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Abstract: D-optimal designs on the intervals [a; b] are determined for the homoscedas-

tic linear model with regression function fTk (x) = (x; : : : ; xk). Motivation, properties

and peculiarities of these designs are provided. In particular, the number of support

points of the optimal designs for such models depends on the values of a and b, as well

as an ordered eigenvalue of certain matrix. Analytical results are derived for selected

values of a and b, and where they are not available, numerically optimal designs are

computed. The technique here can be used to �nd optimal designs on more general

design intervals and extend some known results (for example, Lau (1983)). Under the

model considered here lower D- and G-e�ciency bounds of the D-optimal designs for

the full polynomial model are included.
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Lagrange interpolation polynomial, Sturm-Liouville equation.

1. Motivation and Background

Much of the literature in optimal experimental design assumes the regression

model is a full polynomial model of degree k, i.e. F T
k (x) = (1; x; : : : ; xk). Models

with improper polynomial regression functions, by which we mean Fk(x) with

some missing terms, have not been well studied and appear to be neglected.

While making inferences for these latter models with �xed design seem to be

quite straightforward, the issues of determining an optimal design for them are

less so. For example, unlike the case for Fk(x), closed form description of the

D-optimal designs for improper polynomial models are not available. Although

standard algorithms can generate these optimal designs readily, we �nd it useful

to study them analytically. As we shall argue shortly, and at the end of the

paper, understanding properties of these designs have potential applications to

other problems. Our work here focuses primarily on the case where we have a full

polynomial model but without the intercept term. Thus, our regression function

has the form fTk = (x; : : : ; xk) and relates to the full model by F T
k = (1; fTk (x)).

There are several references in the literature concerning improper polynomial

models. Many are motivated from computation problems, such as Hahn (1977),
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Hedayat, Raktoe and Talwar (1977), Hawkins (1980), and Leoni (1985) while

others arise in time series modeling problems, (Kraemer (1985), Lim (1992),

Perron (1991), Sharma and Ali (1992)). Casella (1983) noted from the data

analysis standpoint that \The problem of deciding whether an intercept model

or a no-intercept model is more appropriate for a given set of data is a problem

with no simple solution". From the design perspective, it appears that only

Studden (1982) and Lau (1983) have considered seeking optimal designs for fk(x)

on a certain design interval, where canonical moments are used. Our technique

here can be used to �nd optimal designs on more general design intervals and to

extend some of Studden's and Lau's results. Models considered here occur quite

naturally. For example, Lau (1983, p: 85), considered �nding the relationship

between the speed x and the distance y needed to stop an automobile. Suppose

the model is a polynomial of degree m, i.e. E(y) = �0 + �1x+ � � � + �mx
m with

the obvious constraint that y = 0 if x = 0. This implies �0 and possibly other

lower coe�cients are zero so that the model may reduce to

E(y) = �s+1x
s+1 + � � �+ �mx

m

for some s. This is equivalent to a heteroscedastic model with regression function

Fm�s�1(x) and e�ciency function e(x) = x2s+2 (Fedorov (1972)). Thus our re-

sults here are applicable to certain types of problems involving heteroscedasticity.

Further illustration of the use of models without an intercept term is given in

Lau (1983, p: 85).

Our primary goal here is to �nd D-optimal designs for fk(x) on an arbitrary

compact interval 
 = [a; b]. Assume that for each x in [a; b], an experiment can be

performed and the outcome is a random variable y(x) with mean value �Tfk(x)

and a common variance �2. Throughout it is assumed fTk (x) = (x; : : : ; xk), the

vector of parameters �T = (�1; : : : ; �k) and �2 are unknown. Suppose n uncor-

related observations on the response y(x) are to be obtained at levels x1; : : : ; xn.

An exact design speci�es a probability measure � on [a; b] which concentrates

weight pi at distinct xi and where npi is an integer, i = 1; : : : ; r. An approximate

design is one where the integral constraint on all the npi is not imposed. In the

latter case, the covariance matrix of the least squares estimates of the unknown

parameter vector � for the model considered here is given by (�2=n)M�1(�) where

M(�) =

Z b

a

fk(x)f
T
k (x)d�(x)

denotes the information matrix of the design �. In this paper, we are concerned

only with approximate designs.

Following the discussion in Pukelsheim (1993, p: 64), for estimation of the

full parameter vector �, a design � is feasible if and only if M(�) is positive
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de�nite. Therefore for the model fk(x), the minimum number of support points

of a feasible design � is k and does not include x = 0.

An approximate design �� is D-optimal if �� maximizes the determinant of

M(�) among all the feasible designs � on [a; b]. It is well known that the approx-

imate D-optimal design ��k for the model Fk(x) on [�1; 1] is equally supported

at the zeros of (1� x2)P 0

k(x), where Pk(x) is the kth Legendre polynomial (Hoel

(1958)). Here and throughout, the prime denotes the derivative with respect to

x. The set of the support points of ��k is denoted by S�

k = fx�i ; 1 � i � k + 1g,
where �1 = x�1 < � � � < x�k+1 = 1 and x�m+1 = 0 if k = 2m for some positive

integer m.

A di�culty with the D-optimal design for fk(x) is that it is not invariant

under linear transformations, that is the optimal design for fk(x) on a given in-

terval does not transform linearly when the design space is translated linearly.

Accordingly, due to the scale invariance property of D-optimality and the re
exi-

bility of the D-optimal designs when the design interval is re
ected for the model

considered here, we discuss, without loss of generality, the problem of �nding the

D-optimal design for fk(x) on the interval [a; 1];�1 � a < 1. The D-optimal

design for the model fk(x) on [a; 1] is denoted by ��a;k.

Section 2 contains preliminaries and the next three sections discuss results

under three categories: (i) �1=(k2+k�1) � a < 1, (ii) a = �1 and (iii)�1 < a <

�1=(k2+k�1), with a convenient dichotomy for case (i) with �1=(k2+k�1) <

a < y�1 and y�1 � a < 1 and y�1 = (x�2 + 1)=2. The primary tool of analysis here

is the celebrated Kiefer-Wolfowitz Equivalence Theorem (Kiefer and Wolfowitz

(1960)) brie
y described below and solutions of certain di�erential equations

including Sturm-Liouville equations.

2. Preliminaries

Given a design space 
 and a known regression function fk(x), the stan-

dardized variance of the estimated response at a point x under a feasible design

� is

d(x; �) = fTk (x)M
�1(�)fk(x): (2:1)

This variance function plays a crucial role in optimal design theory as can be seen

from the celebrated Kiefer-Wolfowitz Equivalence Theorem mentioned above,

henceforth abbreviated as the KWT. This cornerstone result in essence states,

under the framework considered here, that a feasible design � is D-optimal if and

only if for all x 2 
; d(x; �) is less than or equal to the number of parameters in

the model. This important tool will be used to verify if a design is D-optimal,

in the rest of this paper.

We �rst characterize the number of support points for optimal designs on
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[a; 1];�1 � a < 1 in Lemma 1. The proof is based on a direct application of the

KWT and the fact that the variance function has a zero of multiplicity 2 at the

point 0.

Lemma 1. For the model fk(x), the D-optimal design is supported on

(i) k points (including 1) if 
 = [a; 1] and 0 � a < 1,

(ii) k points if k is even, and k+1 points if k is odd, except possibly when k = 1

if 
 = [�1; 1]. In either case, the optimal design is symmetric and includes �1
as support points.

(iii) either k or k + 1 points if 
 = [a; 1];�1 < a < 0. In the latter case, both a

and 1 are support points.

Note that if the D-optimal design is known to be supported on exactly k

points it must have equal weights on those supports.

Lemma 2. Suppose the D-optimal design ��a;k is supported on Sk = fx1; : : : ; xkg,
and xk = 1. Let u(x) =

Qk
i=1(x� xi). Then

(i) if a 2 Sk, there exists a real � such that u(x) satis�es the di�erential equation

x(x� a)(x� 1)u00(x) + 2(x� a)(x� 1)u0(x) = k(k + 1)(x� �)u(x); (2:2)

(ii) if a =2 Sk, then u(x) satis�es the di�erential equation

x(x� 1)u00(x) + 2(x� 1)u0(x) = k(k + 1)u(x): (2:3)

Proof. Let li(x); i = 1; : : : ; k, be the fundamental Lagrange interpolation poly-

nomials induced by the points of Sk; then (2.1) can be written as d(x; ��a;k) =

k
Pk

i=1 [x
2l2i (x)=x

2
i ]. By the KWT, we must have d0(xi; �

�

a;k) = 0; i = 2; : : : ; k � 1

which implies that xil
0

i(xi) = �1. On the other hand, l0i(xi) = u00(xi)= [2u
0(xi)]

(Pukelsheim (1993, p: 216)), and thus

xiu
00(xi) + 2u0(xi) = 0:

It follows that the polynomial x(x� a)(x� 1)u00(x) + 2(x� a)(x� 1)u0(x) is one

degree higher than that of u(x) and the zeros of u(x) are zeros of this polynomial

as well. There is, thus, a real � and a constant c such that

x(x� a)(x� 1)u00(x) + 2(x� a)(x� 1)u0(x) = c(x� �)u(x):

Comparing the leading coe�cients on both sides shows c = k(k + 1) and the

result follows. For case (ii), the argument is similar.

3. Optimal Designs on [a; 1]; �1=(k2 + k � 1) � a < 1

We are now ready to �nd the D-optimal designs for fk(x) on various subin-

tervals [a; 1];�1 � a < 1. To this end, let y�i = (x�i+1 + 1)=2; i = 1; : : : ; k.
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Theorem 1. For the model fk(x) on [a; 1], where �1=(k2 + k � 1) � a � y�1,

the design ��0;k which concentrates equal weights at y�i , 1 � i � k, is D-optimal.

Proof. First consider the case when a = 0. Since the point a = 0 cannot be a

support point, the u(x) de�ned in Lemma 2 satis�es (2.3). Letting v(x) = xu(x),

it is easy to verify that x(x � 1)u00(x) = (x � 1)v00(x) � 2(x � 1)u0(x) and the

following di�erential equation holds

x(x� 1)v00(x) = k(k + 1)v(x): (3:1)

It is well known that the unique polynomial solution for (3.1) up to a constant

factor is the polynomial x(x� 1)P
(1;1)
k�1 (2x� 1) (Szeg�o (1975, 4.21.1)), where for

any n � 1; �; � > �1; P (�;�)
n (x) is the Jacobi polynomial de�ned by

P (�;�)
n (x) =

(�1)n

2nn!
(1� x)��(1 + x)��

dn

dxn
�
(1� x)n+�(1 + x)n+�

�
: (3:2)

Since the zeros of x(x�1)P
(1;1)
k�1 (2x�1) are the support points of the approximate

D-optimal design for Fk(x) on [0; 1], we have proved the case for a = 0.

Next consider when a 2 (0; y�1 ]. On this interval, it is straightforward to

show the variance function d(x; ��0;k) satis�es the KWT; therefore ��0;k is still D-

optimal. Similarly for other intervals with a < 0, design ��0;k remains optimal if

the variance function d(x; ��0;k) stays bounded above by k for all x in [a; 1]. To

determine the smallest value of a;�1 < a < 0; for which this is true solve for

the smallest zero t of d(x; ��0;k)� k. Evidently, this polynomial has double zeros

at y�i ; 1 � i � k � 1 and a single zero at y�k = 1, where y�i are the zeros of the

derivative of the Legendre polynomial of degree k on [0; 1]. Accordingly, write

d(x; ��0;k)� k = cQ2
k�1(x)

�
x2 � (1 + t)x+ t

�
;

where Qk�1(x) =
Qk�1

i=1 (x � y�i ). But y�i ; 1 � i � k � 1 are also the zeros of the

orthogonal polynomial with respect to the weight function x(1� x) on [0; 1], i.e.

the zeros of the Jacobi polynomial P
(1;1)
k�1 (2x� 1); consequently,

Qk�1(x) =
k�1Y
i=1

(x� y�i ) =
k�1X
i=0

qix
i =

k�1X
i=0

 
k

i

! 
k

k � 1� i

!
(x� 1)k�1�ixi:

The last equality can be obtained from the representation of Jacobi polynomial

on [0; 1] (Szeg�o (1975, p: 68)). In addition, d(x; ��0;k)� k has a local minimum at

x = 0, so the coe�cient of x is 0, yielding

2tq1 = (1 + t)q0:
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Additional computation shows

q0 = (�1)k�1k and q1 = (�1)k�2k(k2 + k � 2)=2;

which yields

t = q0=(2q1 � q0) = �1=(k2 + k � 1):

This completes the proof of the theorem.

Now consider the case when a 2 (y�1 ; 1). By Lemma 1, there are k support

points for the D-optimal design including the right end point 1. The left end

point a is also a support point of the optimal design; otherwise from Lemma

2, u(x) =
Qk

i=1(x � xi) satis�es (2.3), which would imply ��0;k is still D-optimal,

contradicting y�1 < a < 1. By Lemma 2, u(x) =
Qk

i=1(x�xi) =
Pk

i=0 six
i satis�es

(2.2) and comparing coe�cients on both sides of (2.2) yields

(1� �i�1)si�1 + (a+ 1)�isi � a�i+1si+1 = �si; (3:3)

where �i = i(i+ 1)= [k(k + 1)] ; i = 0; : : : ; k; ��1 = 1 and �k+1 = 0.

We are now ready to state the D-optimal design for the model fk(x) when


 = [a; 1] and y�1 < a < 1.

Theorem 2. For the model fk(x) on [a; 1]; y�1 < a < 1, the D-optimal design

��a;k is equally supported on the zeros of the monic polynomial u(x) =
Pk

i=0 six
i,

where the coe�cient vector sT = (s0; : : : ; sk) of u(x) is the unique eigenvector

with sk = 1 corresponding to the smallest eigenvalue (6= a or 1) of the (k+1)�
(k + 1) tridiagonal matrix

A = A(a) =

0
BBBBBBB@

(a+ 1)�0 �a�1 � � � 0 0

1� �0 (a+ 1)�1
. . .

...
...

0 1� �1
. . . �a�k�1 0

...
...

. . . (a+ 1)�k�1 �a�k
0 0 � � � 1� �k�1 (a+ 1)�k

1
CCCCCCCA
; (3:4)

where �i = i(i+ 1)= [k(k + 1)] ; i = 0; : : : ; k:

Before proving Theorem 2 we �rst prove a lemma.

Lemma 3. All the eigenvalues of A de�ned in (3:4) are real.

Proof. After rearranging the equations in (3.3), the coe�cient vector sT =

(s0; : : : ; sk) of u(x) can be expressed as an eigenvector of the matrix A as de�ned

in (3.4) with corresponding eigenvalue �. Note that both a and 1 are eigenvalues

of A. This can be seen by substituting � with a and 1 into (2.2) respectively.
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Also note that when � = a; (2.2) reduces to the di�erential equation satis�ed by

the unique polynomial solution of (2.3) on [0; 1] discussed in Theorem 1. The

case for � = 1 can be proved similarly. Therefore the optimal design can not be

obtained through eigenvalues a and 1.

Now let �j ; j = 1; : : : ; r, denote the distinct eigenvalues of A excluding a and

1. First, from the fact that A is tridiagonal with positive subdiagonal entries

1 � �0; : : : ; 1 � �k�1, it is easy to see that sk 6= 0. Note that the eigenspace for

each �j is of dimension 1, which can be seen through row operations in keeping the

subdiagonal entries and eliminating all the other entries above the subdiagonal.

Therefore there is unique eigenvector with sk = 1 for each �j . Let p(x) =

x2; q(x) = k(k + 1)x2= [(x� a)(x� 1)] and �(x) = k(k + 1)x= [(x� a)(1� x)].

Moreover, as 1TA = 1T and fTk (a)A = afTk (a), where 1T = (1; : : : ; 1) and

fTk (a) = (a; : : : ; ak), it follows that for the corresponding eigenvalue �; u(1) =

1T s = 1TAs = �1T s = �u(1). Similarly au(a) = �u(a). Now by the fact that

� 6= a or 1, we have u(a) = u(1) = 0: Then for a given �; write (2.2) as a

Sturm-Liouville equation

L[u]� ��(x)u = 0; u(a) = u(1) = 0; (3:5)

where L = D[p(x)D]� q(x) is a linear di�erential operator. Although here q(x)

and �(x) are singular on the boundary points, several properties of the regular

Sturm-Liouville problems still apply to the problem here. For example, the eigen-

values of (3.4) are all real. To see this, observe from (3.3) that corresponding to

each �j in (3.4), there is a unique monic polynomial solution uj(x). Furthermore,

L is a self adjoint operator for fujgr1, where the inner product is de�ned by

(ui; uj) =

Z 1

a

ui �ujdx;

and so all the �j are real. For more details about the Sturm-Liouville problem,

see Boyce and Diprima (1992), or Birkho� and Rota (1989).

Proof of Theorem 2. For convenience, let �1 < � � � < �r. We will argue that

the unique polynomial solution u1 corresponding to the smallest eigenvalue �1 is

the only polynomial which has all k zeros in [a; 1]. Then it is the unique solution

from which the D-optimal design on [a; 1]; a � y�1 , is obtained.

Let nj be the number of zeros of uj which lie in [a; 1]. For any pair �i < �j ,

we �rst prove that ni > nj. To this end, let �1 < �2 be two successive zeros

of uj(x) on [a; 1]. Without loss of generality, suppose both ui(x) and uj(x) are

positive on (�1; �2) and let

w(x) = p(x)
h
ui(x)u

0

j(x)� u0i(x)uj(x)
i
:
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Then

w(�1) = p(�1)ui(�1)u
0

j(�1) � 0;

and

w(�2) = p(�2)ui(�2)u
0

j(�2) � 0;

which impliesw0(x) � 0 for some x 2 (�1; �2). On the other hand, for x 2 (�1; �2)

w0(x) =
�
ui(x)

h
p(x)u0j(x)

i
� [p(x)u0i(x)] uj(x)

�
0

=ui(x)
h
p(x)u0j(x)

i
0

� [p(x)u0i(x)]
0

uj(x)

= (�j � �i)�(x)ui(x)uj(x) > 0:

Hence, w(x) is increasing on (�1; �2), which is a contradiction. Since both a and

1 are zeros for both ui and uj ; we must have ni > nj : Finally, since there is at

least one solution of u with k zeros in [a; 1], the solution must correspond to the

smallest eigenvalue �1.

To illustrate the use of Theorem 2, consider the problem of �nding the D-

optimal designs when k = 4 and 
 = [1=2; 1]. First note that 1=2 = a > y�1 =

(x�2 + 1)=2 = 0:17267, and the matrix A de�ned in (3.4) is

A =

0
BBBBB@

0 �1=20 0 0 0

1 3=20 �3=20 0 0

0 9=10 9=20 �3=10 0

0 0 7=10 9=10 �1=2
0 0 0 2=5 3=2

1
CCCCCA :

The eigenvalues of A are (10 �
p
19)=20 = 0:282055; 1=2; 1=2; (10 +

p
19)=20 =

0:717945 and 1. The smallest eigenvalue (6= 1=2 and 1) of A is (10 �
p
19)=20

and the corresponding eigenvector is (0:292466;�1:64983; 3:40223;�3:04486; 1).
Therefore the polynomial u(x) = x4�3:04486x3+3:40223x2�1:64983x+0:292466;
and the D-optimal design is equally supported at the zeros of u(x), i.e. 0.5,

0.664177, 0.880685 and 1.

4. Optimal Designs on [�1; 1]

Following a similar argument using the di�erential equation (2.2), we show

that, excluding 0, the support points of the D-optimal design ��
�1;k coincide with

those of the D-optimal design ��k for Fk(x) on [�1; 1] when k is even.

Theorem 3. For the model fk(x) with k = 2m on [�1; 1], the design ��
�1;k which

concentrates equal weights on the points of S�

k n f0g is D-optimal.
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Proof. From Lemma 1 and (2.2) the polynomial u(x) satis�es

x(x2 � 1)u00 + 2(x2 � 1)u0 = k(k + 1)(x � �)u:

Note that u(x) is symmetric with u0(0) = 0 and u(0) 6= 0. After substituting

x = 0 in the above equation, it follows that � = 0: Hence u(x) satis�es

x(x2 � 1)u00 + 2(x2 � 1)u0 = k(k + 1)xu:

Now let v(x) = xu(x). By a similar argument in the proof of Theorem 1 we

have

(x2 � 1)v00 = k(k + 1)v;

whose unique polynomial solution is (1� x2)P
(1;1)
k�1 (x), where the Jacobi polyno-

mial P
(1;1)
k�1 (x) is as de�ned in (3.2) up to a constant factor, (Abramowitz and

Stegun (1964, 22.6.2)). Since the zeros of (1�x2)P
(1;1)
k�1 (x) are the support points

of ��k, the proof for the case a = �1 and even k is complete.

For the case when k is odd, the problem is apparently much harder and

analytical results are not available. We computed the optimal design using a

Fortran program which calls a maximization routine from IMSL. In each case,

the starting design is ��k and the optimality of the design was veri�ed using the

KWT with maxx d(x; �) � k � 10�7. Table 1 shows the positive support points

and corresponding weights of the numerically D-optimal designs for odd values

of k between 3 and 15, and the negative supports can be obtained symmetrically.

Table 1. D-optimal designs for odd degree on [�1; 1]

3 0.602 1.000

0.178 0.322

5 0.434 0.781 1.000

0.124 0.178 0.198

7 0.338 0.622 0.875 1.000

0.097 0.123 0.138 0.142

9 0.277 0.515 0.747 0.927 1.000

0.080 0.095 0.105 0.109 0.111

11 0.234 0.439 0.645 0.823 0.945 1.000

0.068 0.077 0.085 0.089 0.090 0.091

13 0.203 0.382 0.566 0.734 0.869 0.960 1.000

0.059 0.065 0.072 0.075 0.076 0.076 0.077

15 0.179 0.339 0.503 0.660 0.795 0.900 0.970 1.000

0.053 0.057 0.062 0.064 0.065 0.066 0.066 0.067

Left column: degree k of the polynomial regression without intercept.

Right columns: positive support points in upper row, weights in lower row.
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It can be seen that the support points of these optimal designs are more

dense near the boundaries than in the center 0. The weight also increases as jxij
increases and the optimal weight approaches 1=k as k increases. This is justi�ed

in Lemma 4.

Lemma 4. Let w1 � � � � � wk+1 be the ordered weights of the optimal design

��
�1;k. Then for i = 1; : : : ; k + 1; the weights wi satisfy

1

k

�
i� 1

i

�
� wi �

1

k
:

Proof. The upper bound for wi is given by Pukelsheim (1993, p: 201). Note

that
Pi

j=1 wj = 1�
Pk+1

j=i+1 wj � iwi and
Pk+1

j=i+1 wj � (k + 1� i)=k: Combining

these two inequalities, we obtain the desired lower bound for wi.

5. Optimal Designs on [a; 1];�1 < a < �1=(k2 + k � 1)

General analytical formulas are not available for this case. However, it is

known that the support points of the optimal design are either k or k + 1 de-

pending on the values of a and k. Numerically optimal designs can be constructed

with the aid of Table 2 below. To gain insight on how the results in Table 2 are

obtained, it is instructive to consider the case k = 2 in some detail. Results for

k � 3 are derived similarly.

Table 2. Intervals of a for D-optimal design with k support points

k

2 (�1:000;�0:217)(�0:200=�2=5; 1)

3 (�0:930;�0:104)(�0:091=�1=11; 1)

4 (�1:000;�0:531)(�0:443;�0:062)(�0:053=�1=19; 1)

5 (�0:903;�0:323)(�0:267;�0:041)(�0:034=�1=29; 1)

6 (�1:000;�0:678)(�0:552;�0:220)(�0:180;�0:029)(�0:024=�1=41; 1)

7 (�0:903;�0:465)(�0:379;�0:160)(�0:131;�0:022)(�0:018=�1=55; 1)

8 (�1:000;�0:761)(�0:623;�0:342)(�0:278;�0:122)(�0:100;�0:017)(�0:014=�1=71; 1)

9 (�0:908;�0:561)(�0:461;�0:263)(�0:214;�0:096)(�0:079;�0:013)(�0:011=�1=89; 1)

10 (�1:000;�0:812)(�0:674;�0:433)(�0:357;�0:209)(�0:171;�0:078)(�0:064;�0:011)(�0:009=�1=109; 1)

Theorem 4. For the model f2(x) de�ned on [a; 1], there exists a number a0
such that the design �a;2 supported with equal mass on the two points a and 1,

is D-optimal if �1 < a � a0, and a0 is the unique root in [�1;�1=5] of the
equation

z2[(1� z)2 + a2(z � a)2]� a2(1� a)2 = 0; (5:1)
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where

z = z(a) =
h
3(1 + a3)� (a6 � 8a4 + 18a3 � 8a2 + 1)1=2

i
=
�
4(1 + a2)

�
:

Moreover, if a0 < a < �1=5; the D-optimal design ��a;2 has three support points

a;�2a=(1 + a); 1 with corresponding weights w1; w2; 1� w1 � w2, where

w1 = 4(1 + 5a)=
�
(1� a2)(3 + a)(1 + 6a+ a2)

�
;

and

w2 = (�1� 4a+ 2a2 � 4a3 � a4)=
�
(3 + a)(1 + 3a)(1 + 6a+ a2)

�
:

Proof. The key idea is the KWT applied to the behavior of the variance function

for d(x; �a;2): Straightforward algebra veri�es

d(x; �a;2) = 2x2[(1 � x)2 + a2(x� a)2]=
�
a2(1� a)2

�
;

and

d0(x; �a;2) = 4x[(2a2 + 2)x2 � 3(a3 + 1)x+ (a4 + 1)]=
�
a2(1� a)2

�
:

The discriminant of the quadratic polynomial in the numerator of d0(x; �a;2); is

9(1 + a3)2 � 4(2a2 + 2)(1 + a4) = a6 � 8a4 + 18a3 � 8a2 + 1:

One can verify that there exists a unique a1 2 (�1;�1=5), such that this dis-

criminant vanishes at a1 and is negative for a 2 (�1; a1) and nonnegative for

a 2 [a1; 0) (Numerical calculation shows a1 is approximately �0:27228). Then

for �1 < a < a1 d0(x; �a;2) < 0 if x < 0;= 0 if x = 0 and > 0 if x > 0,

which implies d(x; �a;2) has no local maximum in interval (a; 1) for �1 < a < a1.

Consequently, if �1 < a < a1, �a;2 is optimal by the KWT. Next, for the case

a1 � a < �1=5, algebra shows that d(x; �a;2) has a local maximum in (a; 1) at

z = z(a) de�ned near (5.1), and d(z; �a;2) is a continuous and increasing func-

tion of a on the interval a1 � a < �1=5. Solving the equation d(z; �a;2) = 2 in

terms of a yields a unique solution a0 which satis�es (5.1) (a0 � �0:216845). It
follows that for all x, d(x; �a;2) � 2 if a1 � a � a0, but for a0 < a < �1=5 it

follows that d(z; �a;2) > 2. This implies a two-point design with equal weights

can not be optimal for a0 < a < �1=5. Therefore if a0 < a < �1=5, the optimal

design ��a;2 has three support points. Now, for a design � with three supports

at a; s; 1 and corresponding weights w1; w2; 1 � w1 � w2; the optimal solutions

s; w1 and w2 maximizing the determinant of M(�), under the constraints that

a < s < 1; w1 > 0; w2 > 0 and 1 � w1 � w2 > 0, can be found by solving the
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equations obtained through taking partial derivatives of the determinant ofM(�)

with respect to s; w1 and w2, where w1; w2 can be expressed easily in terms of s

and later the optimal s can be determined. This yields the solutions as stated in

the theorem. Then the variance function of the design ��a;2 can be shown to be

d(x; ��a;2) = 2 + (x� a)(1� x) [2a+ (1 + a)x]
2
=(2a3) � 2; for all x 2 [a; 1];

where the KWT is satis�ed, and the proof is complete.

For 3 � k � 10; we also indicate in Table 2 the intervals of values of a such

that the number of supports of the D-optimal design on [a; 1] are k. The optimal

designs ��a;k are supported on k+1 points for those values a in (�1;�1=(k2+k�1)),
but not in any of the intervals given in Table 2. In addition, observe that the two

end points are in the supports of the optimal design if a < �1=(k2+ k� 1). Now,

using (3.3) we can determine the optimal design by exhausting all possible polyno-

mial solutions u(x) de�ned in (2.2) if the number of supports of the optimal design

is k: It is found that there are [k=2]+1 intervals of a, such that the optimal design

is supported by exactly k points. Here [x] denotes the greatest integer smaller

than or equal to x. After an extensive numerical study we have also found an

interesting relation between the intervals and the eigenvalues of A de�ned in (3.4)

corresponding to the optimal designs. Speci�cally, the support points of the opti-

mal design are the zeros of the polynomial solution corresponding to the ith small-

est eigenvalue if a is in the ith interval from the right in Table 2. For instance, if

k = 4 and a = �1=3, a is in the second interval from the right, then the eigenval-

ues of A are �1=3;�0:0643053; 0:192547; 0:538425, and 1, and the support points

of the optimal design are �1=3; 0:376862; 0:783901, and 1, which are the zeros

of the polynomial u(x) = x4 � 1:82743x3 + 0:735932x2 + 0:189973x � 0:0984742.

Note that the coe�cients of u(x) are obtained from the eigenvector correspond-

ing to the second smallest eigenvalue �0:0643053. Similarly it can be veri�ed

that if a = �2=3, a is in the third interval from the right and the eigenval-

ues of A are �2=3;�0:246218; 0:0949928; 0:484559, and 1. The support points

of the optimal design are �2=3;�0:417435; 0:679953; 1 which are the zeros of

u(x) = x4 � 0:595851x3 � 0:862997x2 + 0:269624x + 0:189224, where the coe�-

cients of u(x) are obtained through the third smallest eigenvalue 0.0949928.

In order to be able to understand the discussion above more clearly, in Figures

1 and 2, we present plots of the dispersion functions of the D-optimal designs

(those with k+1 supports are computed numerically) in certain design intervals

[a; 1];�1 � a < 1; for the cubic and the quartic models. There it is demonstrated

how the support points of the optimal designs change according to a. It can also
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Figure 1. Plots of the dispersion functions of the D-optimal designs in

certain design intervals [a; 1];�1 � a < 1; for the cubic model fT3 (x) =

(x; x2; x3).
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Figure 2. Plots of the dispersion functions of the D-optimal designs in

certain design intervals [a; 1];�1 � a < 1; for the quartic model fT4 (x) =

(x; x2; x3; x4).
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be seen how the number of supports of the D-optimal designs change between k

and k+1 for di�erent design intervals through the continuous movements of the

corresponding dispersion functions.

As a remark on why we do not have similar analytic results as in Theorem

2 for the case discussed in this section, note that in Theorem 2, for a > 0, the

Sturm-Liouville equation de�ned in (3.5) plays an essential role, where �(x) > 0;

for x 2 (a; 1) is required. Although for a < 0; �(x) < 0 for x < 0 and �(x) > 0

for x > 0, this means the result we used concerning the Sturm-Liouville equation

does not apply directly. More investigations are needed to verify the conjecture

we have described in this section.

6. Approximation for ��a;k

Since the optimal designs for fk(x) are not well known, it may be of interest

to compare the e�ciencies of ��k for the model fk(x). For brevity, we consider

only the case when 
 = [�1; 1] for k � 2, since for the case k = 1; ��k is still

optimal. Other intervals are similarly treated. Recall that if �d(�) = max
x2


d(x; �),

the D- and G-e�ciency of a feasible design � are respectively given by

eD(�) =

� jM(�)j
max� jM(�)j

�1=k
and eG(�) =

k
�d(�)

:

To obtain e�ciency bounds, let V be the Vandermonde matrix induced

by the points of S�

k , i.e. vij = (x�j )
i�1, and li(x)'s be the Lagrange inter-

polating polynomials induced by the points x�i ; 1 � i; j � k + 1. Clearly,

Fk(x) = V (l1(x); : : : ; lk+1(x))
T = V l(x). Let 1 be a (k + 1) vector with all

elements equal to 1, V = (1; V T
0 )T where V0 is a k � (k + 1) matrix. Now

fk(x) = V0l(x); and for any feasible design �,

M(�) =

Z
f(x)fT (x)d�(x) =

Z
V0
�
l(x)lT (x)

�
V T
0 d�(x) = V0Ml(�)V

T
0 ;

where Ml(�) =
R
l(x)lT (x)d�(x). After some algebra, we have

d(x; �) = lT (x)V T
0

�
LM�1

l LT � LM�1
l RT (RM�1

l RT )�RM�1
l LT

�
V0l(x);

where L is a left inverse of V T
0 and R = I�V T

0 L. (Pukelsheim (1993, p: 74)). Let

V �1 = (b; LT ). Then R = 1bT and (RM�1
l RT )� = (bTM�1

l b)�1(11T )�. After

some computation, we have

V T
0 L

�
M�1

l �M�1
l RT (RM�1

l RT )�RM�1
l

�
LTV0

= (I �R)
�
M�1

l �M�1
l RT (RM�1

l RT )�RM�1
l

�
(I �R)T

= M�1
l �M�1

l RT (RM�1
l RT )�RM�1

l

= M�1
l �M�1

l b1T (bTM�1
l b)�1(11T )�1bTM�1

l ;
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therefore,

d(x; �) = lT (x)M�1
l (�)l(x) �

�
lT (x)M�1

l (�)b
�2
=
�
bTM�1

l (�)b
�
:

Since ��k is equally supported on S�

k , (k + 1)Ml(�
�

k) = I and lT (x)l(x) � 1 for all

x 2 [�1; 1], we have
�d(��k) = max

x
d(x; ��k) � k + 1; (6:1)

and eG(�
�

k) � k=(k + 1). By Theorem 2.3.4 of Kiefer (1960) and (6.1), we have

eD(�
�) � [exp(�1)]1=k and eD(�

�

k) � exp [1=(2k2 + 2k)]
1=k

. Note that both the

D- and G-e�ciency of ��k tends to 1 as k tends to in�nity.

7. Further Discussion

In this closing section, we suggest some avenues for further work in this

area and a further thought of why theoretical developments for such models

might be potentially important. We also discuss brie
y the cases where we have

submodels of Fk(x) other than fk(x) and when we have more than one factor in

the experiment.

We have restricted attention primarily to the case where the missing terms in

Fk(x) is the intercept term, but interest in other models with additional missing

terms can also be useful. For example, Atkinson and Cox (1974) considered what

they called the equal interest model in the context of discriminating between

two plausible models. These are essentially the models considered here with

the regression function having two components, xp�1 and xp; (see Hill (1974)

for numerical results). It may be interesting to generalize models having more

missing components on arbitrary intervals [a; 1], which have been considered as

a weighted polynomial regression model in Studden (1982) for interval [0; 1] and

Lau (1983) for interval [�1; 1]. For further discussion on the non-invariance

properties of designs for these models under non-singular transformations, see

Wong and Cook (1993).

In the work here, we have studied properties of optimal designs for the model

fTk (x) = (x; : : : ; xk) on the interval [a; b], where a < b. By �xing b = 1, we have

obtained analytical results when �1=(k2 + k � 1) � a � 1. When a is near

�1, analytical results remain elusive and numerical results have been provided.

It is interesting to note that in this paper, we did not rely on the theory of

canonical moments, which is a common tool for studying D-optimal designs for

the full polynomial model, (Studden (1980, 1982, 1989) and Dette (1990, 1992a)

or certain reduced polynomial models, Dette (1992b)). A reason for this is we

were unable to �nd a useful formula for the determinant of the information

matrix for submodels of Fk(x) of a design in terms of its canonical moments.

This is unlike the case for the full model Fk(x), where the determinant can be
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written compactly as a �nite product of functions of the canonical moments,

(see Lau and Studden (1985)). We hope this work stimulates further research in

constructing optimal designs for fk(x), and more generally submodels of Fk(x).

An immediate payo� would be the potential application to characterizing and

studying properties of A-optimal designs for Fk(x) using canonical moments.

This is because A-optimal designs minimize
Pk

i=1 jMi(�)j=jM(�)j, where M(�) is

the information matrix for Fk(x) and Mi(�) is the information matrix for Fk(x)

with the ith term deleted.
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