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Abstract: In this article, we study convergence properties of the method of penal-

ization and related estimates. A penalized estimate is defined as an optimizer of a

scaled criterion with a penalty that penalizes undesirable properties of the parame-

ters. We develop some exponential probability bounds for the penalized likelihood

ratios with a general penalty. Based on these inequalities, rates of convergence of

the penalized estimates can be quantified. When convergence is measured by the

Hellinger distance, the rate of convergence of the penalized maximum likelihood

estimate depends only on the size of the parameter space and the penalization co-

efficient. We also explore the role of penalty in the penalization process, especially

its relationship with the convergence properties and its connection with Bayesian

analysis. We illustrate the theory by several examples.
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1. Introduction

A statistical procedure such as maximum likelihood method is often based
on optimizing a criterion over a parameter space. When the parameter space is
large, the optimization becomes difficult and the resulting estimates may have
undesirable properties such as inconsistency and non-smoothness. To overcome
these difficulties, the criterion is restricted with a penalty measuring such prop-
erties of the estimate. The optimization can then be carried out based on the
penalized criterion. This procedure is called the method of penalization (see e.g.,
Wahba (1990) for references). In recent years, convergence properties of non-
parametric and semi-parametric procedures has received considerable interest.
Despite much research work on the method of penalization, there is no system-
atic study on the convergence properties of this method. In this article, to study
the convergence properties of the method of penalization with a general penalty,
we develop a general theory. We also investigate the role of the penalty in the
penalization process and its connection with Bayesian analysis.

We now briefly review the most relevant literature. Convergence properties
of the penalized estimates have been studied by many authors in specific models
with variants of L2-penalty (see e.g., Silverman (1982), Wahba (1990), Van De
Geer (1990), Chen (1991), Gu and Qiu (1993) for references). To our knowledge,
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the paper that gives a fairly general treatment for rates of convergence of the
penalized estimates is Cox and O’Sullivan (1990). However, the existing results
are restricted to the cases in which the parameter space is Wm,2 measured by
L2-smoothness, where Wm,2 is a Sobolev space and m is the parameter asso-
ciated with the degree of smoothness of the functions (see Devore and Lorentz
(1991) about Sobolev spaces). Still, it is not clear how the convergence proper-
ties of the method of penalization depends on the size of the parameter space
and the penalty. Some recent developments on conditional quantile regression
(see e.g., Koenker, Portnoy and Ng (1994)) suggested that some non-L2 penal-
ties also lead to solutions similar to the smoothing splines resulting from the L2

penalty. Unfortunately, the convergence properties of the penalized estimates
there are unavailable. Furthermore, Nemirovskii et al. (1985) showed that in
non-parametric regression, linear estimates can not achieve the optimal rate of
convergence when the regression function belongs to Sobolev spaces Wm,p mea-
sured by Lp-smoothness for 1 ≤ p < 2. This means that in such cases, the penal-
ized procedure with the L2-penalty can not perform well in Wm,p for 1 ≤ p < 2.
The question is whether the penalized procedure can achieve the optimal rate
of convergence. Moreover, what role does the penalty play in the penalization
process? The investigation in this paper is expected to provide insights into the
structure of the method of penalization and thus provide guidance for using this
method in estimation, testing and discriminant analysis, etc.

To address the above issues, we develop some exponential bounds for the
penalized likelihood ratios. Based on these inequalities, we establish a general
theory on the convergence properties of the method of penalization. The theory
relates the (local) size of the parameter space, and the magnitude of the penal-
ization coefficient to the best possible rate of convergence. We show that the
problem of penalization is essentially equivalent to a certain constrained opti-
mization problem associated with the penalty. We also construct a prior which
links the method of penalization to the convergence properties of the posterior
distribution. To illustrate the theory, we examine a number of examples in non-
parametric and semi-parametric models. In some of these examples, the obtained
rates agree with the known optimal rates. In addition, we show that in density
estimation and non-parametric regression, the optimal rate of convergence based
on Wm,p can be achieved with an Lp penalty for p ≥ 1 (see Nemirovskii, Polyak
and Tsybakov (1985)).

Let Y1 = (X1, Z1), . . . , Yn = (Xn, Zn) be independently distributed according
to density pi(θ0, y). We estimate θ ∈ Θ, where Θ is the parameter space. Let
l(θ, Yi) be the criterion function and l̃(θ, y) = l(θ, y) − λnJ(θ) be the penalized
criterion function, where J(θ) is a non-negative penalty and λn is the penalization
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coefficient (the degree of penalization). The scaled penalized criterion to be
optimized is defined as L̃n(θ) = n−1 ∑n

i=1 l̃(θ, Yi). An approximate maximizer
of the penalized criterion, denoted as θ̂n, is called an approximate penalized
estimate, in the sense that

L̃n(θ̂n) ≥ sup
θ∈Θ

L̃n(θ) − an, (1.1)

where an → 0 as n→ ∞. For the exact estimate, an = 0. The procedure is called
the penalized maximum likelihood (PML) estimation when l is a log-likelihood,
and is the penalized least square regression when l is −(y − θ(x))2.

The paper is organized in six parts. Section 2 presents some examples and
illustrative conclusions from the general theory. Section 3 discusses the conver-
gence properties of the penalized maximum likelihood estimates (PMLEs) under
the Hellinger distance and of the penalized estimates under the square root of
the Kullback-Leiber information. Section 4 discusses the convergence properties
of the penalty and its relationship with the convergence properties of the pos-
terior distribution. Section 5 illustrates the main results by several examples:
density estimation, the proportional odds model, non-parametric regression, and
non-parametric conditional quantile regression. Section 6 is devoted to technical
proofs.

2. Examples

In this section, we present some examples and convergence properties of the
penalized estimates with penalty J(θ) = (

∫ b
a |θ(m)(x)|pdx)1/p for some p > 0 and

0 < a < b. The results for the penalized estimates with J(θ) =
∫ b
a |θ(m)(x)|pdx

can also be obtained similarly.

Example 1. Density estimation
In this example, we study the rates of convergence of the PMLE and its

derivatives in Hellinger distance. Although the problem of density estimation
has been studied by many authors, we consider this problem in a general setting
with Lp-measures of smoothness for p ≥ 1. Let Y1, . . . , Yn be independently and
identically distributed according to a density θ2

0. We estimate θ ∈ Θ using the
method of penalization. In our formulation, the often assumed condition that the
underlying density is uniformly bounded below is not used. To our knowledge,
the result on the PMLE with Lp-smoothness measures and that on the fractional
derivatives in Case 2 are not yet available in the existing literature. In addition,
Case 3 provides an insight into the relationship between the rate of convergence
of the penalized estimate and that of its derivative.
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Case 1. For m ≥ 1 and min(p, 2)m > d, let Θ = Wm,p[0, 1]d, where Wm,p[0, 1]d

is a Sobolev space with the degree of smoothness m measured by Lp, and J(θ) =
‖θ([m])‖p +[

∫∫
[0,1]d×[0,1]d(|θ([m])(x)−θ([m])(y)|/|x−y|m−[m])pdxdy]1/p. Here [m] is

the integer part of m, ‖ · ‖p is the usual Lp norm. The Sobolev space Wm,p[0, 1]d

is defined as: Wm,p[0, 1]d = {θ ∈ Lp[0, 1]d : ‖θ‖W m,p ≤ ∞}, where ‖θ‖W m,p =∑
k≤[m] ‖θ(k)‖p + (

∫∫
[0,1]d×[0,1]d

|θ([m])(x)−θ([m])(y)|p
|x−y|(m−[m])p dxdy)1/p.

Case 2. For 0 < m < 1, let Θ = {θ ∈ C[0, 1] : θ ≥ 0, θ(0) = θ(1) = 0, J(θ) <∞}
with J(θ) = ‖θ‖H , where ‖θ‖H = supx,y |θ(x)−θ(y)|/|x−y|m is the Hölder norm,
and C[0, 1] is the space of all continuous functions.

Case 3. Now consider convergence properties of derivatives of the PMLE in
terms of ‖θ̂(k)

n − θ
(k)
0 ‖q, where q > 0 is a real number and 0 ≤ k < m satisfying:

(m−k)/2+k/p ≥ m/q. In the following discussion, we will restrict our attention
to the case in which d = 1 and m is an integer. The result can be extended to
the case in which m is a fraction (see Adams (1975) for a definition of the norm
with a fraction order).

Proposition 1. In Case 1, let ηn = n−
m

2m+d . In Case 2, let ηn = n−
m

2m+1 when
m > 1/2; ηn = n−1/4(log n)1/2 when m = 1/2; and ηn = n−m/2 when m < 1/2.

In Case 3, ηn = n
− m−k

2m+1
m(m−k−1/p+1/q)

(m−k)(m−1/p+1/2) . In Cases 1-3, let λn ∼ η2
n. Then, in

Cases 1-2, we have P (‖θ̂n − θ0‖2 ≥ ηn) ≤ 7 exp(−c5nη2
n). In Case 3, we have

P (‖θ̂(k)
n − θ

(k)
0 ‖q ≥ ηn) ≤ 7 exp(−c5nη2

n). Here θ̂n is the penalized MLE, and
c5 > 0 is a constant.

In Cases 1-2, the rates are optimal. In Case 3, note that m(m−k−1/p+1/q)
(m−k)(m−1/p+1/2) ≤1.

Clearly, when p = q = 2, the rate of convergence becomes n−
m−k
2m+1 , which is be-

lieved to be optimal (see Stone (1982) for the case of non-parametric regression).
It is interesting to note in this case that although the space Wm,p[0, 1] is

strictly larger than the space Cm[0, 1], the rate of convergence of the PMLE based
onWm,p[0, 1] is the same as that based on Cm[0, 1] since the effective sizes (metric
entropy) which determine the rates are the same. In non-parametric regression,
Nemirovskii, Polyak and Tsybakov (1985) showed that linear estimates can not
achieve the optimal rate of convergence when the underlying function belongs
to some Sobolev space Wm,p[0, 1] when 1 ≤ p < 2. This example shows that
in density estimation, the optimal rate can be achieved by the PMLE with the
Lp penalty for p ≥ 1 and m > 1/2. This aspect may offer an insight on how to
choose penalty in penalization estimation. (Also see Example 3.)

Example 2. Proportional odds model (Case 2 interval censoring)
In this example, we consider the convergence properties of the method of

penalization in a semi-parametric model. In survival analysis, it is important
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to study the relationship between a failure time T ∈ (0, U ] of an event and a
covariate X. Suppose for the ith individual, i = 1, . . . , n, there exist a failure
time Ti and a p-dimensional covariate vector Xi. Under “Case 2” interval cen-
soring, Ti is not fully observed. In this case, the observations consist of Zi =
(Yi1, Yi2, δ

(1)
i , δ

(2)
i ,Xi), where the exact time Ti is replaced by (Yi1, Yi2, δ

(1)
i , δ

(2)
i ).

Here δ(1)i = I(Ti ≤ Yi1) and δ
(2)
i = I(Yi1 < Ti ≤ Yi2) are indicators of whether

the event Ti occurred before the monitoring time Yi1, within the monitoring time
interval (Yi1, Yi2], or after the monitoring time Yi2. Under the assumption of inde-
pendent and identically distributed observations, the log-likelihood Ln(Z, β,B)
can be written as

n−1
n∑

i=1

[
δ
(1)
i logF (Yi1|Xi) + δ

(2)
i log(F (Yi2|Xi) − F (Yi1|Xi))

+(1 − δ
(1)
i − δ

(2)
i ) log(1 − F (Yi2|Xi))

]
,

where F (t|x) = P (T ≤ t|x) = exp(B(t)−βT x)
1+exp(B(t)−βT x)

is the probability of failure
time given covariate values x and B(t) is a baseline function. We estimate
the regression parameter β = (β1, . . . , βp), where B(t) is a nuisance parame-
ter. Assume that β belongs to a compact set of Rp, B(t) ∈ Wm,q[0, U ] and
J(θ) = (

∫ U
0 |B(m)(t)|pdt)1/p for some min(p, 2)m > 1. In addition, assume that

F (Y.2|X) − F (Y.1|X) ≥ c > 0 for a small constant c > 0.

Proposition 2. Under the assumptions, we have for the penalized estimate
θ̂n = (β̂n, B̂n) with λn ∼ n−

2m
2m+1 ,

P
(
[
∫

(B̂n(y) −B0(y))2dy]1/2 ≥ ηn

)
≤ 7 exp(−c5nη2

n),

where ηn = n−
m

2m+1 and c5 > 0 is a constant.

Example 3. Non-parametric regression
Consider the regression model Yi = θ(xi) + ei, where {xi} are fixed, and

{ei} are independently identically distributed with mean 0 and a known variance
σ2. We assume that E exp(t0|e1|) < ∞ for a constant t0 > 0. Additionally, the
smallest positive eigenvalue of matrix n−1HTH is bounded below by a constant
g0 > 0, where

H =




1 · · · x1 · · · xm
1

1 · · · · · · · · · · · ·
1 · · · · · · · · · · · ·
1 · · · xn · · · xm

n



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Case 1: Smooth function. Let θ ∈ Θ = Wm,p[0, 1], where Wm,p[0, 1] is a
Sobolev space. We estimate θ using the least square criterion l(θ, y) = −(y− θ)2

with a penalty J(θ) = [
∫ 1
0 |θ(m)(x)|(p)dx]1/p with min(p, 1)m > 1 and p ≥ 1.

Case 2: Monotone function. Θ = {θ ∈ C1[0, 1] : θ(x) is monotone} and
J(θ) =

∫ 1
0 (θ(1)(x))2dx.

Proposition 3: Let ρ(θ0, θ) = (n−1 ∑n
i=1(θ(xi) − θ0(xi))2)1/2. In Case 1, let

ηn = n−
m

2m+1 with λn ∼ n−
2m

2m+1 . In Case 2, let ηn = n−1/3 with λn ∼ n−2/3.
Then P (ρ(θ0, θ̂n) ≥ ηn) ≤ 7 exp(−d8nη

2
n), where θ̂n is the penalized estimate, and

d8 > 0 is a constant.

In this case, the rate ηn is optimal (see Stone (1982)). Note that for the rate
of convergence, the assumption that E exp(t0|e1|) < ∞ of e1 is not necessary.
However, such an assumption yields the exponential probability bound. In fact,
if the assumption on the moment of ei is made, then the same result as above
can be obtained (see Shen and Wong (1994)). In contrast to the result of Van
De Geer (1990), our result yields an exponential bound and is valid for a more
general penalization such as the Lp penalty for p > 1.

The rate of convergence of the penalized estimate with an L2 penalty has
been studied by many authors. As mentioned in the introduction, the result
of Nemirovskii, Polyak and Tsybakov (1985) implies that the smoothing spline
based on the L2 penalty can not achieve the optimal rate of convergence in
Sobolev spaces Wm,p for 1 ≤ p < 2. The above result says that the penalized
estimate can achieve this rate with a Lp penalty. Choosing an appropriate penalty
is important in this situation.

Case 3: Posterior distribution. Let θ(x) be
∑∞

i=1(αicos(2πix)+βisin(2πix)),
whereαi and βi are independently distributed asN(0, (2πi)−2d) with

∑∞
i=0 i

2(m−d)

< ∞. Let m̆(θ) be the probability measure induced by θ. Under this prior, by
the three series theorem, the series of the squared random variables converges
if and only if the series of its second moments converges. Consequently, the
sample paths of θ have mth derivatives θ(m) in L2 if only if

∑∞
j=1 j

2(m−d) < ∞
(see Adams (1975) for a definition of the derivative with a fraction order). The
corresponding measure is a measure on Sobolev spaceW 2,m[0, 1] with the Sobolev
inner product, see Kuo (1975) for a reference of measures on Banach spaces.

The following result then holds.

P (ρ(θ0, θ) ≥ ηn, θ ∈ Θ|Y1, . . . , Yn) ≤ d11 exp(−Op(nη2
n)), in P.

where ηn = max(n−
m

2m+1 , n−
n
2d ) = n−

m
2d , and d11 > 0 is a constant. It appears

that n−
m
2d is slightly slower than n−

2m
2m+1 (optimal rate). We need to point out
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that ηn is a rate for all θ0 ∈ Θ = Wm,2[0, 1]. Of course, the rates for some
θ0 ∈ Θ are n−

m
2m+1 which is faster. For instance, the rate for θ0 = 1 is n−

m
2m+1 by

Theorem 5 with τ = 1/(2d − 1). Indeed, as shown by Shen (1994), n−
m
2d is

essentially the rate attainable by certain θ0 ∈ Θ. This is because π(θ) assigns a
small probability in any neighborhood of θ in the non-parametric setting. (See
Example 3 and Shen (1994) for more discussions about this phenomenon.)

Example 4. Non-parametric estimation of conditional quantile
In this example, we answer the question raised in the introduction concerning

the convergence properties of the penalized estimate in non-parametric quantile
regression. Let Yi = θ(Xi) + ei, i = 1, . . . , n where Xi can be fixed or random.
Suppose the errors {ei} are independent of {Xi} when {Xi} are random, and
ei has a distribution with 0 as the τth quantile, i.e., P (ei ≤ 0) = τ for 0 <

τ < 1. Furthermore, there exists δ∗ > 0 such that for any 0 < t ≤ δ∗ and
some constant g0 > 0, P (|ei| ≤ t) ≥ g0t. We estimate the conditional quantile
of Yi given Xi by maximizing n−1 ∑n

i=1 l(yi, θ(xi)) − λnJ(θ) over the parameter
space Θ = Wm,p[a, b] (Sobolev space), where l(y, θ) = (I(y < θ)− τ)(y − θ) (the
Czech function, see e.g., Koenker, Portnoy and Ng (1994)), a and b are fixed,
and J(θ) = ‖θ([m])‖p + [

∫ b
a

∫ b
a (|θ([m])(x) − θ([m])(y)|/|x − y|m−[m])pdxdy]1/p.

Proposition 4. Let ρ(θ0, θ) = (E(θ − θ0)2)1/2. Under the assumptions, for
the penalized estimate, we have P (ρ(θ0, θ̂n) ≥ ηn) ≤ 7 exp(−d7nη

2
n), where ηn =

n−
m

2m+1 with λn ∼ n−
2m

2m+1 , and d7 > 0 is a constant.

3. Convergence Properties

In this section, we present some exponential inequalities for the supremum of
the penalized likelihood ratios. The inequalities are developed by appropriately
controlling the expectations, the variances of the log-likelihood ratios, and the
penalty. Based on the inequalities, the consistency and the rate of convergence
of the PMLEs can be established under simple conditions on the size of the
parameter space.

Let Pi be a probability measure on a measurable space Yi induced by the
density pi(θ0, y). Define P = n−1 ∑n

i=1 Pi. Here and in the sequel, the expecta-
tion E and the variance V ar, and the expectation Ei are evaluated under P and
Pi, respectively.

3.1. Penalized MLEs

We first consider the case in which the criterion function is a likelihood and
convergence is measured by the Hellinger distance. To quantify the size of a
space, we briefly discuss the metric entropy. Suppose f : Θ × Yi → R with
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Eif
2(θ, Yi) < +∞ for all θ ∈ Θ. Let F = {f(θ, ·) : θ ∈ Θ}, and S(ε,m) =

{f l
1, f

u
1 , . . . , f

l
m, f

u
m} ⊂ L2 satisfying max1≤j≤m ‖fu

j − f l
j‖2 ≤ ε. If for any f ∈ F ,

there exists a j such that f l
j ≤ f ≤ fu

j , a.e. P , then H(ε,F) = logN(ε,F) =
log(min{m : S(ε,m)}) is called the Hellinger metric entropy with bracketing
when f is the square root density, and is the L2 metric entropy with bracketing
when f is replaced by a criterion function. (For more discussions about metric
entropy of this type, see e.g., Kolmogorov and Tihomirov (1959), and Birman
and Solomjak (1967).)

Let h(θ0, θ) = n−1 ∑n
i=1[

∫
(p1/2

i (θ, y) − p
1/2
i (θ0, y))2dy]1/2 be the Hellinger

distance. For any real number k ≥ 1, let F1(k) = {p1/2
i (θ, ·) : θ ∈ A(k)} with

A(k) = {θ ∈ Θ : J(θ) ≤ k}.
Assumption A. There exist some constants ci > 0 (i = 1, 2) such that for ε > 0,

sup
{k≥1}

ψ1(ε, k) ≤ c2n
1/2, (3.1)

where ψ1(ε, k) =
∫ L1/2

L H1/2(u,F1(k))du/L with L = (c1ε2 + λn(k − 1)).

Theorem 1. In addition to Assumption A, suppose max(J(θ0), 1)λn ≤ c3ε
2 for

a constant 0 < c3 < 1/2. Then there exist ci > 0 (i = 4, 5) such that for any
ε > 0 satisfying (3.1),

P ∗( sup
{h(θ0,θ)≥ε,θ∈Θ}

n∏
i=1

p(θ, Yi) exp(−λnJ(θ))
p(θ0, Yi) exp(−λnJ(θ0))

≥exp(−c4nε2)
)
≤7 exp(−c5nε2),

where P ∗ is the outer measure (see Pollard (1984)).

Theorem 1 says that the probability of the supremum of the penalized like-
lihood ratios outside an ε Hellinger-neighborhood of θ0 is exponentially small
for any sample size n and ε > 0 satisfying (3.1) which is determined by the
metric entropy equation. Such an inequality is useful, especially in obtaining
rates of convergence of the penalized estimates and the posterior distribution
(see Sections 3 and 4).

Corollary 1. Suppose Assumption A holds. Then for the PMLE θ̂n defined in
(1.1) with an = o(ε2n),

P
(
h(θ0, θ̂n) ≥ ηn

)
≤ 7 exp(−c5nη2

n), (3.2)

where ηn = max(εn, λ
1/2
n ) with εn the smallest ε satisfying (3.1).

The best possible rate of convergence is governed by the smallest εn satis-
fying (3.1) with λn ∼ ε2n. The trade-off phenomenon between the best rate of
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convergence for the PMLE and the magnitude of the penalization coefficient λn

can be considered as a generalization of the familiar bias/variance trade off in
non-parametric regression and density estimation.

3.2. Penalized estimates

We generalize the results in Section 3.1 to a more general setting in which the
criterion may not be a likelihood and the measure of convergence is defined by
ρ(·, ·) = K1/2(·, ·) which is used for measuring distance between two parameter
points, where K(θ0, θ) = E(l(θ0, Y ) − l(θ, Y )). Here K(θ0, θ) is required to be
non-negative. The quantity K(·, ·) is the Kullback-Leiber information when l is
a log-likelihood. Note that the Kullback-Leiber information K(·, ·) usually dom-
inates the commonly used measures such as the Hellinger distance. Therefore,
the convergence under K(·, ·) is a strong mode.

We now introduce some notation. Let V (θ0, θ) = Var (l(θ, Y ) − l(θ0, Y )).
For any ki > 0, let A(k1, k2) = {θ ∈ Θ : k1 ≤ ρ(θ0, θ) ≤ 2k1, J(θ) ≤ k2} and
F2(k1, k2) = {l(θ, ·)− l(θ0, ·) : θ ∈ A(k1, k2)}. In the following, t0 > 0 and di > 0
are constants.

Assumption B. For some 0 ≤ β < 1, supA(k1,k2) V (θ0, θ) ≤ d1k
2
1[1+ (k2

1 +k2)β].

Assumption C. There exists a random variable W (Zi) such that |l(θ, Yi) −
l(θ0, Yi)| ≤ |θ(Xi) − θ0(Xi)|W (Zi), where {Xi} and {Zi} are independent,
supiEi exp(t0W (Zi)) < ∞ and E(θ(X) − θ0(X))2 ≤ d3V (θ0, θ). Additionally,
supA(k1,k2) ‖θ − θ0‖sup ≤ d2(k2

1 + k2)γ for 0 ≤ γ < 1.

Assumption D. Assume that

sup
{k1≥1,k2≥1}

ψ2(k1, k2) ≤ d6n
1/2, (3.3)

where ψ2(k1, k2)=
∫ U
L H1/2(u,F2(k1, k2))du/L with U=d4ε(k2

1 +k2)(1+max(β,γ))/2

and L = d5λn(k2
1 + k2).

Theorem 2. In addition to Assumptions B-D, suppose max(J(θ0), 1)λn ≤ d7ε
2.

Then there exists a constant d8 > 0 such that for any ε > 0 satisfying (3.3),

P ∗( sup
{ρ(θ0,θ)≥ε,θ∈Θ}

n−1
n∑

i=1

(l̃(θ, Yi) − l̃(θ0, Yi)) ≥ −ε2/2
)

≤ 7 exp(−d8nmin(λ2
n/ε

2, λn)).

Corollary 2. Suppose Assumptions B-D hold. Then for the penalized estimate
defined in (1.1) with an = o(ε2n),

P (ρ(θ0, θ̂n) ≥ ηn) ≤ 7 exp(−d8nη
2
n), (3.4)
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where ηn = max(εn, λ
1/2
n ) with εn the smallest ε satisfying (3.3). The best possible

rate for the penalized estimate is governed by the smallest εn satisfying (3.3) with
λn ∼ ε2n.

Assumption B specifies the local and global behaviors of the criterion differ-
ence. Locally, supA(k1,k2) V (θ0, θ) ∼ k2

1 , whereas globally supA(k1,k2) V (θ0, θ) ∼
(k2

1 + k2)β (see Examples 3 and 4). Assumption C is based on the moment gen-
erating function. Assumption D characterizes the size of the parameter space.

In the classical theory of maximum likelihood estimation, it is known that
consistency and rate of convergence require quite different conditions on the like-
lihood function because the local behavior of the likelihood function differs from
its global behavior (see Example 4). In Theorem 2, two issues have been dealt
with simultaneously under the assumption of existence of the moment gener-
ating function as specified in Assumption C. Theorem 2 says that the rate of
convergence ηn is essentially determined by the integral equation in (3.3) related
to the local behavior of the likelihood function, and the consistency is mainly
determined by the global behavior of the likelihood function. Although the as-
sumption on the moment generating function is not necessary for obtaining rate
of convergence, such an assumption yields an exponential bound. For the con-
vergence properties, based on some moment conditions, an alternative condition
can be established using a truncation argument (see Shen and Wong (1994)).
The above results are valid as stated for any restricted parameter space.

4. Penalty and its Connection with Bayesian Analysis

4.1. Penalty

As discussed in the introduction, the penalty is used to penalize some unde-
sirable properties of the estimate in a large parameter space which typically is
not compact. We will show that the penalized estimate falls into a set {θ ∈ Θ :
J(θ) ≤ (1 + o(1))J(θ0)}. This means that the penalty function forces maximiza-
tion to be carried out in a compact parameter space. Moreover, the penalization
problem specified in (1.1) is essentially equivalent to a problem of the constrained
optimization of the criterion (without penalty) over {θ ∈ Θ : J(θ) ≤ J(θ0)}. Con-
sequently, the penalized procedure may be viewed as an automatic procedure for
estimating J(θ0). (Also see Gu (1994).)

Theorem 3. Under the assumptions in Theorem 1, for any 0 < δ < 1/4, if
(1 − δ)c3ε2n ≤ max(J(θ0), 1)λn, then for the PMLE defined in (1.1) with an =
o(ε2n), P (J(θ̂n) ≥ (1 +O(δ))max(J(θ0), 1)) ≤ 10 exp(−c5nε2n).

Theorem 3, in conjunction with the results in Theorem 2, can be used
for obtaining the convergence properties of derivatives of the PMLEs when a
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smoothness-related penalty is used. (See Example 1 for more detailed discus-
sions.)

Theorem 4. Under the assumptions in Theorem 2, for any 0 < δ < 1/4, if
(1−δ)d6ε

2
n ≤ λn, then for the penalized estimate defined in (1.1) with an = o(ε2n),

P (J(θ̂n) ≥ (1 +O(δ))max(J(θ0), 1)) ≤ 10 exp(−d8nε
2
n).

4.2. Posterior distribution

In statistics, using penalty may be interpreted as formulating prior knowl-
edge about the unknown parameters into the model (see e.g, Wahba (1990) and
Cox (1993) for discussions). As discussed in Section 3, the penalty forces the
maximizer being in a compact set of the parameter space. From the Bayesian
prospective, this may be viewed as appropriately constructing a prior such that
the posterior distribution is supported on a compact set of the parameter space
with a very large probability.

We now formulate the problem from a Bayesian point of view. For simplicity,
consider the case of independent and identically distributed observations. Let Y
denote the sample space of a single observation Y , B be a Borel σ-field, and Θ be
a subset of some separable Banach space. Let m̆(θ) be a probability distribution
on Θ (see Kuo (1975) for a reference of measures on Banach spaces). Now define
the prior probability distribution π(θ ∈ A) as

∫
A exp(−nλnJ(θ))dm̆(θ) for A ∈ B,

the Borel σ-field. The posterior probability of θ given (Y1, . . . , Yn), according to
the Bayes rule, is

P (θ ∈ A|Y1, . . . , Yn) =
∫
θ∈A

∏n
i=1 p(θ, Yi)dπ(θ)∫ ∏n

i=1 p(θ, Yi)dπ(θ)
. (4.1)

The inference concerning θ can be made based on (4.1). We now formulate some
conditions on m̆(θ).

Assumption E. (Local behavior of prior) There exists constants τ > 0 and
di > 0 (i = 9, 10) such that for any small t > 0, m̆(ρ(θ0, θ) ≤ t, J(θ) ≤
max(J(θ0), 1)), θ ∈ Θ) ≥ d9 exp(−d10t

−2τ ).

Theorem 5. In addition to Assumptions B-E, suppose nλn → ∞. Then there
exists a constant d11 > 0 such that for n sufficiently large, P (ρ(θ0, θ) ≥ ηn, θ ∈
Θ|Y1, . . . , Yn) ≤ d11 exp(−Op(nη2

n)), in P, where ηn = max(εn, λ
1/2
n , n

− 1
2(1+τ) ),

and εn is the smallest ε satisfying (3.3).

Theorem 5 says that under the conditions that are used for formulating the
convergence properties of the method of penalization as in Section 3, the posterior
distribution is concentrated in an ηn-neighborhood of θ0 with a large probability.
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The rate ηn is governed by εn which is related to the penalized likelihood ratios
and by n

− 1
2(1+τ) which is related to the prior assignment in a neighborhood of

θ0. The prior probability π(θ) assigns a small probability to the parameters
with large values of J(θ), which plays a role similar to that of the penalty in
penalization.

5. Applications

In this section, we apply the general theory to obtain the results (Proposi-
tions 1-4) presented in Section 2.

Example 1. Density estimation

Case 1. We now verify Assumption A. By the norm equivalence Theorem,
H(u,F1(k)) ≤ c(k/u)d/m for some constant c > 0 (see e.g. Theorem 7.48 and
Corollary 4.16, Adams (1975) and Theorem 5.2 of Birman and Solomjak (1967)).
Note that the result in Kolmogorov and Tihomirov (1959) can not be used in
this case. Assumption A is satisfied with ψ1(ε, k) = ε−

2m+d
2m (c1 +c3(k−1))−

2m−d
4m ,

when max(J(θ0), 1)λn ≤ c3ε
2.

Consequently, the rate of convergence of the PMLE under the Hellinger
distance is ηn = max(εn, λ

1/2
n ), where εn = n−

m
2m+d is the solution of the equation:

ψ1(εn, 1) = c2n
1/2. By Corollary 1, (2.2) holds with the best rate of convergence

ηn = n−
m

2m+d with λn ∼ ε2n = n−
2m

2m+d .

Case 2. By Lemma 7 of Shen and Wong (1994), sup{θ∈A(k)} ‖θ‖sup≤c′k
2m

2m+1 for

some constant c
′
>0. Hence for any small u>0, H(u,F1(k))≤exp(c

′
log(k

2m
2m+1 /u)

+c
′
log((k/u)1/m)) ≤ c

′
(k/u)1/m (see the proof of Theorem 15 of Kolmogorov

and Tihomirov (1959) for the corresponding constants with the sup-entropy).
When max(J(θ0), 1)λn≤c3ε2, Assumption A is satisfied with ψ1(ε, k)=ε−

2m+1
2m (c1

+c3(k−1))−
2m−1
4m form > 1/2, ψ1(ε, k) = ε−1[log(ε(c1+c3(k−1))]−1 form = 1/2,

and ψ1(ε, k) = ε−
1
m for m < 1/2. By Corollary 1, (2.2) holds with ηn = n−

m
2m+1

when m > 1/2, with ηn =n−1/4(log n)1/2 when m = 1/2, and with ηn = n−m/2

when m < 1/2. Here λn ∼ η2
n.

Case 3. By the triangular inequality, J(θ̂n − θ0) ≤ J(θ̂n) + J(θ0). Thus, by
Theorem 3 and Lemma 2, ‖θ̂(k)

n − θ
(k)
0 ‖q ≤ [J(θ̂n − θ0)](1−r)‖θ̂n − θ0‖r

2, where
r = m−k−1/p+1/q

m−1/p+1/2 and (m− k)/2 + k/p ≥ m/q. Consequently, P (‖θ̂(k)
n − θ

(k)
0 ‖q ≥

ηn) ≤ 7 exp(−c5nη2
n), where ηn = n

− m−k
2m+1

m(m−k−1/p+1/q)
(m−k)(m−1/p+1/2) .

Example 2. Proportional odds model (Case 2 interval censoring)
We now verify Assumption A. Here the density is

p(θ, y1, y2) = F (θ, y1|xi)δ
(1)

(F (θ, y2|x)−F (θ, y1|x))δ(2)
(1−F (θ, y2|x))(1−δ(1)−δ(2)),
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where θ = (B,β). Note that

|p1/2(θ1, y1, y2) − p1/2(θ2, y1, y2)|
≤ c(|F 1/2(θ1, y1|x) − F 1/2(θ2, y1|x)| + |F 1/2(θ1, y2|x) − F 1/2(θ2, y2|x)|)

+|(1 − F (θ1, y1|x))1/2 − (1 − F (θ2, y1|x))1/2| + |(1 − F (θ1, y1|x))1/2

−(1 − F (θ2, y1|x)|))1/2|)
≤ c(|B1(y1) −B2(y1)| + |B1(y2) −B2(y2)| + |(β1 − β2)Tx|).

In the above calculations, the fact that |q(x)| ≤ 1 has been used, where q(x) =
1/(1 + exp(x))1/2 for x ≥ 0. By the norm equivalence Theorem, H(u,F1(k)) ≤
c[(k/u)1/m + p log(1/u)] for a constant c > 0. When max(J(θ0), 1)λn ≤ c3ε

2,
with ψ1(ε, k) = ε−

2m+1
2m (c1 + c3(k − 1))−

2m−1
4m , Assumption A is satisfied. Con-

sequently, the rate of convergence of the PMLE under the Hellinger distance is
max(εn, λ

1/2
n ), where εn = n−

m
2m+1 is the solution of the equation: ψ1(εn, 1) =

c2n
1/2. By Corollary 1,P (h(θ0, θ̂n)≥ηn)≤7 exp(−c5nη2

n) with the best rate of con-
vergence ηn =n−

m
2m+1 when λn ∼ n−

2m
2m+1 . This implies that max(

∫
(F 1/2(θ̂n, y|x)−

F 1/2(θ0, y|x))2dy,
∫
((1 − F (θ̂n, y|x))1/2 − (1 − F (θ0, y|x))1/2)2dy) is bounded by

η2
n in probability. After some calculations, we conclude that

P
(
[
∫

((B̂n(y) −B0(y)) + (β̂T
n − βT )x)2dy]1/2 ≥ ηn

)
≤ 7 exp(−c5nη2

n),

which implies that P ([
∫
(B̂n(y) −B0(y))2dy]1/2 ≥ ηn) ≤ 7 exp(−c5nη2

n).

Example 3. Non-parametric regression

Case 1: Smooth function. Note that

l(θ(xi), yi)−l(θ0(xi), yi)−Ei[l(θ(xi), Yi)−l(θ0(xi), Yi)] = 2(yi−θ0)(θ(xi)−θ0(xi)),

K(θ0, θ) = ρ2(θ0, θ), and V (θ0, θ) = σ2ρ2(θ0, θ). By Lemma 2, supA(k1,k2) ‖θ −
θ0‖sup ≤ kr

1k
1−r
2 , where m−1/p

m−1/p+1/2 . Note that kr
1k

1−r
2 ≤ c(k2

1 + k2)1−r/2 for any
ki > 0. Hence, Assumptions B and C are satisfied with β = 0, and γ = 1 − r/2.
We now verify Assumption D. Without loss of generality, assume that θ0 = 0 in
the following. From approximation theory, we know that for any θ ∈ A(k1, k2) ⊂
Wm,p, there exists a polynomial h ∈ A(k1, k2) with degree n−1 that interpolates
(x1, . . . , xn) such that ‖θ‖sup ≤ ‖h‖sup +‖θ−h‖sup ≤ ‖h‖sup +k2. Since the form
of h is available depending on the representation of θ ∈ Θ. It follows after some
calculations that ‖h‖sup ≤ g1ρ(θ0, h)/g0. Hence, by Theorem 5.2 of Birman and
Solomjak (1967), for any small u > 0,

H(u,F2(k1, k2)) ≤ H(u/g0, A(k1, k2), ‖ · ‖sup) ≤ c
′
u−1/m[k1 + k2]1/m,
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whereH(u,A(k1, k2), ‖·‖sup) is the metric entropy with sup-norm. Therefore, As-

sumption D is satisfied with ψ2(k1, k2) = ε(1−1/2m)

λn

(k2
1+k2)(1+γ)(1−1/2m)/2(k1+k2)1/2m

k2
1+k2

.

By Corollary 2, (3.4) holds, i.e., P (ρ(θ0, θ̂n) ≥ ηn) ≤ 7 exp(−d8nη
2
n), where

ηn = max(εn, λ
1/2
n ) = n−

m
2m+1 with the penalization coefficient λn ∼ n−

2m
2m+1 .

Case 2: Monotone function. Assumptions B-D can be verified similarly. By
Corollary 2, (3.2) holds with ηn = max(εn, λ

1/2
n ), where εn is the solution of the

equation:
∫ d4ε
d5ε2 u−1/2du = d6n

1/2. Therefore, by Corollary 2, (3.4) holds with
ηn = n−1/3 and the penalization coefficient λn ∼ n−2/3.

Case 3: Posterior distribution. To obtain the rate of convergence for the
posterior distribution, we only need to verify Assumption E. By Lemma 2 of Shen
(1994), τ = max((d −m)/m, 1/(2d − 1)). By Theorem 5, ηn = (n−

m
2m+1 , n−

m
2d )

with λn ∼ n−
2m

2m+1 .

Example 4. Non-parametric estimation of conditional quantile
We now verify Assumptions B-D. Note that

K(θ0, θ) = 2E(I(θ − θ0 ≥ 0)
∫ |θ−θ0|

0
(θ − θ0 − y)dF (y)

+I(θ − θ0 ≤ 0)
∫ 0

−|θ−θ0|
(y + θ − θ0)dF (y))

= 2
∫ |θ−θ0|

0
P (|ei| ≤ y)dy,

and V (θ0, θ) ≤ E(θ− θ0)2. By Theorem 2 of Gabushin (1967) and the argument
in Example 3, we have supA(k1,k2) ‖θ − θ0‖sup ≤ kr

1k
1−r
2 ≤ c(k2

1 + k2)1−r/2, where

r = m−1/p
m−1/p+1/2 . It can be seen that K(θ0, θ) ≥ c

′
((k2

1 + k2)1−r/2)−1V (θ0, θ)
when θ ∈ A(k1, k2). Assumptions B and C are satisfied with β = γ = 1 − r/2
and W (y) = 1. Finally, by the norm equivalence Theorem (Adams (1975)) and
Theorem 5.2 of Birman and Solomjak (1967), H(u,F2(k1, k2)) ≤ c

′′
u−1/m(k1 +

k2)1/m for a constant c
′′
> 0. Hence, Assumption D is satisfied with ψ2(k1, k2) =

ε(1−1/2m)

λn

(k2
1+k2)(1+β)(1−1/2m)/2(k1+k2)1/2m

k2
1+k2

. Consequently, byCorollary 2, P (ρ(θ0, θ̂n)

≥ ηn) ≤ 7 exp(−d7nη
2
n), where ηn = max(εn, λ

1/2
n ), and where εn is the solution

of the equation: ψ2(εn, 1) = d6n
1/2. The best rate is ηn = n−

m
2m+1 with λn ∼

n−
2m

2m+1 .
The convergence results for the penalized estimate with J(θ)=

∫ |θ([m])(x)|pdx
for p ≥ 1 can also be obtained as above.

6. Appendix

Before proceeding, we introduce some notation to be used in the following
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proofs. Let

νn(l̃(θ, Y ) − l̃(θ0, Y )) = n−1
n∑

i=1

(l̃(θ, Yi) − l̃(θ0, Yi) − E(l̃(θ, Yi) − l̃(θ0, Yi)))

= νn(l(θ, Y ) − l(θ0, Y )).

For i = 1, 2, . . ., j = 0, 1, . . ., let

Ai,j = {θ ∈ Θ : 2i−1ε ≤ h(θ0, θ) < 2iε, 2j−1 max(J(θ0), 1) ≤ J(θ)

< 2j max(J(θ0), 1)}.

For i = 1, 2, . . ., let Ai,0 = {θ ∈ Θ : 2i−1ε ≤ h(θ0, θ) < 2iε, J(θ) < max(J(θ0), 1)}.
In the proof of Theorem 2, h(θ0, θ) will be replaced by ρ(θ0, θ).

Proof of Theorem 1. The proof relies heavily on a large deviation inequality
of Wong and Shen (1995) and the left-truncation argument for the log-likelihood
ratios. Without loss of generality, we assume that J(θ0) ≥ 1. For any 0 ≤ τ <∞,
let p(τ)(θ, y) be the left truncation version of p(θ, y), i.e.,

p(τ)(θ, y) =

{
exp(−τ)p(θ0, y), if p(θ, y) < exp(−τ)p(θ0, y),
p(θ, y), otherwise.

It can be easily seen that the results in Wong and Shen (1995) developed
under independently and identically distributed observations can generally apply
to the case of independently but non-identically distributed observations if the
corresponding quantities there are replaced by the average quantities on the basis
of each observation.

We first control means of the truncated log-likelihood ratios. By Lemma
4 of Wong and Shen (1995), we have −n−1 ∑n

i=1E log(p(τ)(θ, Yi)/p(θ0, Yi)) ≥
(1 − T )h2(θ0, θ), where T = 2exp(−τ/2)/(1 − exp(−τ/2))2. Now choose τ such
that 1 − T − c4 = c1 > 0. Hence for any i, j ≥ 1,

inf
Ai,j

[(1 − T )h2(θ0, θ) + λn(J(θ) − J(θ0)) − c4ε
2] ≥M(i, j),

where M(i, j) = c1(2i−1ε)2 + λn(2j−1 − 1)J(θ0). Note that max(J(θ0), 1)λn ≤
c3ε

2. Then for any i ≥ 1, infAi,0 [(1−T )h2(θ0, θ)+λn(J(θ)−J(θ0))−c4ε2] ≥M(i),
where M(i) = c1[(2i−1ε)2 − c3ε

2]. Consequently,

I = P ∗( sup
{h(θ0,θ)≥ε,θ∈Θ}

n∏
i=1

[p(θ, Yi) exp(−λnJ(θ))]/[p(θ0, Yi) exp(−λnJ(θ0))]

≥ exp(−c4nε2)
)
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≤ P ∗( sup
{h(θ0,θ)≥ε,θ∈Θ}

n−1
n∑

i=1

log(p(τ)(θ, Yi)/p(θ0, Yi)) ≥ λn(J(θ)−J(θ0))−c4ε2
)

≤
∞∑

i,j=1

P ∗( sup
Ai,j

νn(log(p(τ)(θ, Y )/p(θ0, Y ))) ≥M(i, j)
)

+
∞∑
i=1

P ∗( sup
Ai,0

νn(log(p(τ)(θ, Y )/p(θ0, Y ))) ≥M(i)
)

= I1 + I2.

We proceed to bound I1 and I2 separately. Here I1 and I2 are probabilities
related to the global and the local behaviors of the penalized log-likelihood ratios.
The rate of convergence of the PMLE is essentially determined by I2.

We now control the variances of the truncated likelihood ratios. By Lemma
3 of Wong and Shen (1995), we obtain

sup
Ai,j

Var (log p(τ)(θ, Y )/p(θ0, Y )) ≤ v2(i, j)=4 exp(τ)[(2iε)2+
2
c1
λn(2j−1−1)J(θ0)].

We now verify the required conditions in Lemma 7 of Wong and Shen (1995).
Condition (3.3) in that lemma follows from the fact that M(i, j)/v2(i, j) ≤

c1
4 exp(τ) . In addition, it is easy to see that

∫ v(i,j)

aM(i,j)
H1/2(u,F1(j))du/M(i, j) ≤

∫ v(1,j)

aM(1,j)
H1/2(u,F1(j))du/M(1, j).

Thus Assumption A implies (3.4) in that lemma. Therefore there exists c5 > 0
such that

I1 ≤
∞∑

j=1

∞∑
i=1

3 exp(−c5n[c1(2i−1ε)2 + (2j−1 − 1)λnJ(θ0)])

≤ 3 exp(−c5nε2)/(1 − exp(−c5nε2)).
Similarly, I2 can be bounded using an argument similar to that for I1.

Finally, I ≤ 6 exp(−c5nε2)/(1 − exp(−c5nε2)). Therefore, I ≤ (6 + I)
exp(−c5nε2). The result then follows from the fact I ≤ 1.

Proof of Corollary 1. By (1.1), for any εn > 0 satisfying (3.1), there exists
c4 > 0 such that

P
(
h(θ0, θ̂n) ≥ εn

)
≤ P ∗( sup

{h(θ0,θ)≥εn,θ∈Θ}
(L̃n(θ) − L̃n(θ0)) ≥ −an

)

≤ P ∗( sup
{h(θ0,θ)≥εn,θ∈Θ}

(L̃n(θ) − L̃n(θ0)) ≥ −c4ε2n
)
.
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By Theorem 1, h(θ0, θ̂n) = Op(εn) when max(J(θ0), 1)λn ≤ c3ε
2
n. Note that εn

is the smallest ε satisfying (3.2). Hence h(θ0, θ̂n) = Op(λ
1/2
n ) if εn is replaced by

λ
1/2
n when max(J(θ0), 1)λn > c3ε

2
n. The result then follows.

Lemma 1. Suppose Assumption C holds. Let v2 ≥ supθ∈F n−1 ∑n
i=1 V (θ0, θ)

and B ≥ supθ∈F ‖θ − θ0‖sup. Suppose further∫ U

L
H1/2(u,F)du ≤ n1/2Ma3/2/210, (6.1)

where U = H−(Ψ(M,v),F) and L = aM/28 (0 < a < 1). Let Ψ(M,v) =
(1 − a)nM2/[2(v2 +BM/3)]. Then

P ∗( sup
θ∈F

νn(l(θ, Y ) − l(θ0, Y )) ≥M
)
≤ 3 exp(−Ψ(M,v)). (6.2)

Inequality (6.2) continues to hold for U ≤ L with 3 replaced by 1 in (6.2).

Remark. Ψ(·) satisfies the following inequality

Ψ(M,v) ≥
{

(1 − a)nM2/4v2 if MB/v2 ≤ 3
3(1 − a)nM/4B if MB/v2 > 3,

which will be used in the proof below.

Proof. The rest of proof follows the arguments similar to those in Theorem 3 of
Shen and Wong (1994).

Proof of Theorem 2. The basic idea of the proof is similar to that in Theorem
1. However, the control of the means and variances of criterion differences is
more complicated. Without loss of generality, we assume max(λn, ε) ≤ 1. For
any i, j ≥ 1,

inf
Ai,j

[K(θ0, θ) + λn(J(θ) − J(θ0))] ≥ (2i−1ε)2 + λn(2j−1 − 1)J(θ0),

and
inf
Ai,0

[K(θ0, θ) + λn(J(θ) − J(θ0))] ≥ (2i−1ε)2 − λnJ(θ0).

Since max(J(θ0), 1)λn ≤ d7ε
2, we have

I = P ∗( sup
{ρ(θ0,θ)≥ε,θ∈Θ}

n−1
n∑

i=1

(l̃(θ, Yi) − l̃(θ0, Yi)) ≥ −ε2/2
)

=
∞∑

i,j=1

P ∗(sup
Ai,j

νn(l(θ, Y ) − l(θ0, Y )) ≥M(i, j))

+
∞∑
i=1

P ∗(sup
Ai,0

νn(l(θ, Y ) − l(θ0, Y )) ≥M(i))

= I1 + I2,
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where M(i, j) = 1
2λn[(2i−1)2 + (2j−1 − 1)J(θ0)] and M(i) = d

′
(2i−1ε)2.

To bound I1, we verify the required conditions in Lemma 1. By Assumption
B,

sup
Ai,j

V (θ0, θ) ≤ v2(i, j) = d1(2iε)2(1 + ((2i)2 + 2jJ(θ0))β).

When MB/v2 ≤ 3, Ψ(M,v) ≥ (1 − a)nM2/4v2. It is easy to see that U =
H−(Ψ(M,v),F) ≤ v(i, j) Similarly, when MB/v2 > 3, U ≤M1/2(i, j)B1/2(i, j).
By Assumption D

∫ max(v(i,j),M1/2(i,j)B1/2(i,j))

aM(i,j)
H1/2(u,F2(2iε, 2j))du/M(i, j) ≤ d5n

1/2.

Hence (6.1) holds. By Lemma 1, we have

I1 ≤ 3
∞∑
i=1

∞∑
j=1

exp(−d8nmin(M2(i, j)/v2(i, j),M(i, j)/B(i, j)))

≤ 3
∞∑
i=1

∞∑
j=1

exp(−d8nmin((λ2
n/ε

2)[(2i−1)2 + 2j−1)]1−β , λn[(2i−1)2+2j−1)]1−γ))

≤ 3 exp(−d8nmin(λ2
n/ε

2, λn))/[1 − exp(−d8nmin(λ2
n/ε

2, λn))],

where d8 may differ in each step. In the above derivation, the inequality (a+b)β ≤
aβ + bβ for a, b > 0 and 0 < β < 1 has been applied, and I2 can be bounded with
an argument similar to that for I1. Finally, we have

I ≤ 6 exp(−d8nmin(λ2
n/ε

2, λn))/[1 − exp(−d8nmin(λ2
n/ε

2, λn))]

≤ 7 exp(−d8nmin(λ2
n/ε

2, λn)).

This completes the proof.

Proof of Corollary 2. Same arguments as in Corollary 1.

Proof of Theorem 3. The proof is essentially the same as that in Theorem 4
and thus is omitted.

Proof of Theorem 4. Without loss of generality, we assume that J(θ0) ≥ 1.
Otherwise, we replace it by 1. For j = 1, . . ., let Aj = {θ ∈ Θ : ρ(θ0, θ) ≤
εn, 2j−1J(θ0) ≤ J(θ) < 2jJ(θ0)} and A0 = {θ ∈ Θ : ρ(θ0, θ) ≤ εn, J(θ) < J(θ0)}.
By (1.1),

P
(
J(θ̂n) ≥ J(θ0)

λn + δε2n
λn − δε2n

)
≤ P (λn(J(θ̂n) − J(θ0)) ≥ δε2n(J(θ̂n) + J(θ0)))
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≤ P (νn(l̃(θ̂n, Y ) − l̃(θ0, Y ))/(J(θ̂n) + J(θ0)) ≥ δε2n − an, ρ(θ0, θ̂n) ≤ εn)

+P (ρ(θ0, θ̂n) ≥ εn)

≤
∞∑

j=0

P ∗(sup
Aj

νn(l(θ, Y ) − l(θ0, Y )) ≥ δJ(θ0)2j−1ε2n − an) + P (ρ(θ0, θ̂n) ≥ εn)

≤ I + P (ρ(θ0, θ̂n) ≥ εn).

To bound I, let M(j) = δJ(θ0)2j−1ε2n(1 + o(1)) and v2(j) = d2(2iεn)2(1 +
((2i)2 + 2j)β)). Then M(j)/v2(j) ≤ a for some a > 0. Furthermore, (6.1) is
implied by Assumptions C and D. Consequently, applying Lemma 1, we obtain

I ≤ 3
∞∑

j=0

exp(−Ψ(M(j), v(j))) ≤ 3 exp(−d9nε
2
n)/(1 − exp(−d9nε

2
n)).

By Theorem 2, with λnJ(θ0) ≤ d7ε
2
n, P (ρ(θ0, θ̂n) ≥ εn) ≤ 7 exp(−d9nε

2
n). The

result then follows.

Proof of Theorem 5. From (3.1), we have

P (ρ(θ0, θ) ≥ ηn, θ ∈ Θ|Y1, . . . , Yn) =

∫
{ρ(θ0,θ)≥ηn,θ∈Θ} exp(Ln(θ) − Ln(θ0))dπ(θ)∫

exp(Ln(θ) − Ln(θ0))dπ(θ)
.

We proceed to bound the numerator and the denominator of the last expression
separately.

By the classical central limit theorem, for a fixed small δ > 0

[(Ln(η) − Ln(θ)) − Eθ(Ln(η) − Ln(θ))]/(δnV 1/2(θ, η)) → Z > Z − δ,

where Z is N(0, 1) and δn = n−1/2. Let S(t) = {θ ∈ Θ : ρ(θ0, θ) ≤ t, J(θ) ≤
max(J(θ0), 1)}. By Skorohod’s representation theorem, Fatou’s Lemma, the
dominated convergence theorem and Assumption B, we have for some small
t0 > 0,

lim inf
n→∞

∫
exp (n(Ln(η) − Ln(θ))) dπ(η)

≥
∫

lim inf
n→∞ exp(−nδnV 1/2(θ, η)(Z − δ)) exp(−nK(θ, η))dπ(η)

≥ lim inf
n→∞ exp(−n(δn(t0ηn) + (t0ηn)2))(|Z| + δ)π(η ∈ S(t0ηn))

≥ lim inf
n→∞ exp(−n(δn(t0ηn) + (t0ηn)2))(|Z| + δ)

exp(−nλn max(J(θ0), 1) − d10(t0ηn)−2τ ).
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By Assumption E,

I = P
( ∫

{ρ(θ0,θ)≥ηn,θ∈Θ}
exp(n(Ln(θ) − Ln(θ0)))dπ(θ) ≥ exp(−nη2

n/2)
)

≤
∞∑

i,j=1

P ∗( sup
{θ∈Ai,j}

νn(l(θ, Y ) − l(θ0, Y )) ≥ − log π(Ai,j)/n− η2
n/2

)

≤
∞∑

i,j=1

P ∗( sup
{θ∈Ai,j}

νn(l(θ, Y ) − l(θ0, Y )) ≥M(i, j)
)
,

where M(i, j) = d3((2i−1ηn)2 + 2j−1λn). Then supAi,j
V (θ0, θ) ≤ v2(i, j) =

d1(2iηn)2(1 + ((2iηn)2 + 2jJ(θ0))β). Applying an argument as in the proof of
Theorem 2, I ≤ 7 exp(−d8nmin(λ2

n/ηn, λn)). Consequently, by appropriately
choosing t0, we obtain P (ρ(θ0, θ) ≥ ηn, θ ∈ Θ|Y1, . . . , Yn) ≤ d11 exp(−Op(nη2

n)).
The result then follows.

Lemma 2. Let S = {f ∈ Wm,p[a, b] : ‖f‖2 < L1, ‖f (m)‖p < L2}, where a and
b are fixed constants. Then ‖f (k)‖q ≤ 2‖f‖∆

2 L
1−∆
3 , where ∆ = m−k−1/p+1/q

m−1/p+1/2 ,
(m− k)/2 + k/p ≥ m/q, and L3 > 0 depends on b− a and Li (i = 1, 2).

Proof. For any f ∈ S, by Theorem 1 of Gabushin (1967), we have ‖f (k)‖q ≤
A(δ−k−1/2+1/q‖f‖2 + δm−k−1/p+1/qL2), where 0 < δ ≤ b − a and A is a positive
constant. The result then follows by choosing L3 large enough such that δ =
(‖f‖q/L2)1/(m−1/p+1/q) ≤ (L1/L3)1/(m−1/p+1/q) ≤ b−a.This completes the proof.
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