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METHODOLOGY FOR POOLING SUBPOPULATION

REGRESSIONS WHEN SAMPLE SIZES ARE SMALL

AND THERE IS UNCERTAINTY ABOUT

WHICH SUBPOPULATIONS ARE SIMILAR

Richard Evans and J. Sedransk

Menninger Clinic and Case Western Reserve University

Abstract: Inference for parameters associated with small geographical areas or do-

mains of study requires considerable care because the subpopulation sample sizes

are usually very small. Since sample survey data are usually clustered, hierarchical

models are often appropriate. However, the customary hierarchical models may

specify more exchangeability than is warranted. Thus, we propose an alternative

model that is more flexible. We consider the case of a set of multiple linear regres-

sions, one for each subpopulation. The objective is to make inference about one

or more regression coefficients, β
i
. We derive the posterior mean and variance of

β
i
, and obtain simplified versions of these moments by using reference-type prior

distributions. We use a set of numerical examples to contrast our method with the

more conventional hierarchical analysis, and to exhibit the large gains in precision

that are possible.

Key words and phrases: Hierarchical model, meta analysis.

1. Introduction

Even in large sample surveys such as the U.S. National Health Interview
Survey (NHIS), the emphasis is on the provision of national estimates. However,
there is also a need for estimates for small geographical areas or domains of study
(e.g., age/race/sex/education classes). When sample sizes in such subpopulations
are small, it is generally accepted that the customary randomization-based esti-
mates will not be satisfactory for inference for subpopulation parameters. Thus,
investigators have proposed alternative estimators based on realistic models. For
example, in the NHIS, the principal variables are binary, and Malec, Sedransk,
Moriarity, and LeClere (1997) have investigated models of the following type.

Assume that each individual in the population is assigned to one of K

mutually exclusive and exhaustive classes based on the individual’s socioeco-
nomic/demographic status. Let Yikj denote a binary random variable for indi-
vidual j in class k, cluster i where i = 1, . . . , L, k = 1, . . . , B, and j = 1, . . . , Nik.
Within cluster i and class k, and conditional on pik, the Yikj are assumed to be
independent Bernoulli random variables with Pr(Yikj = 1 | pik) = pik. A column
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vector of M covariates, Xk = (Xk1, . . . ,XkM )
′
, is assumed to be the same for

each individual j in class k, cluster i. Given Xk and a column vector of regression
coefficients, β

i
= (βi1, . . . , βiM )

′
,

logit(pik) = X
′
kβi

. (1.1)

Conditional on η and Γ, the β
i
are assumed to be independently distributed with

β
i
∼ N(η,Γ) (1.2)

where η is a vector of regression coefficients, and Γ is an M ×M positive definite
matrix. Finally, reference prior distributions are assigned to η and Γ; i.e.,

p(η,Γ) ∝ constant. (1.3)

While the NHIS is a multistage personal interview survey and the specifica-
tion in (1.1)-(1.3) is relatively simple, this type of model is often concordant with
the observed data (see Malec, Sedransk, Moriarity and LeClere (1997), Section
5.3).

One may wish to make a direct inference about the β
i
, or predictive inference

for a finite population quantity such as the total,
∑

i∈I

∑
k∈K

∑Nik
j=1 Yikj, where I

is the collection of clusters that define the small area, K is the collection of classes
that define the domain of study, and Nik is the total number of individuals in
cluster i, class k. In either case, inference about the β

i
is central (for details about

the predictive inference, see Malec, Sedransk, Moriarity, and LeClere (1997)).
The assumption in (1.2) and (1.3) that the β

i
are exchangeable may be ques-

tioned. To make inference about a specific β
i
, we propose an alternative to (1.2)

and (1.3) that provides a way that the observed data can be used to determine the
weights to be assigned to the estimates from the set of clusters {1, . . . , L}. If one
uses (1.2) and (1.3) without modification, the amount of pooling is dictated solely
by the prior parameters. For example, let L = 6 and assume that (β

1
, β

2
, β

3
) and

(β
4
, β

5
, β

6
) are two subsets with similar values of the β

i
within each subset and a

sharp separation between the two subsets. Using (1.2) and (1.3) may produce a
point estimator of β

1
that has a large, inappropriate, contribution from the data

from regressions 4, 5 and 6.
Because of the complexity of (1.1)-(1.3), we investigate a somewhat simpler

specification: multiple linear regression.
The remainder of this paper is organized as follows. The notation and model

are presented in Section 2, while the methodology for posterior inference is de-
scribed in Section 3. The results of a small numerical study of the properties of
our method are in Section 4. Section 5 has a brief summary.
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2. Notation and Model

Given a column vector of parameters, β
i

= (βi1, . . . , βim, . . . , βiM )′, for re-
gressions i = 1, . . . , L (corresponding to L subpopulations) and a column vector
of covariates Xij = (xij1, . . . , xijm, . . . , xijM)′, an observation j from regression
i is

Yij = X ′
ijβi

+ εij , i = 1, . . . , L, j = 1, . . . , ni.

Using the approach in Malec and Sedransk (1992), a class of prior distribu-
tions for the vectors β

i
, i = 1, . . . , L, is given to reflect the beliefs that (a) for

each m = 1, . . . ,M there are subsets of {β1m, . . . , βLm}, such that the βim within
each subset are similar, and (b) there is uncertainty about the composition of
such subsets of {β1m, . . . , βLm}. We assume that there is independence from one
subset to another. We also postulate that there is independence across the re-
gression parameter index m. First, modelling the relationships among dissimilar
regression parameters is difficult. Second, pooling parameters across the index
m would give estimates that have no clear interpretation.

Given the vector β = (β
′
1
, . . . , β

′
L
)′ the sampling distribution for the data y

is
y | β ∼ N

(
Xβ,Σ1

)
(2.1)

where

y = (y11, . . . , y1n1 , . . . , yLnL
)′,

X = block diagonal(Xi), X ′
i = (X i1

... · · · ...Xini
),

Σ1 = block diagonal(σ2
i Ini×ni), assumed known.

For the prior distribution, define G as the set of all partitions of the set of
experiment labels B = {1, . . . , L}, and G∗ = G × G × · · · × G, the Cartesian
product of M copies of G. An element g of G∗ is then a vector of M partitions of
the set B. The mth element, gm, of g is a partition that dictates the grouping of
the set {β1m, . . . , βLm}. Denote by Sk(gm) the set of experiment labels in subset
k, partition gm, k = 1, . . . , d(gm), where d(gm) is the total number of subsets in
partition gm. Finally, define d(g) =

∑
m d(gm) as the total number of subsets in

partition g.
To specify the prior distribution for β first condition on g. One may represent

the desired similarity of the βim by assuming (a) there is independence between
the elements of β belonging to Sk(gm) and Sk′(gm′) for k �= k′ or m �= m′, and
(b) for sets {β1m, . . . , βLm}, and conditional on ν(gm), the elements of the vector
β are independent with

β | ν(g) ∼ N(A(g)ν(g),Σ2(g)). (2.2)
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The matrix A(g) is ML× d(g), with the [(i− 1)M + m]th row corresponding to
βim. This row has all 0’s except for a 1 in the zth column; if βim ∈ Sk(gm), z =
(
∑m−1

i=1 d(gi)) + k. Also

ν(g) = (ν(g1), . . . , ν(gM ))′, ν(gm) = (ν1(gm), . . . , νd(gm)(gm))′,

Σ2(g) = block diagonal
(
Σ∗

2(gm)
)
, m = 1, . . . M,

Σ∗
2(gm) = block diagonal

(
δ2
k(gm)I|Sk(gm)|×|Sk(gm)|

)
, k = 1, . . . , d(gm),

where |Sk(gm)| is the size of the set Sk(gm) and I|Sk(gm)|×|Sk(gm)| is the identity
matrix with the specified dimensions. The effect of this specification is that all
βim in Sk(gm) are independent and identically distributed with mean νk(gm) and
variance δ2

k(gm). The second stage is

ν(g) | θ(g) ∼ N
(
θ(g),Σ3(g)

)
, (2.3)

where

θ(g) = (θ(g1), . . . , θ(gM ))′, θ(gm) = (θ1(gm), . . . , θd(gm)(gm))′,
Σ3(g) = block diagonal(Σ3(gm)), m = 1, . . . ,M,

Σ3(gm) = diag
(
γ2

k(gm)
)
, k = 1, . . . , d(gm).

Finally, we assign the prior probability of a partition vector g to be p(g).
To simplify the presentation of the theory in Section 3 we assume that the co-
variance matrices are known. A small numerical example, presented in Section
4, illustrates the methodology when the variance components are unknown. A
special case of practical importance is to select the Σ3(g) to represent little prior,
relative to sample, information about the ν(g); see Section 3.

3. Posterior Inference

We summarize the posterior distribution of β with the first two moments;
i.e.,

E(β | y) =
∑
g

E(β | y, g)p(g | y), (3.1)

and
Cov (β | y) =

∑
g

Cov (β | y, g)p(g | y) + Cov g|y(E(β | y, g)). (3.2)

Theorems 3.1-3.3, given below, are the ones needed to evaluate (3.1) and
(3.2). The proofs are straightforward, but require a substantial amount of alge-
braic manipulation; see Evans ((1997), Chapter 6) for details.
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Theorem 3.1. The expectation of β, conditional on g and under the specification
(2.1) to (2.3), is

E(β | y, g) = λ(g)β̂ + (I − λ(g))A(g)φ(g)ν̂(g) + (I − λ(g))A(g)(I − φ(g))θ(g),
(3.3)

where

λ(g) = (X ′Σ−1
1 X + Σ−1

2 (g))−1X ′Σ−1
1 X,

φ(g) = (A(g)′Σ−1
∗ (g)A(g) + Σ−1

3 (g))−1A(g)′Σ−1
∗ (g)A(g),

ν̂(g) = (A(g)′Σ−1
∗ (g)A(g))−1A(g)′Σ−1

∗ (g)β̂,

Σ−1
∗ (g) = (X ′Σ−1

1 X)(X ′Σ−1
1 X + Σ−1

2 (g))−1Σ−1
2 (g),

β̂ =
(
X ′Σ−1

1 X
)−1

X ′Σ−1
1 y.

Theorem 3.2. The covariance of β, conditional on g and under the specification
(2.1) to (2.3), is

Cov (β | y, g)

= (X ′Σ−1
1 X + Σ−1

2 (g))−1 + W (g)
[
A(g)′Σ−1

∗ (g)A(g) + Σ−1
3 (g)

]−1
W (g)′, (3.4)

where
W (g) = (X ′Σ−1

1 X + Σ−1
2 (g))−1Σ−1

2 (g)A(g).

Theorem 3.3. The posterior probability of g, under the specification (2.1) to
(2.3), is

p(g | y) ∝ p(g)Z0(g)Z1(g)Q(g) (3.5)

where

Z0(g) = | Σ2(g) |− 1
2 | X ′Σ−1

1 X + Σ2(g)−1 |− 1
2 ,

Z1(g) = | Σ3(g) |− 1
2 | A(g)′Σ−1

∗ (g)A(g) + Σ3(g)−1 |− 1
2 ,

Σ−1
∗∗ (g) = A(g)′Σ−1

∗ (g)A(g)(A(g)′Σ−1
∗ (g)A(g) + Σ−1

3 (g))−1Σ−1
3 (g),

Q(g) = exp
{
−1

2(β̂ − A(g)ν̂(g))′Σ−1∗ (g)(β̂ − A(g)ν̂(g))
}

× exp
{
−1

2(ν̂(g) − θ(g))′Σ−1∗∗ (g)(ν̂(g) − θ(g))
}

.

Formula (3.3) can be expressed as a weighted average of the sampling pre-
cision of β̂, X ′Σ−1

1 X, prior precision of β, Σ−1
2 (g), sampling precision of ν̂(g),

A(g)′Σ−1∗ (g)A(g), and prior precision of θ(g),Σ−1
3 (g); i.e.,

E(β | y, g) = (B1 + B2)−1
[
B1β̂ + B2A(g)

{
(A1 + A2)−1[A1ν̂(g) + A2θ(g)]

}]
,
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where B1 = X
′
Σ1X, B2 = Σ−1

2 (g), A1 = A(g)
′
Σ−1∗ A(g), and A2 = Σ−1

3 (g).

Formula (3.5) has the appealing property that p(g | y) increases as (ν̂(g) −
θ(g))′Σ−1∗∗ (g)(ν̂(g) − θ(g)) decreases and as the “within subset” distance, (β̂ −
A(g)ν̂(g))′Σ−1∗ (g)(β̂ − A(g)ν̂(g)), decreases.

The second stage prior distribution in (2.3) is too unwieldy to be useful. We
first find the consequences of letting Σ−1

3 (g) → 0, ∀g ∈ G∗. Writing Σ−1
3 (g) →

0, ∀g ∈ G∗, as Σ−1
3 → 0, limΣ−1

3 →0 E(β|y) =
∑

g limΣ−1
3 →0{E(β|y, g)p(g|y)}

and limΣ−1
3 →0 Cov (β|y) =

∑
g limΣ−1

3 →0{Cov (β|y, g)p(g|y)} + limΣ−1
3 →0 Cov g|y

(E(β|y, g)).

Using (3.1),

lim
Σ−1

3 →0
E(β | y, g) = λ(g)β̂ + (I − λ(g))A(g)ν̂(g), (3.6)

and, using (3.4),

lim
Σ−1

3 →0
Cov (β | y, g)=(X ′Σ−1

1 X+Σ−1
2 (g))−1+W (g)

{
A(g)′Σ−1

∗ (g)A(g)
}−1

W (g)′.

(3.7)
To find limΣ−1

3 →0 p(g|y), we use (3.5) to write

p(g | y) =
p(g)Z0(g)Z1(g)Q(g)∑

g′ p(g′)Z0(g′)Z1(g′)Q(g′)

=


∑

g′

p(g′)
p(g)

Z0(g′)
Z0(g)

Z1(g′)
Z1(g)

Q(g′)
Q(g)



−1

. (3.8)

From (3.8),

lim
Σ−1

3 →0
p(g | y) =

[ ∑
g′

p(g′)
p(g)

Z0(g′)
Z0(g)

lim
Σ−1

3 →0

Z1(g′)
Z1(g)

lim
Σ−1

3 →0

Q(g′)
Q(g)

]−1
.

Using the definition of Σ−1∗∗ (g) in (3.5),

lim
Σ−1

3 →0
Q

(
g
)

= exp
{
−1

2(β̂ − A(g)ν̂(g))′Σ−1∗ (g)(β̂ − A(g)ν̂(g))
}

. (3.9)

The remaining term is

lim
Σ−1

3 →0

Z1(g′)
Z1(g)

= lim
Σ−1

3 →0

| Σ3(g′) |− 1
2 | A(g′)′Σ−1∗ (g′)A(g′) + Σ3(g′)−1 |− 1

2

| Σ3(g) |− 1
2 | A(g)′Σ−1∗ (g)A(g) + Σ3(g)−1 |− 1

2

, (3.10)
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and the limit in (3.10) depends on the rates at which Σ−1
3 (g) → 0 and Σ−1

3 (g′) →
0.

For example, let γ−2
k (gm) = a× γ−2. Then for a ∈ R+, it can be shown that

lim
Σ−1

3 →0
p(g | y) = p̃(g | y) if d(g) = min{d(g′) : g′εG∗}

and is 0 otherwise, where

p̃(g | y) ∝ p(g)Z0(g) | A(g)′Σ−1
∗ (g)A(g) |−1

2 ×
exp

{
−1

2(β̂ − A(g)ν̂(g))′Σ−1∗ (g)(β̂ − A(g)ν̂(g))
}

.

In other words, limΣ−1
3 →0 p(g | y) is non-zero only for those partitions having the

lowest dimension; i.e., the minimal value of d(g). If there is only one partition,
g
0
, with the lowest dimension, limΣ−1

3 →0 p(g
0
| y) = 1 (e.g., g

0
= (g0, . . . , g0)

where g0 is the partition of {β1m, . . . , βLm} that assigns all L members to a
single subset; i.e., d(gm) = 1).

An alternative is to let Σ−1
3 → 0 subject to a constraint on the last stage

generalized variance, limΣ−1
3 →0 | Σ−1

3 (g) | / | Σ−1
3 (g′) |= c∗, c∗ ∈ R+, g �= g′,

which gives

lim
Σ−1

3 →0
Z1(g′)/Z1(g) =| A(g′)′Σ−1

∗ (g′)A(g′) |− 1
2 | A(g)′Σ−1

∗ (g)A(g) | 12 ×(c∗)−
1
2 .

(3.11)
Substituting (3.9) and (3.11) into (3.8) it can be shown that limΣ−1

3 →0 p(g | y) is
not invariant to changes in the scale of the data.

Our solution to determine the rate at which Σ−1
3 → 0 is to assume that the

Kullback-Leibler information for discriminating between the posterior distribu-
tion, p(ν(g) | y, g), and prior distribution, p(ν(g) | g), is constant over g. This
information quantity, I(g), is given (for a general normal linear model) by Goel
and DeGroot (1981). For the specification (2.1), (2.2), and (2.3), it can be shown
that

I(g) = 1
2 ln | Σ3(g)H−1(g) | +1

2tr[H(g)Σ3(g)−1 − I] + 1
2 tr[Σ3(g)−1a(g)a(g)′],

(3.12)
where

H−1(g) = Σ3(g)−1 + (XA(g))′[Σ1 + XΣ2(g)X ′]−1(XA(g)),

h(g) = (A(g)X)′[Σ1 + XΣ2(g)X ′]−1y + θ(g),

a(g) = H(g)h(g) − θ(g).

The expression for p(g | y) that we propose is given by Theorem 3.4.
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Theorem 3.4. Under (2.1)-(2.3), if I(g) = ξ, ξ ∈ R+, ∀g ∈ G∗, then

lim
Σ−1

3 →0
p(g | y) ∝ p(g) × | Σ2(g) |− 1

2 | X ′Σ−1
1 X + Σ2(g)−1 |− 1

2 × exp{−d(g)/2}

× exp
{
−1

2(β̂ − A(g)ν̂(g))′Σ−1∗ (g)(β̂ − A(g)ν̂(g))
}

. (3.13)

Outline of the Proof.
The first step in the proof is to use the condition I(g) = ξ to solve for

| Σ3(g)H−1(g) | in (3.12). This gives

| Σ3(g)H−1(g) |− 1
2 = exp

{
−ξ + 1

2 tr[H(g)Σ3(g)−1 − I] + 1
2tr[Σ3(g)−1a(g)a(g)′]

}
.

(3.14)
The second step is to verify that

| Σ3(g)H−1(g) |− 1
2 =| Σ3(g) |− 1

2 | A(g)′Σ−1
∗ (g)A(g) + Σ3(g)−1 |− 1

2 . (3.15)

The third step is to combine (3.14) and (3.15) to replace, in (3.5), the multiplier

| Σ3(g) |−1
2 | A(g)′Σ−1∗ (g)A(g) + Σ3(g)−1 |− 1

2 by exp{−ξ + 1
2tr[H(g)Σ3(g)−1 − I]

+1
2tr[Σ3(g)−1a(g)a(g)′]}. The final step of the proof is to let Σ−1

3 → 0 in (3.5).
Note that the term exp(−d(g)/2) in (3.13) penalizes partitions g that have

a large number of subsets.
The model, (2.1)−(2.3), specified independence across the regression param-

eter index m, the purpose being to avoid combining dissimilar regression coeffi-
cients. Nevertheless, an implicit pooling across m can occur; i.e., for some g ∈ G∗

and some i, i′ = 1, . . . , L, ∃m �= m′ such that Cov
(
βim, βi′m′ | y, g

)
�= 0. How-

ever, Evans ((1997), Chapter 6) has shown that if X ′Σ−1
1 X is a diagonal matrix,

Cov
(
βim, βi′m′ | y, g

)
= 0 for m �= m′. One may obtain this zero covariance by

using the Gram - Schmidt orthogonalization process to find a matrix Q such that

X∗ = Σ
− 1

2
1 XQ is orthogonal. Defining y∗ = Σ

− 1
2

1 y, β∗ = Q−1β and η = Σ
− 1

2
1 ε,

(2.1) can be rewritten as
y∗ = X∗β∗ + η (3.16)

where η ∼ N(0, I) and X∗′X∗ is a diagonal matrix. Then, using (2.2) and the
definition of β∗,

β∗ | ν(g) ∼ N
(
Q−1A(g)ν(g), Q−1Σ2(g)Q−1′). (3.17)

Thus, one uses the specification (3.16), (3.17) and (2.3) rather than (2.1), (2.2)
and (2.3).
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4. Properties

To illustrate properties of the methodology described in Section 3 we have
carried out two small numerical investigations. The first study assumes known
variances while the second allows these variances to be unknown. Throughout
the first study there are L = 6 simple linear regressions. For simplicity, we take
σ2

i = σ2 and δ2
k(gm) = δ2. We assume that there is sufficient prior information

that the only partitions g assigned positive prior probability are those having
at least two members in each subset of the constituent partitions, g1 and g2.
Conservatively, we assigned p(g) to be constant for all such partitions which have
the form P ×P . Here, P defines the 41 possible partitions of the L = 6 intercepts
or slopes. Each member of P has the form {(123456)}, {(i1 , i2), (i3, i4), (i5, i6)}
or {(i1, i2, i3), (i4, i5, i6)} where ijε{123456} and ij �= ik for j �= k.

The overall posterior mean, E(β | y), and the posterior covariance matrix,
Cov (β | y), are obtained from (3.1), (3.2), (3.6), (3.7), and (3.13).

The data that we have used to illustrate our method are a modification of
a data set in Moore and McCabe (1993) where, for state i, Xi is the average
teacher’s salary and Yi is the average expenditure per pupil (note that Moore
and McCabe regress X on Y ). We use six simple linear regressions, one for
each of six Census Divisions (e.g., the east north central division includes Ohio,
Indiana, Illinois, Michigan, and Wisconsin). The values of X are from the Moore
and McCabe data set. We then selected values of the intercepts, β11, . . . , β61, and
slopes, β12, . . . , β62, and variance, σ2, to achieve a desired amount of separation
of the six slopes into two subsets (β12, β22, β32) and (β42, β52, β62). Finally, we
obtained values of the Yij from

Yij = βi1 + βi2Xij + εij , i = 1, . . . , 6, j = 1, . . . , ni, (4.1)

where the εij are independent with εij ∼ N(0, σ2). We also considered a range
of values of δ2.

To avoid the “implicit pooling problem” described in Section 3, we first
center the X values for each regression so that

∑ni
j=1 Xij = 0. Then, from (3.6),

lim
Σ−1

3 →0
E(βi2 | y, g) = λiβ̂i2 + (1 − λi)A6+i(g2)ν̂(g2), (4.2)

where β̂i2 is the least squares estimator of βi2, λi = δ2{δ2 + (σ2/
∑ni

j=1 X2
ij)}−1,

A6+i(g2) is the row vector of length d(g2) obtained from the (6+ i)th row of A(g)
by deleting the first d(g1) columns, and ν̂(g2) is the column vector obtained from
ν̂(g) (formula (3.6)) by deleting the first d(g1) rows. For simplicity, we refer to
limΣ−1

3 →0 E(βi2 | y, g) as E(βi2 | y, g).
Taking σ2 = 0.0043, we present in Part a of Table 1 the value of λi and three

estimators of βi2 for i = 1, . . . , 6. Three different values of δ2 are used. The three
estimators are
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a. β̂i2; i.e., E(βi2 | y, g) with λi = 1,
b. E(βi2 | y, g∗2) where g∗2 is the conventional “pool all” partition that includes

β12, . . . , β62 in a single subset (i.e., d(g∗2) = 1), and
c. the unconditional posterior mean, E(βi2 | y) from (3.1) using (4.2) and p(g |

y) from (3.13).

Table 1. Values of the alternative estimators of slope, βi2, for different choices
of δ2.

Regression
1 2 3 4 5 6

a. Example 1.

β̂i2 .0189 .0416 .0958 .2340 .2370 .2884
δ2=.0025
λ .93 .86 .98 .96 .88 .99
E(βi2 | y, g∗2) .0284 .0568 .0971 .2307 .2269 .2872
E(βi2 | y) .0210 .0428 .0957 .2342 .2372 .2881

δ2=.0005
λ .73 .56 .90 .82 .59 .96
E(βi2 | y, g∗2) .0574 .0937 .1024 .2207 .2055 .2827
E(βi2 | y) .0290 .0479 .0919 .2381 .2448 .2870

δ2=.0001
λ .35 .20 .64 .47 .22 .81
E(βi2 | y, g∗2) .1210 .1483 .1248 .2034 .1893 .2670
E(βi2 | y) .0483 .0594 .0843 .2496 .2577 .2837

Regression
1 2 3 4 5 6

b. Example 2.

β̂i2 .1404 .1624 .1995 .2228 .2559 .2873
δ2=.0010
λ .84 .72 .95 .74 .90 .98
E(βi2 | y, g∗2) .1520 .1770 .2003 .2207 .2517 .2856
E(βi2 | y) .1441 .1641 .1996 .2218 .2560 .2867

δ2=.0005
λ .73 .56 .90 .59 .82 .96
E(βi2 | y, g∗2) .1612 .1863 .2013 .2204 .2488 .2841
E(βi2 | y) .1452 .1615 .1997 .2193 .2578 .2864

δ2=.0001
λ .35 .20 .64 .22 .47 .81
E(βi2 | y, g∗2) .1970 .2140 .2096 .2263 .2408 .2759
E(βi2 | y) .1461 .1520 .2015 .2093 .2662 .2850
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With a large value of δ2 such as δ2 = 0.0025, the λi are close to 1 and all three
estimators of βi2 have similar values. As the value of δ2 decreases it becomes
clear that the “pool all” estimator, E(βi2 | y, g∗2), is inappropriate. For example,
for δ2 = 0.0005, β̂22 = 0.0416. However, E(β22 | y, g∗2) = 0.0937 because the
latter includes contributions from β̂42, β̂52, and β̂62, each of which exceeds 0.23.
Conversely, E(β22 | y) = 0.0479 essentially includes contributions only from
β̂12, β̂22, and β̂32 since the posterior probability associated with the partition
{(β12, β22, β32), (β42, β52, β62)} is 0.9892. When δ2 = 0.0001 the contrast between
E(βi2 | y, g∗2) and E(βi2 | y) is even clearer. Here, for i = 1, 2, 3, E(βi2 | y)
includes contributions only from these three regressions, and there is substantial
shrinkage as well; e.g., β̂12 = 0.0189 while E(β12 | y) = 0.0483. However, E(β12 |
y, g∗2) = 0.1210 because it includes very large contributions from β̂42, β̂52, and
β̂62.

A second way to contrast E(βi2 | y) and E(βi2 | y, g∗2) is to define the
separations Mb =| maxi=1,2,3 E(βi2 | y, g∗2) − mini=4,5,6 E(βi2 | y, g∗2) | and
Mc =| maxi=1,2,3 E(βi2 | y)−mini=4,5,6 E(βi2 | y) |. When δ2 = 0.0005, Mb = 0.1
and Mc = 0.15 while for δ2 = 0.0001, Mb = 0.04 and Mc = 0.17. In each case,
the “pool all” estimator inappropriately includes data from regressions that are
different from the one for which inferences are desired; this is well illustrated for
δ2 = 0.0001 where Mb is very small.

Table 2. Ratio, R, of posterior variance of βi2 with uniform (reference) prior
to unconditional posterior variance of βi2, Var (βi2 | y).

Regression
δ2 1 2 3 4 5 6
a. Example 1.
.0025 1.044 1.093 1.014 1.027 1.085 1.006
.0005 1.221 1.482 1.064 1.134 1.445 1.027
.0001 1.854 2.938 1.203 1.562 2.963 1.096

b. Example 2.
.0010 1.094 1.204 1.030 1.193 1.060 1.012
.0005 1.156 1.360 1.050 1.351 1.111 1.022
.0001 1.323 2.017 1.105 2.354 1.495 1.075

Note: See Table 1 for additional information about the two examples.

If we do not pool the data from the relevant regressions, the increase in
posterior variance is substantial. We present in Part a of Table 2 the ratio,
Ri, i = 1, . . . , 6, of σ2/

∑ni
j=1 X2

ij to the unconditional posterior variance of βi2,
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Var (βi2 | y). Here σ2/
∑ni

j=1 X2
ij is the posterior variance of βi2 when a uniform

prior distribution is assigned to βi2. When δ2 is large, the relative increases,
Ri − 1, are modest. However, for δ2 = 0.0005, the values of 100(Ri − 1) range
from 2.7% to 48.2%. When δ2 = 0.0001, 100(Ri−1) ranges from 9.6% to 196.3%.

Our second example in the first study has six regressions with the same values
of the Xij , and σ2 = 0.0043. However, the slopes were chosen to be concordant
with the partition {(β12, β22), (β32, β42), (β52, β62)} rather than {(β12, β22, β32),
(β42, β52, β62)}. In addition, the separations between adjacent subsets are smaller
than in the first example. Thus, as one would expect, the unconditional means,
E(βi2 | y), are more similar to the “pool all” means, E(βi2 | y, g∗2), in Example 2
than in Example 1 (compare Parts a and b of Table 1). This shows the versatility
of the unconditional estimator, E(βi2 | y). Moreover, the increases in posterior
variance (Table 2, Part b) are still large.

Finally, all of the posterior correlation coefficients of the βi2 are small. The
maximal value is 0.38 for Example 1 and 0.56 for Example 2. Of the 90 posterior
correlation coefficients (two examples, three δ2, fifteen correlations per exam-
ple and value of δ2), only eleven exceed 0.10. The correlation coefficients are
essentially zero for all pairs of slopes in different subsets.

The second study has L = 4 simple linear regressions with the specification
as in (4.1). For each regression, n = 3 and Xijε{−1, 0, 1}. We then selected values
of the intercepts, β11, . . . , β41, slopes, β12, . . . , β42, and variance, σ2, to achieve
separation of the four intercepts into two subsets (β11, β21) and (β31, β41). The
values of the Yij were then obtained from (4.1) with σ2 = 42. (In the first study
reported in this section we took σ2 = .0043; in the second investigation we found
it was convenient to rescale the values of Y so that they are 102 larger.) The
only partitions, g, assigned positive prior probability are the 16 having at least
two members in each subset of the constituent partitions, g1 and g2. These par-
titions, assigned equal probability, are defined by the Cartesian product, P ×P ,
where P = {[(12), (34)], [(13), (24)], [(14), (23)], (1234)} defines the four possible
partitions of the L = 4 intercepts or slopes. Using (2.2) with M = 2 we take
δ2
k(g1) = δ2

1 and δ2
k(g2) = δ2

2 . That is, there is a common value, δ2
1 , of the vari-

ances of the intercepts corresponding to all partitions and subsets. Independent,
inverse gamma prior distributions are assigned to σ2, δ2

1 , and δ2
2 . The prior for

σ2 has mean 42 and variance 100 while each of the δ2
i has mean 1 and variance

2.
We use the Metropolis algorithm to sample (g, σ2, δ2

1 , δ2
2). Using (2.1) and

(3.13) the posterior distribution of g,
∑

1 and
∑

2, f(g,
∑

1,
∑

2 |y), is propor-

tional to the product of (3.13), |∑1 |−
1
2 , and the independent prior densities of∑

1 and
∑

2. The Metropolis algorithm generates random walk Markov chains
for (σ2, δ2

1 , δ2
2) and an independent Markov chain for g. The convergence of the
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Markov chain may be slow unless the data provide at least moderate support
for all of the partitions. This occurs because a near-absorbing state is produced
by the failure of the chain to move over the sample space of g,G∗. Using the
approach in Carlin and Chib (1995), extended to accommodate more than two
“models,” we adjust p(g) to correct for the imbalance. That is, we increase
the value of p(g) for partitions that are rarely observed in the chain. (Adjust-
ing p(g) is a trial-and-error process, performed before the iterates are saved.)
The realized Markov chain is corrected (by re-weighting) to account for the ad-
justed p(g); i.e., to represent chains sampled using a uniform prior distribution
on g. We use the sampled (g, σ2, δ2

1 , δ2
2) together with E(β|y, g, σ2, δ2

1 , δ2
2) from

(3.6), Cov (β|y, g, σ2, δ2
1 , δ2

2) from (3.7) and p(g|y, σ2, δ2
1 , δ2

2) from (3.13 )to obtain
E(β|y) and Cov (β|y).

Of the 16 partitions assigned positive prior probability, the four presented in
Table 3 account for .9999 of the total posterior probability. The first line of Table
4a gives the least squares estimates of the intercepts, β̂i1, while the first line of
Table 4b gives the corresponding estimates of the slopes, β̂i2. These estimates
suggest the results in Table 3; i.e., for the intercepts there is overwhelming sup-
port for the partition {(12), (34)} while for the slopes the support is distributed
among four partitions.

Table 3. Values of the posterior probabilities, p(g|y), for the second study
(variances are unknown)

Partition Probability, p(g|y)

{(12), (34)}, {(12), (34)} .1880
{(12), (34)}, {(13), (24)} .2905
{(12), (34)}, {(14), (23)} .1789
{(12), (34)}, {1234} .3425
Others .0001

Note: The left-most entry in each row describes the partition for the inter-
cept; the second entry describes the partition for the slope.

Table 4, organized in the same way as Table 1, contrasts the three estima-
tors: least squares, “pool all,” E(βij |y, g∗j ), and unconditional posterior mean,
E(βij |y). It is clear from Table 4a that the conventional “pool all” estimator
incorrectly pools the data from all four regressions, while the proposed estima-
tor, E(βi1|y), pools the data from only the relevant regressions. For example,
E(β11|y), and E(β21|y) use data only from the first two regressions. The situ-
ation for the slope is quite different. There is no obvious grouping of the four
slopes, and the “pool all” estimator and proposed estimator have similar values.
This example again illustrates the versatility of the proposed estimator.
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Table 4. Values of the alternative estimators of the intercept, βi1, and slope,
βi2, for the second study (variances are unknown)

Regression

1 2 3 4
a. Intercept

β̂i1 3.02 6.48 20.26 25.01
E(βi1 | y, g∗1) 13.24 13.39 13.97 14.18
E(βi1 | y) 4.66 4.85 22.50 22.77

b. Slope
β̂i2 12.05 16.27 13.61 18.20
E(βi2 | y, g∗2) 14.96 15.06 15.00 15.11
E(βi2 | y) 14.15 15.53 14.50 15.95

If we do not pool the data from the relevant regressions, the increase in pos-
terior variance is substantial. We start with (2.1), applied to only one regression,
and assign a locally uniform prior distribution to β. We assign to σ2 exactly
the same prior distribution (inverse gamma with mean 42, variance 100) as used
throughout the second study. Define the variance of βij under this specification
by Var (βij |yi

) – to emphasize that inference depends only on data from the ith
regression. Then define Rij = Var (βij |yi

)/Var (βij |y) where the denominator is
the unconditional (with respect to σ2, δ2

1 , δ2
2 , g) posterior variance of βij . The

eight values of Rij (slope and intercept for each of four regressions) range from
3.38 to 3.63, a very large increase in variance.

Finally, the empirical density of σ2 is positively skewed with mean 38 and
variance 59. The empirical densities of δ2

1 and δ2
2 are mixture distributions (with

no gaps) with means 0.73 and 0.71 and variances .13 and .08.

5. Discussion

The model that we have proposed is more flexible than the conventional
hierarchical model which would start with (2.1) but then require that for each m,
(β1m, . . . , βLm) are conditionally independent and identically distributed. With
the conventional model, inference about βim may use data from subpopulations
that have characteristics substantially different from the ith. The numerical
results suggest that our methodology assigns the L regressions to appropriate
subsets, leading to sensible unconditional inferences, E(β | y) and Cov (β | y)
(see (3.1) and (3.2)). Moreover, Cov (β | y) properly accounts for the uncertainty
about g.

We have shown how to accommodate unknown variances such as σ2, δ2
1 and

δ2
2 . It is important to develop more efficient computational methods, and to

investigate how the choice of prior distribution affects posterior inference.
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To accommodate additional features of the survey design, the specification
in (2.1) and (2.2) may have to be modified. In practical situations it should be
possible to limit substantially the number of partitions that are assigned positive
prior probability.
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