison of interventions is of interest with re-
spect to lifetime medical cost or quality adjusted survival time. Being a mark
of death (see Huang and Louis (1998)), such a lifetime measure with incomplete
follow-up data poses a unique statistical challenge. One prominent phenomenon
is the induced dependent censoring pattern on the scale of the mark. Much effort
has been devoted to the one-sample nonparametric estimation problem in recent
years, including Glasziou, Simes and Gelber (1990), Zhao and Tsiatis (1997,
2000), Lin, Feuer, Etzioni and Wax (1997), Huang and Louis (1998, 1999), and
Bang and Tsiatis (2000). However, due to the fact that the marginal distribution
of the mark may be largely unidentifiable, these one-sample estimation results
do not readily lend themselves to the construction of hypothesis tests.

To be specific, let T be the time-to-event, or survival time, and U the mark
of interest (e.g., lifetime medical cost) in a one-sample setting. The censoring
time C operates on T and the following variables are observed: X : = T ∧ C,
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Y : = U I(T ≤ C) and ∆:= I(T ≤ C), where ∧ is the minimization operator and
I(.) is the indicator function. It is clear that, when the maximum support point
of C, τC , is less than that of T , the joint distribution of (T,U) is not observable
on (τC ,∞) × (−∞,∞). Thus, the marginal cumulative distribution function
pr(U ≤ u) can be nowhere identifiable. This issue is of practical concern since
the duration of a medical study is typically finite and shorter than the maximum
support point of survival time T .

The above data structure, as identified by Huang and Louis (1998), is basic
and general to various applications in which a mark is of interest. Note that,
even with additional information available in certain situations, the identifiability
issue would not be completely resolved. For instance, instead of Y only, suppose
that one observes the accumulation process of the lifetime utility or cost up to
follow-up time X. Huang (1999) showed that this additional information can be
used to examine a sufficient condition for the marginal cumulative distribution
function of U to be identifiable up to, say ι; that is, pr(U > ι|T ≥ τC) = 1.
However the existence of reasonably large ι can not be guaranteed, and thus
the applicability of the nonparametric two-sample tests in Huang (1999) may be
somewhat limited.

To avoid the identifiability issue, the notion of time-restricted variable has
long been introduced in the literature of quality adjusted survival time and life-
time medical cost. For instance, five-year restricted lifetime cost is the cost
accumulated up to death or five years, whichever happens earlier. While tests
based on the time-restricted variable have been suggested (e.g., Glasziou, Simes
and Gelber (1990), Zhao and Tsiatis (2000)), attempts to interpret them in terms
of U itself, as desired, are not appropriate and can be misleading. In particular
for a two-sample problem with the same distributions of U , the time-restricted
variable is in general differently distributed, as T may have different distributions
in the two populations.

Recognizing that testing for U may not be intuitively based on its marginal
distribution, we suggest considering the joint distribution of T and U . We pro-
pose to calibrate the difference in the survival time T and, in turn, to test the
equivalence of the joint distributions. The accelerated failure time model will
be used for the purpose of calibration. For generality, we consider the afore-
mentioned basic data structure setting: each sample consists of realizations of
(X,Y,∆). In Section 2, we present some results on marked point processes,
which are instrumental in the formulation of our proposed two-sample tests as
presented in Section 3. We investigate the optimality of our tests in Section 4.
The proposed tests are applied to a cancer clinical trial in Section 5 and simula-
tion studies are reported in Section 6. Section 7 concludes with discussion.
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2. Results on Marked Point Process

Marked point process may be viewed as an extension of the intensively in-
vestigated counting process (cf. Andersen, Borgan, Gill and Keiding (1993)), In
this section, we establish a few general results in the one-sample setting; they
are analogous to those well-known on counting process and will be the building
blocks of our proposed tests. Hereafter, we suppose that all time variables are
measured on a logarithmic scale.

Consider a sample: (Xi, Yi,∆i), i = 1, . . . , n, are n independent and iden-
tically distributed replicates of (X,Y,∆). For individual i, define the following
processes:

Ri(t) = I(Xi ≥ t), Ni(t, u) = I(Xi ≤ t, Yi ≤ u)∆i,

Nmi(t) =
∫ ∞

−∞
umNi(t, du) = I(Xi ≤ t)∆iY

m
i , m = 0, 1, 2.

Note that Ri and N0i are the familiar at-risk process and counting process,
whereas Ni was earlier introduced in Huang and Louis (1998). We refer to N1i

as the marked process. Note that Nmi, m = 1, 2, differs from counting process
N0i in the jump size, Y m

i , which is random rather than the constant 1.

2.1. Hazard functions

Huang and Louis (1998) introduced the cumulative mark-specific hazard
function

A(t, u) =
∫ t

−∞
lim
h↓0

pr(T < s + h,U ≤ u|T ≥ s)
h

ds.

We now define

Λm(t) =
∫ ∞

−∞
umA(t, du), λm(t) = dΛm(t)/dt, m = 0, 1, 2.

Note that Λ0 is the cumulative hazard function and λ0 is the hazard function
of T . Further, λm(t) = λ0(t)E(Um|T = t), m = 1, 2. We term λ1 the marked
hazard function and, in turn, Λ1 the cumulative marked hazard function.

2.2. Martingale structure

We make the following assumptions.
(a) Censoring time C is independent of the pair (T,U).
(b) Survival time T is continuously distributed.
(c) Mark U is bounded.
These assumptions are largely satisfied in practical applications.

Let
Mmi(t) = Nmi(t) −

∫ t

−∞
Ri(s) dΛm(s), m = 0, 1.
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With respect to the filtration Ft = σ{Nmi(s), I(Xi ≤ s,∆i = 0) : m = 0, 1, s ≤ t,
i = 1, . . . , n}, both M0i(t) and M1i(t) are local martingales. Furthermore, the
predictable variance process is given as〈(

M0i

M1i

)〉
(t) =

∫ t

−∞
Ri(s) d

{
Λ0(s) Λ1(s)
Λ1(s) Λ2(s)

}
. (2.1)

These results extend those well-known on M0i(t) (cf. Andersen et al. (1993));
they are obtained with similar arguments.

2.3. Empirical hazard functions

Huang and Louis (1998) derived the nonparametric maximum likelihood es-
timator of the cumulative mark-specific hazard function:

Â(t, u) =
∫ t

−∞
N(ds, u)

R(s)
,

where R =
∑

i Ri and N =
∑

i Ni. In view of the mapping from A to Λm,

Λ̂m(t) =
∫ t

−∞
dNm(s)
R(s)

, m = 0, 1, 2,

is the nonparametric maximum likelihood estimator of Λm, where Nm =
∑

i Nmi.
As easily recognized, Λ̂0 is the Nelson−Aalen estimator of Λ0.

Huang and Louis ((1998), proofs of Theorems 4 and 5) showed that, on
(−∞, L]×(−∞,∞), Â is uniformly and strongly consistent for A and n1/2(Â−A)
is asymptotically normal, where constant L satisfies pr(X > L) > 0. With
condition (c), it follows that Λ̂m is uniformly and strongly consistent for Λm and
n1/2(Λ̂m − Λm) is asymptotically normal, on (−∞, L] and for m = 0, 1, 2.

In our later development, we make use of the properties of Λ̂0 and Λ̂1 on
multiple time scales. Specifically, considering a sequence of location changes
bn → 0 as n → ∞, we are interested in the asymptotic behavior of Λ̂m(t + bn)
relative to Λ̂m(t), m = 0, 1. Note that N0, N1, and R are empirical-type processes
as studied by Lai and Ying (1988). In addition to conditions (a)−(c), we assume
the following.
(d) Survival time T has a bounded and a continuously differentiable density func-

tion fT which satisfies
∫∞
−∞ supt≤s≤t+d |f ′

T (s)| dt < ∞ for some d > 0.
(e) Censoring time C has a bounded density function.
(f) E(|X|r) < ∞ for some r > 0.
Then, similarly to Theorems 1, 2, and 3 of Lai and Ying (1988), one can show
that, almost surely,

sup
t≤L

|Λ̂m(t + bn) − Λm(t + bn) − Λ̂m(t) + Λm(t)| = o(n−1/2 + |bn|), m = 0, 1,

(2.2)
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as n → ∞ and bn → 0. Yang (1998) gave a similar result for the Nelson−Aalen
estimator Λ̂0.

3. The Proposed Two-Sample Tests

Now considering the two-sample problem, we use the notation introduced
earlier for one sample and add an asterisk to indicate the other. Since the
marginal distributions of U and U∗ may be nowhere identifiable, we construct
tests on the basis of the joint distributions of survival time and the mark after
calibrating the former across the two samples. For the purpose of calibration, we
adopt the commonly-used accelerated failure time model for the difference of T

and T ∗:
T

D= T ∗ + β for some β, (3.1)

where D= denotes equivalence in distribution; some justification of the model in
clinical studies can be found in Kalbfleisch and Prentice (1980). Recall that T

and T ∗ are on a logarithmic scale and thus the above location-shift model is a
scale-change model on the original scale.

The test of interest is on the difference of U and U∗. The null hypothesis
is specified as H0 : (T,U)T D= (T ∗ + β,U∗)T . Apparently, U

D= U∗ under H0.
This hypothesis is relevant particularly in the clinical trial setting; cf. other
null hypotheses considered by, for example, Zhou, Melfi and Hui (1997) for the
uncensored medical cost problem. Writing µ(t) = E(U |T = t) and µ∗(t) =
E(U∗|T ∗ = t), we consider the alternative hypothesis HA : Given (3.1), µ(t) ≥
µ∗(t − β) or µ(t) ≤ µ∗(t − β), where the inequality is strict for at least some
t. Clearly HA implies different marginal distributions of U and U∗. For a large
sample study, n/n∗ converges to a finite constant bounded away from 0 as n• =
n + n∗ → ∞. To investigate the power of the proposed tests, we appeal to
the notion of Pitman efficiency under the local alternative HL

A : Given (3.1),
n

1/2
• {µ(t) − µ∗(t − β)} → δ(t) uniformly on t ∈ (−∞,∞), for some bounded

function δ(t). (The dependence of µ and µ∗ on n• has been suppressed for
notational convenience.)

Accommodating possibly different censoring in the two samples, we build
upon and extend the well-known weighted log-rank statistics. Define

ξm(b) =
∫ τ

−∞
wm(t, b)

{
dNm(t)
R(t)

− dN∗
m(t − b)

R∗(t − b)

}
=
∫ τ

−∞
wm(t, b){dΛ̂m(t) − dΛ̂∗

m(t − b)}, m = 0, 1. (3.2)

Here, we have imposed an upper integration limit τ < ∞ such that pr(X >

τ)pr(X∗+β > τ) > 0 to avoid complications with tail instability; in practice, one
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may take τ large enough to cover all the follow-up times for a specific dataset. The
weight function wm(t, b) is a nonnegative process that vanishes whenever R(t) = 0
or R∗(t−b) = 0. Note that ξ0 is the familiar rank statistic for survival time, where
w0(t, b) = n−1• R(t)R∗(t − b)/{R(t) + R∗(t − b)} and w0(t, b) = n−2• R(t)R∗(t − b)
correspond to the log-rank and Gehan statistics, respectively. In comparison, ξ1

is obtained with the marked processes in place of the counting processes in ξ0.
One should note that β is a nuisance parameter. There are situations in

which β is known a priori: An intervention may reduce the lifetime medical cost,
say, but it is known to have no impact on the survival time; in this case, β is
known to be 0. Of course, β is usually unknown. In the following, we construct
tests under both situations.

3.1. Tests when β is known

To study the properties of ξm(β), we need the following.
(g) Weight function wm(t, β), m = 0, 1, converges uniformly in t ∈ (−∞, τ ] to a

nonrandom function Wm(t, β), in probability.
Clearly, the log-rank and Gehan weight functions satisfy this condition.

We establish properties of ξm(β) based on martingale theory. The weight
function wm(t, β) will be implicitly taken as Ft

⋃F∗
t−β-predictable. This is true

for most commonly chosen weight functions; otherwise, one can always find a
Ft
⋃F∗

t−β-predictable replacement (e.g., Wm(t, β)) such that the resulting ξm(β)
is asymptotically equivalent.

Under H0, a standard technique in survival analysis yields

ξm(β) =
∫ τ

−∞
wm(t, β)

{
dMm(t)

R(t)
− dM∗

m(t − β)
R∗(t − β)

}
, m = 0, 1,

where Mm =
∑

i Mmi and M∗
m =

∑
i M

∗
mi. Rebolledo’s Central Limit Theo-

rem for local martingales then asserts that n
1/2
• {ξ0(β), ξ1(β)}T is asymptotically

normal with mean (0, 0)T and variance

Σ(β) =
∫ τ

−∞
B(t)

{
W0(t, β)2 dΛ0(t) W0(t, β)W1(t, β) dΛ1(t)
W0(t, β)W1(t, β) dΛ1(t) W1(t, β)2 dΛ2(t)

}
,

where B(t) is the limit of n•I{R(t)R∗(t − β) > 0}{R(t)−1 + R∗(t − β)−1}. The
asymptotic variance is derived from (2.1), and it can be consistently estimated
by

Σ̂(β) = n•
∫ τ

−∞

{
1

R(t)
+

1
R∗(t − β)

}
×
{

w0(t, β)2 dΛ̂•0(t, β) w0(t, β)w1(t, β) dΛ̂•1(t, β)
w0(t, β)w1(t, β) dΛ̂•1(t, β) w1(t, β)2 dΛ̂•2(t, β)

}
,
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where Λ̂•m(t, β) =
∫ t
−∞{R(t) + R∗(t−β)}−1 d{Nm(t) + N∗

m(t−β)} is the pooled
estimator of cumulative hazard function Λm, m = 0, 1, 2. One can easily show
that, under local alternative HL

A, we have the same asymptotic results except
that the mean of n

1/2
• {ξ0(β), ξ1(β)}T is then {0, ∫ τ

−∞ W1(t, β)δ(t)λ0(t) dt}T .
Although ξ1(β) is an obvious test statistic for H0, a class of tests can be

constructed based on ξ0(β) and ξ1(β), and more powerful tests are of interest.
Write εpq, p, q = 1, 2, as the (p, q)th element of Σ(β) and ε̂pq as its counterpart
in Σ̂(β).

Theorem 1. Assume (a)−(c), for both samples, and (g) hold. The test based on

Φ = n
1/2
•

ξ1(β) − ε̂−1
11 ε̂12ξ0(β)

(ε̂22 − ε̂−1
11 ε̂2

12)1/2

achieves the maximum asymptotic local power among those based on ξ0(β) and
ξ1(β). Under H0, Φ is asymptotically standard normal.

Proof. With the asymptotic distribution of {ξ0(β), ξ1(β)}T under H0
⋃HL

A,
algebraic derivations show that an asymptotically and locally efficient likelihood
ratio test is based on statistic n

1/2
• {ξ1(β)−ε−1

11 ε12ξ0(β)}, the asymptotic variance
of which is ε22 − ε−1

11 ε2
12. The desired result follows since Φ is asymptotically

equivalent to n
1/2
• {ξ1(β) − ε−1

11 ε12ξ0(β)}/(ε22 − ε−1
11 ε2

12)
1/2.

3.2. Tests when β is unknown

Before proceeding, we impose a stronger condition on wm(t, b) to facilitate
large-sample arguments.
(h) The weight function wm(t, b) converges to Wm(t, b) uniformly in t ∈ (−∞, τ ]

and in b, |b − β| ≤ B for some B > 0, m = 0, 1, in probability. The
limit Wm(t, b) is continuous at b = β uniformly in t ∈ (−∞, τ ]. Further, in
probability,

lim supn•→∞ sup
|b−β|≤B

∫ τ

−∞
|wm(dt, b)| < ∞.

This condition can be easily verified for the log-rank and Gehan weight functions.
Louis (1981) and Wei and Gail (1983) suggested a consistent estimator β̂0,

a zero-crossing of ξ0(b). Another estimator β̂1 can be constructed to be a zero-
crossing of ξ1(b) in a neighborhood of β̂0. By the arguments of Gill and Schu-
macher (1987), β̂0 − β̂1 can be used as a test statistic with both β̂0 and β̂1 being
consistent for β under H0. In view of (3.2), and from (2.2), we have, for b → β

under H0
⋃HL

A,

ξm(b) = ξm(β) + (b − β)rm + op(n−1/2 + |b − β|), m = 0, 1, (3.3)
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where rm =
∫ τ
−∞ Wm(t, β) dλm(t). Given the asymptotic results on ξm(β) from

Section 3.1, it is easily shown that β̂m − β = −r−1
m ξm(β) + op(n−1/2), m = 0, 1.

Therefore, β̂0 − β̂1 is asymptotically normal with mean 0 under H0.
Since calculating β̂0 − β̂1 requires solving two discrete equations, one may

use ξ1(β̂0) as a computationally efficient test statistic. Expression (3.3) leads to
ξ1(β̂0) = r1(β̂0 − β̂1) + op(n−1/2). Indeed, the test based on ξ1(β̂0) is asymptoti-
cally equivalent to that on β̂0 − β̂1 under H0

⋃HL
A.

Despite β̂0 − β̂1 and ξ1(β̂0) being reasonable test statistics, neither of their
variances can be easily estimated. For example, under H0

⋃HL
A,

var{n1/2
• ξ1(β̂0)}=

∫
{r−2

0 r2
1W0(t, β)2λ0(t)−2r−1

0 r1W0(t)W1(t, β)λ1(t)

+W1(t, β)2λ2(t)}B(t)dt, (3.4)

and rm involves λm. To overcome this difficulty, we suggest a different test
statistic.

Theorem 2. Let Ψ = min n•{ξ0(b), ξ1(b)}Σ̂(β̂0)−1{ξ0(b), ξ1(b)}T , where the
minimization is taken over b in a neighborhood of β̂0. Assume that (a)−(f), for
both samples, and (h) hold. Under H0, Ψ is asymptotically χ2(1). The test based
on Ψ is locally equivalent to that based on β̂0 − β̂1 or ξ1(β̂0).

Proof. First one can show that Σ̂(β̂0) is consistent for Σ(β) under H0
⋃HL

A,
since β̂0 converges to β. Then by arguments similar to those of Wei, Ying and Lin
((1990), Appendix 2), Ψ is asymptotically equivalent to n•(β̂0− β̂1)2/var{n1/2

• (β̂0

−β̂1)}.
Computationally, one may perform a grid search to calculate the minimum

dispersion statistic Ψ.

4. Optimality Consideration of the Weight Functions

The proposed tests based on Φ or Ψ, with β known or unknown, have wide
choices of weight functions w0 and w1. One natural question is how to choose
them for test efficiency. We address this optimality issue under local alternative
HL

A.

4.1. Test based on Φ when β is known

Under HL
A, Φ is asymptotically normal with mean

∫ τ
−∞ W1(t, β)δ(t)λ0(t) dt/

(ε22 − ε−1
11 ε2

12)
1/2 and unit variance. Thus, the efficacy of the test is

eff(Φ;W0,W1) =

{∫ τ

−∞
W1(t, β)δ(t)λ0(t) dt

}2

ε22 − ε−1
11 ε2

12

.
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Note that ε11, ε12 and ε22 are functions of W0 or W1 and that efficacy is invariant
under a scalar multiplication of either weight function.

In the Appendix, by applying the Cauchy–Schwartz inequality, we obtain
optimal weight functions and associated optimal efficacy as

W0 opt(t) ∝ δ(t)σ(t)−2λ0(t)−1λ1(t)B(t)−1,

W1 opt(t) ∝ δ(t)σ(t)−2B(t)−1,

eff(Φ;W0 opt,W1 opt) =
∫ τ

−∞
δ(t)2σ(t)−2λ0(t)B(t)−1 dt,


(4.1)

where σ(t)2 = var(U |T = t) = λ2(t)/λ0(t) − λ1(t)2/λ0(t)2.

4.2. Test based on Ψ when β is unknown

From Theorem 2, the efficacy of the test based on Ψ is

eff(Ψ;W0,W1) =

{ ∫ τ

−∞
W1(t, β)λ0(t)δ(t) dt

}2

var{n1/2
• ξ1(β̂0)}

,

where var{n1/2
• ξ1(β̂0)} as given in (3.4) is a function of W0 and W1. The ef-

ficacy can be optimized over W0 and W1, similar to the study of the Φ test
but algebraically more tedious. The resulting optimal weight functions and the
associated efficacy are complicated, and thus omitted.

4.3. Special case: Independence between mark and survival time

We have shown that optimal W0 and W1 can be derived for tests based on
Φ and Ψ. Unfortunately, this does not imply that optimal w0 and w1 can be
feasibly constructed from the data. In particular, even for the test based on Φ,
the rather simple expressions for W0 opt and W1 opt in (4.1) involve λ0, λ1 and λ2,
and these are difficult to estimate. Therefore, the preceding results may not be
sufficient to provide practical guidelines for choosing weight functions. For this
purpose, we consider a special scenario where U is independent of T and U∗ is
independent of T ∗. Optimal w0 and w1 for both tests can be constructed in this
case, and they may serve as working weight functions in general.

Under the independence scenario, δ(t) = δ and σ(t)2 = var(U) = σ2 are
constant. For the test based on Φ, from (4.1) it is easily shown that the optimal
W0 and W1 are proportional to B(t)−1. Therefore, using the log-rank weight
function for both w0 and w1 achieves optimality. For the test based on Ψ, in-
terestingly, the optimal w0 and w1 are also the log-rank weight function (see the
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Appendix). Furthermore, the two tests have the same optimal efficacy:

δ2σ−2
∫ τ

−∞
λ0(t)B(t)−1 dt. (4.2)

Notice that uncensored {Yi : ∆i = 1, i = 1, · · · , n} and {Y ∗
i : ∆∗

i = 1, i =
1, · · · , n∗} are unbiased samples of U and U∗, respectively. Therefore, the t-test
is valid and also asymptotically efficient when the mark is normally distributed.
To compare the efficiency of our tests to that of the t-test, we note that the
optimal efficacy (4.2) can be rewritten as

δ2σ−2
∫ τ

−∞
p(1 − p)SC(t)SC∗(t − β)

pSC(t) + (1 − p)SC∗(t − β)
dFT (t),

where p = lim n/n•, SC(t) = pr(C > t), SC∗(t) = pr(C∗ > t), and FT (t) =
pr(T ≤ t). It is interesting to observe that, if C

D= C∗ + β, the efficacy becomes
δ2σ−2p(1−p)pr(T ≤ C∧τ), which is the same as that of the t-test. Nevertheless,
in general and as expected, the t-test is more efficient.

5. Illustration: Application to a Cancer Clinical Trial

Our research is motivated by a recently-completed randomized clinical trial of
the Southwest Oncology Group (SWOG). The study was designed to investigate
Vinorelbine plus Cisplatin versus Paclitaxel plus Carboplatin therapies in earlier
untreated patients with advanced non-small cell lung cancer (Kelly et al. (2001)).
One objective, among others, is to compare lifetime medical costs of the two
treatments.

During the study, resource utilization was tracked for each participant and
reported at months 3, 6, 12, 18, and 24 for the five corresponding previous inter-
vals. These resources consisted of supportive care medications, blood products,
medical procedures, protocol and non-protocol related treatments, and other
medical care inpatient days or outpatient visits. Costs were assigned to them
using national databases, upon adjustment to 1998 US dollars according to the
medical care component of the Consumer Price Index. For the analysis of lifetime
medical cost, the follow-up duration of a participant is referred and confined to
that of the cost accumulation. Of the total 408 participants eligible for the study,
10 were excluded from our analysis due to insufficient documentation. Among
the remaining 398 participants, 198 were randomized to receive Vinorelbine plus
Cisplatin. The median follow-up time was 6 months and 36% of the participants
had their lifetime cost censored. The Nelson–Aalen estimator for the survival
time and the estimated cumulative marked hazard function for the lifetime cost
are presented in Figure 1 by treatment regimen. Indeed, a substantial portion of
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the participants survived beyond 24 months, which suggests that the marginal
distribution of the lifetime medical cost for each group may be nowhere identifi-
able, as discussed in Section 1.
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Figure 1. The Nelson–Aalen estimator for survival time and the estimated
cumulative marked hazard function for the lifetime medical cost, in thousand
US dollars, by treatment regimen: Vinorelbine plus Cisplatin (Vin+CDDP)
versus Paclitaxel plus Carboplatin (Pac+CBDCA).

We applied our Ψ test to the lifetime medical cost with w0 = w1. Using
the log-rank and Gehan weight functions, we obtained the minimum dispersion
statistics 6.37 and 5.76, respectively. In comparison to the 95th percentile of
the χ2(1) distribution, they show that the cost associated with Paclitaxel plus
Carboplatin is significantly higher than that with Vinorelbine plus Cisplatin.

One should notice the inappropriateness of constructing tests based on Φ for
this study, despite the fact that Figure 1 suggests little difference in survival time
between the two treatments. Indeed, the difference was not known a priori and
its determination was the primary objective of the trial.

6. Simulation Studies

Our proposed two-sample tests for lifetime utility or cost are justified on the
basis of asymptotic theory. Extensive simulations have also been conducted to
evaluate their finite-sample performance.
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We considered (T,U)T D= (T ∗ + β,U∗ + η)T for constants β and η, where T

and U have standard extreme value and [0, 1] uniform marginal distributions, re-
spectively. Note that exp(T ) is exponentially distributed with unit rate. Jointly,
(T,U)T follows Frank’s bivariate family (cf., Genest (1987)) and values γ = 0, 10
of the association parameter were chosen for independence and moderate associ-
ation, with the corresponding Kendall’s rank correlation coefficients being 0 and
0.67. Notice that our proposed tests in this setting have the same operating char-
acteristics under γ and −γ. We investigated situations both with and without
censoring. In the presence of censoring, exp(C) and exp(C∗) were specified to
have the same uniform distribution on [0, c], where c was selected to determine
proportions of censoring. To contrast the proposed tests, we also investigated
the t-test based on the uncensored mark values.

The first question we addressed was the accuracy of the size of our proposed
tests under H0, i.e., η = 0. We investigated various configurations of sample
sizes, associations between survival time and the mark, and censoring rates. We
set β = −0.2 and chose w0 = w1 to be either the log-rank or Gehan weight
function. The results are presented in Table 1 with 5000 iterations for each
configuration. As seen, the proposed tests, with and without the knowledge of
β, achieve reasonably accurate sizes. In comparison, the t-test is invalid unless
the censoring is absent or the mark is independent of the survival time.

To assess the power of the proposed tests, we considered the same settings
as in Table 1 except with η = −0.1. Shown in Table 2, with the same choice of
weight functions, the test based on Φ is generally no less powerful than that based
on Ψ. Notice that the difference is small when the survival time and the mark are
independent. Further, between the log-rank and Gehan weight functions, under
the independence scenario using the former is more powerful for both tests. These
results conform with the earlier analysis given in Section 4. On the other hand,
under moderate association, for the test based on Φ using Gehan weight function
is more powerful, whereas for that based on Ψ the relative performance of the
two weight choices depends on censoring. As compared to the t-test when it
is valid, the test based on Φ with log-rank wight function shows similar power,
especially as the sample size increases.

Following a suggestion from a reviewer, we also studied the scenario when
the distribution of the mark is highly skewed. This is particularly relevant when
lifetime medical cost is under consideration. Our study showed that the proposed
tests perform reasonably well, similarly to the setting presented earlier. For this
reason, the results have been omitted.

In most practical situations, β is unknown and tests based on Ψ would be
used. Our numerical experience suggests that the log-rank weight function is an
appropriate choice.
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Table 1. Empirical type I error, in percent, of 5000 random samples at the
nominal level of 5%, with β = −0.2 and η = 0.

size assoc. censoring t-test on Φ − β known Ψ − β unknown
n = n∗ Kendall’s rate (%) uncensored log-rank Gehan log-rank Gehan

25 0 0 5.02 4.52 4.68 3.36 4.00
20 5.72 5.02 4.70 3.76 3.98
40 6.12 4.86 4.48 3.52 3.98

0.67 0 5.86 5.68 4.54 4.48 4.56
20 6.08 5.46 4.50 4.22 4.42
40 6.92 5.08 4.60 4.92 5.00

50 0 0 4.98 4.94 4.98 4.14 4.70
20 5.28 4.90 4.70 3.92 4.38
40 5.16 4.68 5.28 4.06 4.84

0.67 0 5.76 5.80 5.28 4.78 4.82
20 5.80 5.18 5.12 4.40 4.78
40 7.70 5.34 5.00 4.74 5.30

100 0 0 5.50 5.50 5.28 4.92 4.84
20 4.88 4.38 5.18 3.94 5.12
40 4.86 4.76 5.80 4.38 5.44

0.67 0 4.92 5.58 6.02 4.52 5.12
20 6.62 5.42 4.98 5.10 5.14
40 8.74 5.34 5.38 4.74 5.16

200 0 0 6.12 5.10 4.86 4.92 4.80
20 4.88 4.12 5.70 3.90 5.68
40 4.56 4.08 6.04 3.82 5.96

0.67 0 5.06 5.34 6.54 4.42 5.32
20 7.36 4.62 5.18 4.70 4.96
40 12.86 5.10 5.16 5.18 5.22

Note: Censoring rates of 20% and 40% correspond to the distributions of Uniform[0,5.2]
and Uniform[0,2.4], respectively, for the exponential of the censoring time.

7. Remarks and Extension

In medical research today, utility and cost evaluation is becoming an accepted
and often required adjunct to standard safety and efficacy analysis. Evaluations
of outcomes, such as lifetime medical cost and quality adjusted survival time,
are now frequently incorporated into controlled clinical trials of new medical
therapies. However, statistical analysis of such outcomes with incomplete follow-
up data is challenging due largely to the identifiability issue. In particular for two-
sample comparison, most existing tests are based on a time-restricted measure
instead of lifetime utility or cost itself. In this paper, we have proposed to
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appropriately calibrate difference in survival time and further to construct tests
for lifetime utility or cost on the basis of the joint distribution. The advantage
of our proposal is its direct interpretability on the variable of interest.

Table 2. Empirical power, in percent, of 5000 random samples at the nominal
level of 5%, with β = −0.2 and η = −0.1.

size assoc. censoring t-test on Φ − β known Ψ − β unknown
n = n∗ Kendall’s rate (%) uncensored log-rank Gehan log-rank Gehan

25 0 0 23.14 20.62 15.82 17.46 15.04
20 19.36 16.76 15.12 14.40 13.62
40 16.96 14.22 11.72 11.26 10.64

0.67 0 23.60 22.38 25.10 14.40 12.80
20 — 19.40 24.14 11.76 11.68
40 — 18.24 22.94 11.78 12.66

50 0 0 40.00 37.96 30.64 35.60 29.70
20 33.66 30.90 25.52 28.44 24.70
40 26.02 23.76 20.42 21.30 19.72

0.67 0 40.84 39.36 48.62 25.62 23.20
20 — 37.08 46.68 22.22 22.60
40 — 33.18 44.76 20.88 22.70

100 0 0 68.12 67.10 54.46 65.40 54.04
20 57.74 56.62 46.70 54.64 46.20
40 46.12 44.16 37.98 42.54 37.76

0.67 0 68.86 67.82 78.16 48.12 42.44
20 — 62.00 77.14 41.60 41.60
40 — 59.52 76.20 37.80 41.60

200 0 0 92.60 92.34 84.38 92.18 84.18
20 87.44 87.56 76.84 86.88 76.64
40 75.96 75.14 64.66 74.50 64.44

0.67 0 93.42 93.64 97.10 78.56 71.02
20 — 89.08 97.04 71.10 69.60
40 — 88.18 96.70 66.20 71.60

Note: Censoring rates of 20% and 40% correspond to the distributions of Uniform[0,5.2]
and Uniform[0,2.4], respectively, for the exponential of the censoring time.

One remarkable feature of the proposed procedure is its minimal data re-
quirement, only the uncensored lifetime measure of interest in addition to the
standard survival data. This is appealing in terms of general applicability of
this proposal. However, concern might arise on its efficiency when additional
information becomes available. For instance, in the SWOG study the cost accu-
mulation process is also observed at discrete follow-up times. In this regard, one
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should recognize that the potential efficiency gain would be limited in situations
with strong association between the lifetime cost and survival time; see Huang
and Louis (1998). Moreover, further assumptions on, say the cost accumulation
process, might be necessary in order to take advantage of the additional data.
Nevertheless, this issue merits further and in-depth investigation.

While we have focused our discussion on the two-sample problem, the same
idea naturally extends to other test problems. In particular, consider the k-
sample problem with k ≥ 2. Under the accelerated failure time model, there are
k − 1 parameters determining the differences among these samples for survival
time. One can construct k−1 weighted log-rank estimating functions for survival
time and, with the marked processes in place of the counting processes, obtain
another k − 1 estimating functions. The very same approach to the two-sample
problem can then apply to testing for either global or trend difference on the
mark among the k samples.

Developing regression analysis for lifetime utility or cost is a current research
topic. Due to the very same identifiability issue as discussed, existing regression
models (e.g., Lin (2000a, 2000b)) do not render a direct interpretation on the
lifetime measure of interest, particularly in the practical situation that the co-
variates of concern may also impact survival time. The results of this paper
suggest that jointly modeling the lifetime outcome and survival time might be a
promising approach.
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Appendix. Derivation of Optimal Weight Functions and Efficacy

For the test based on Φ when β is known, we first optimize eff(Φ;W0,W1)
over W0 for fixed W1. Thus maximize

ε2
12/ε11 =

{∫ τ

−∞
W0(t, β)W1(t, β)λ1(t, β)B(t) dt

}2

∫ τ

−∞
W0(t, β)2λ0(t, β)B(t) dt

.

By the Cauchy–Schwartz inequality,

ε2
12 ≤

∫ τ

−∞
W0(t, β)2λ0(t, β)B(t) dt

∫ τ

−∞
W1(t, β)2λ1(t, β)2λ0(t, β)−1B(t) dt,
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where the equality holds if and only if W0(t, β)λ0(t) ∝ W1(t, β)λ1(t). Therefore,
W0 opt|W1

(t, β) ∝ λ0(t)−1λ1(t)W1(t, β). Now, we have

eff(Φ;W0 opt|W1
,W1) =

{∫ τ

−∞
W1(t, β)δ(t)λ0(t) dt

}2

∫ τ

−∞
W1(t, β)2σ(t)2λ0(t)B(t) dt

.

Again, by the Cauchy–Schwartz inequality,{∫ τ

−∞
W1(t, β)δ(t)λ0(t) dt

}2

≤
∫ τ

−∞
W1(t, β)2σ(t)2λ0(t)B(t) dt

∫ τ

−∞
δ(t)2σ(t)−2λ0(t)B(t)−1 dt,

where the equality holds if and only if W1(t, β) ∝ δ(t)σ(t)−2B(t)−1. Combining
the foregoing, we obtain (4.1).

For the test based on Ψ when β is unknown, rewrite (3.4) as

var{n1/2
• ξ1(β̂0)} =

∫ τ

−∞
[{r−1

0 r1W0(t, β)λ0(t)1/2 − W1(t, β)λ1(t)λ0(t)−1/2}2

+ W1(t, β)2σ(t)2λ0(t)]B(t) dt.

In the general situation, the first term in the integrand does not vanish for any
choices of W0 and W1. Under the special independence scenario, the first term
is 0 when and only when W0(t) ∝ W1(t). In this case, by applying the Cauchy–
Schwartz inequality we further obtain that the efficacy is maximized if and only
if W0(t) ∝ W1(t) ∝ B(t)−1.
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