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BOOTSTRAP ESTIMATES OF THE POWER
OF A RANK TEST IN A RANDOMIZED
BLOCK DESIGN

Denis Larocque and Christian Léger
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Abstract: In this article, we use the bootstrap to estimate the power of a distribution-
free rank test introduced by Mack and Skillings (1980) for the hypothesis of no treat-
ment effect in a randomized block design, or a two-way analysis of variance model
with no interaction. Since ties affect the distribution of rank tests and because the
sample size in each cell is usually too small, the resampling must be done from a
smoothed version of the.empirical distribution function of residuals. The theory will
show that the type of smoothing is crucial to attain asymptotic consistency under
local alternatives. A small sample simulation shows that a particular implementation
of the bootstrap does well.
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1. Introduction

Many testing procedures based on ranks have been proposed in the literature
since the 1930’s, with perhaps the Mann-Whitney-Wilcoxon test as the most
well-known example. These tests are appealing because they are distribution-
free under the null hypothesis, simple to compute, and often have good efficiency
compared to the classical testing procedures, even though they do not require
strong parametric assumptions. B

The power function is often needed in practice. It allows the practitioner to
find out the probability of rejection for a given alternative hypothesis of interest,
key information when the null hypothesis is not rejected. More importantly, an
estimate of the power function, based on a pilot study, can be used to decide
what sample size should be used to guarantee a certain power for a given al-
ternative. Unfortunately, just as in classical tests, the power function of rank
tests does depend on the distribution of the observations. The bootstrap pro-
vides a nonparametric estimate of the power function. The resulting combination
of a distribution-free test with high asymptotic efficiency and a nonparametric
bootstrap procedure to estimate its power should prove very attractive from a
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practical point of view.

We consider a Friedman-type rank test introduced by Mack and Skillings
(1980) for the hypothesis of no treatment effect in a randomized block design.
The test can also be used in a two-way analysis of variance without interaction.
From a practical as well as theoretical point of view, this combination of model
and test provides an interesting example for the proper use of the bootstrap
in testing. Whereas in the two-sample problem we can usually resample with
replacement within each sample, in a two-way ANOVA, the sample size in each
cell is usually too small. Instead, as in regression, bootstrap observations are
constructed from resampled residuals. Second, since ties adversely affect the
distribution of rank tests, the empirical distribution of the residuals must be
smoothed. This adds a level of difficulty to the asymptotic theory.

Efron (1979) introduced the bootstrap. Beran (1986) showed how the boot-
strap could be used to estimate the critical value of a test as well as how to
estimate the power of a test under local alternatives. He proved very general
asymptotic results that do not apply directly here. Many others have used the
bootstrap to estimate critical values in complex situations and showed asymp-
totic consistency, most notably Romano (1988), Beran and Millar (1989), Chen
and Loh (1991) and Arcones and Giné (1991). The bootstrap has also been used
to construct test statistics with smaller level error, e.g., Beran (1988), something
that we need not do here since the test is distribution-free. Collings and Hamil-
ton (1988) have used the bootstrap to estimate the power of the two-sample
Wilcoxon test, while Hamilton and Collings (1991) used it to estimate the sam-
ple size necessary to achieve a given power. Their studies are only empirical.
In this paper, we study the two-way ANOVA model without interaction. Fisher
and Hall (1990) have also considered that model, but they use the bootstrap to
estimate the critical point of F'-like tests for which no smoothing is required.

The model, the test, and the bootstrap procedures are introduced in the
next section. In Section 3, we demonstrate that, under local alternatives, the
bootstrap estimate of the power based on resampling from a kernel estimate
computed from the least squares residuals is asymptotically valid. We also discuss
a number of generalizations, including other types of residuals, and resampling
separately in each block. Section 4 contains the results of a simulation which
demonstrate that the procedure works well; and concluding remarks are presented
in Section 5. The proofs are deferred to an appendix.

2. Test and the Bootstrap Methodology

Consider the model for a two-way analysis of variance with no interaction
given by
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Xijk:ps—%-ai—}-ﬁj—}—eijk, i=1,...,I,j=1,...,J,k=1,...,n,-j21, (1)

where ; s
ZaiZZﬂ]‘ZO, (2)
i=1 j=1

u is the global mean, the a,’s and the §;’s are the (fixed) treatment effects
of factors A (lines) and B (rows), respectively, and the €;;;’s are independent
random variables having the same continuous distribution function F with mean
0, and finite variance 0. Also let N = Zfﬂ Zjﬂ n;;. While the rank test does
not require the existence of moments, our bootstrap procedure requires that we
use residuals to estimate F, hence our need for the first two moments. This model
also describes a randomized block design where factor A is the blocking factor and
factor B is the treatment. The hypothesis of interest is Hy : f1 = --- = 8; = 0,
i.e., no treatment effect for the second factor.

Mack and Skillings (1980) introduced a generalization of the Friedman (1937)
rank test for a two-way ANOVA with one observation per cell. Even though the
test can be described for general n,;, we restrict ourselves to the case of propor-
tional frequencies, i.e., n;; = ny.n.;/N, for all < and j where n;. = Zjﬂ n;; and
n. = Zle n;;. In this case, the test statistic has a simple closed form formula.
The test is as follows. Within each level of factor A, rank the observations from
smallest to largest. Let R;; denote the sum of the ranks in the cell ¢j. For each
level of factor B, let R; = S, Rij/ni;. (Mack and Skillings (1980) used R;
instead—which could be confusing in a bootstrap paper—and reserved R; for a
different purpose.) The test statistic is

Ty =

12 J 3)

NN +1)“

J

2
n.j (R] - ']%f—]) s
and H, is rejected for large values of Tn.

The test is distribution-free under the null hypothesis. Moreover, Mack and
Skillings (1980) have shown that it has the same asymptotic relative efficiency
relative to the classical F -test as the Mann-Whitney-Wilcoxon test relative to
the two-sample t-test. Hence, the asymptotic efficiency of Tn relative to the
F -test is .955 for the Gaussian distribution, at least .864 for all continuous dis-
tributions, and it can be larger than or equal to one, as for instance for the
uniform (1) and double exponential (1.5) distributions. They have computed se-
lected critical values from the null distribution of T for some balanced designs.
For other designs, the null distribution can be computed approximately via a

1
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simulation using any continuous distribution F (since it is distribution-free) or,
for large values of n,; and fixed values of I and J , approximated by a chi-squared’
distribution with J — 1 degrees of freedom.

Mack and Skillings (1980) have also obtained the asymptotic distribution of
T under local alternatives. Let nij = Np;; for all ¢ and j and suppose that we
have proportional frequencies. Consider the sequence of alternative hypotheses

given by
0, :
HIN:ﬂj:\/;va .7‘_—17"'7']7 (4)

so that

Xigp=p+oi+6;/N vep, i=1,...,1, j=1,...,J, k= 1,...,n. (5)
The asymptotic distribution of T’y under the alternatives H, v is a noncentral chi-
squared distribution with J — 1 degrees of freedom and noncentrality parameter

A = 12 (/:: fQ(x)dx)ZZ:;p.j Lz:;p.k(@ - Ok)J 2, (6)

where f(z) is the density of the errors €ijk-

To estimate the power function using a bootstrap approach, we must gen-
erate bootstrap errors whose distribution will approach that of the errors, i.e.,
F, and combine them to form bootstrap random variables which satisfy the al-
ternative hypothesis. So, let é be the vector of least squares residuals obtained
from Model (1) and let Ey be its empirical distribution function. We cannot
generate bootstrap errors from Fy as this would lead to ties which create serious
distributional problems with rank tests. So we must smooth Fy. We consider
the class of kernel estimates. Let K be a distribution function symmetric about

0 and let . R
> _ 1 (L — €k
Pl = Tk (T3, "

where the sum is taken over all indices.

The bootstrap estimate of the power of Ty is computed as follows. Let
k(F;b,a, N) be the power of T when the alternative hypothesis is that 8; = b,,
for 7 = 1,...,J, the distribution of the errors is F , the level of the test is o
and the total number of observations is V. For simplicity, we have dropped the
dependence on the n;;’s. On the other hand, since T ranks the observations
independently row by row, the power does not depend on the global mean
or the row effects ;. The bootstrap estimate of K(F;b,a, N) is n(ﬁ’,\N; b, o, N)
and is computed using the following Monte Carlo simulation. Let the N €, be
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distributed independently and identically according to F, ~- Then the bootstrap
observations are

X*k—-b +6'L]k’ i=1,...,],j=1,...,J,k=1,...,nij. (8)

Due to ranking done independently in each row, there is no need to estimate the
global mean p or the row effects o; and, without loss of generality, they are set
at 0. Using the X;’s, Ty is computed. Repeating this process a large number
of times, &(F \v; 0, @, V) is approximated by the proportion of Ty ’s larger than
the critical value of the test which is taken from tables or approximated by the
a -quantile of a chi-squared distribution with J —1 degrees of freedom.

If more than one alternative hypothesis is of interest, one can estimate the
power by using the same bootstrap errors and compute the different Tx’s in
parallel.

Another possible use of the bootstrap observations is to use pilot data to
estimate the sample size required to attain a given power for a fixed set of alter-
natives b;, j = 1,...,J. Hamilton and Collings (1991) have studied this problem
for the Wilcoxon two-sample test. The problem is as follows. Let p be the
power that we want to attain for the alternatives b; and let m, = IJ K, be the
smallest total sample size required to attain that power, where, for simplicity,
we use K, observations in each of the IJ cells. The bootstrap estimate of m,
is found 1terat1vely by computing n(FA vi b, a,m) for increasing values of m, that
is for mcreasmg values of K, until the estimate of power is larger than p, i.e.,
min{m : k(Fyy;b,a,m) > p}. Note that we are estimating the power for a total
sample size m different from the total sample size IV of the pilot data. In fact, the
estimated sample size is usually larger than the sample size of the pilot data set.
In computing x(F,; b, @, m), one generates m rather than N €};; and constructs
bootstrap observations following Equation (8) (with n;; = K). The larger m is,
as compared to N, the less reliable is the estimate.

3. Asymptotic Consistency

In this section, we show that the bootstrap estimate of the power of the
Friedman-type test Ty converges to the true power under local alternatives when
bootstrapping from F, N-

We make the following assumptions on the distribution function of the ob-
servations F and on the kernel k, the derivative of K used in defining F,, in
(7). These conditions are satisfied by many kernels k, such as, for instance, the
normal kernel. First, assume that

(F1) f has mean 0 and a finite variance,
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(F2) f is bounded and absolutely continuous with finite Fisher information, i.e.,

I2o(£'(e)/ f(€))* f(€)de < oo,

(F3) f'is umformly continuous and bounded.

Also, assume that
(K1) J2o k(z)dz = 1, 2 zk(z)dz = 0, ky = [% z%k(z)dz < oo,
(K2) k is symmetric about 0,
(a) [72, |kY)(z)|dz < oo and kW(z) — 0 as |z] —» 00, j = 0,1,

(b) &' is uniformly continuous (with modulus of continuity wy/) and of
bounded variation,

(K3) (c) J2 |z logla|*/?|dK' (z)] < oo,

" (d) setting 7(u) = {we (w)}/2, [ {log(1/u)}2dy(u) < oo,
(e) the Fourier transform of k is not identically 1 in any neighborhood of 0.

Let Gn(z, F') be the distribution function, evaluated at z, of the statistic
Tn under the local alternatives Model (5) when the distribution of the errors
is F. When resampling from F) ~» the bootstrap distribution function of Ty is
Gy(z, F) ~)- Our main result is that the difference between these two distribu-
tions converges to 0 in probability.

Theorem 1. Suppose that F satisfies conditions (F1) — (F3), and that the
kernel satisfies conditions (K1) — (K3). If Ay — 0, N=1)3 log(1/An) — 0, and
N/2)2 /log(N) — 0, then

sup |Gn(z, Fy,) — Gu(z, )| -0, in probability. (9)

Note that the conditions on Ay are satisfied if Ay = AN~" with A > 0 and
1/4 <r < 1/3. The proof is in the appendix.

Remark 1. The conditions on f and k could probably be weakened. We assume
the existence of the first two moments because we use least- squares residuals. To
show that the derivative of f,\ v 18 uniformly bounded, we have imposed conditions
(F3) and (K3) so that fA converges uniformly to f’, a much stronger condition.
Condition (K2) on the symmetry of the kernel is only there for convenience.

Remark 2. In a randomized block design, the hypothesis that the distri-
bution of the errors F is the same for all blocks may not be valid. For in-
stance, the variance may differ from block to block. Provided that we have
enough observations in each row, we could construct separate kernel estimates
of F;, the distribution of the errors in row i, from the least squares residuals
of the one-way ANOVA in each row. The bootstrap resampling would then be
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done row by row. The asymptotic distribution of Ty would still be chi-squared
with J — 1 degrees of freedom, but the noncentrality parameter would become
Ar = 12(S0,pi. [, fA(z)dz)* S p.; [T pk(6; — 0x))°, where f; is the density
of F;. T heorem 1 remains valid so that the bootstrap would be asymptotically
justified.

Remark 3. To estimate F, the distribution of the errors, we have used the
least squares residuals. This requires the existence of the first two moments, an
assumption that we may not want to make, especially when using a distribution-
free test. Our result remains valid for many other types of residuals. In particular,
our proof relies on Theorem 4.6.2 of Shorack and Wellner (1986) and this theorem
is valid for residuals of many types of M -estimates.

Remark 4. The classical test of Friedman (1937) has only one observation per
cell and the chi-squared asymptotic distribution is obtained by letting I, the
number of blocks, tend to infinity. Other generalizations, such as the tests based
on weighted rankings introduced by Quade (1979) and studied by Tardif (1987),
also rely on an increasing number of blocks with a fixed number of observations
(> 1) for each treatment within a block. Our bootstrap approach would not
work in this context as the ratio of the number of parameters to the number of
observations would not converge to 0, as is required for the appropriate conver-
gence of the empirical distribution function of the residuals to F', see e.g., Bickel
and Freedman (1983). This is why we have fixed the number of blocks and as-
sumed instead that the number of observations in each cell tends to infinity. If
the number of blocks and the number of observations in each cell both increase
at an appropriate rate, the results may remain valid, but our method of proof,
which has relied on the assumption of a fixed number of cells, would have to be
modified.

Remark 5. When we estimate the sample size necessary to attain a given power,
we estimate the power for a total sample size different from that of our sample.
Let N be the sample size of the pilot study and let m be the sample size for which
we want to estimate the power. Then F, = F,\N, i.e., the estimate of F' is still
based on N observations and not m. Therefore { £}, } must satisfy conditions (10),
(11), and (12), given in the appendix. Only Condition (10) imposes restrictions
on the relationship betvveen m and N. By looking at the proof of Theorem 1,
we see that if \/m/N/log(m) — 0, N™*X3log(1/Anx) — 0, and VN, = 0(1)
then the bootstrap estimate of the power under local alternatives remains valid.
For instance that condition remains valid if N = cm where c¢ is a constant, or
if N = m/log(m); but the condition is not satisfied if N = m?, for 0 < p <1
Therefore we can estimate the power under local alternatives for a sample size
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m larger than N, the sample size of our experiment, but m cannot be “much”
larger than N.

4. Simulation Study

In this section, we give some empirical evidence that the bootstrap estimate
of power works well by evaluating its performance via a simulation. We begin by
a description of the simulation study.

We used a complete factorial design with four factors: the number of blocks
I = 5,10, the number of treatments J = 3,5, an equal number of observations in
each cell of n;; = K = 1,3,5, and three distributions for the errors. The distri-
butions were the standard normal, the double exponential with scale parameter
1/ V2 and the uniform on the interval (—1.732, 1.732) so that each distribution
has mean 0 and variance 1. The tests were performed at the 5% level. The treat-
ment effects for the alternative hypotheses were equally spaced and symmetric
about 0; for instance, when J = 5, they are of the form 8, = —2c, By = —c,
B3 =0, By = c and fBs = 2c where c is a positive constant. For each of the 36
combinations, seven sets of alternatives were selected by choosing values of ¢ so
that the true power of the test is close to 0.05 (¢ = 0), 0.10, 0.25, 0.50, 0.75,
0.90 and 0.95. To find these constants, a preliminary simulation of size 40,000
was carried out. The estimated power for this pilot simulation will be referred
to as the “true power”. Then, for each combination, the bootstrap procedure
was repeated 500 times with 1,000 bootstrap samples. Each sample of boot-
strap residuals was used to compute bootstrap observations for each of the seven
alternatives. We used a normal kernel with a bandwidth of Ay = N~3. The
computations were performed on a Sun Sparc station 2 using FORTRAN 77 and
functions in the NAG library.

For each of the 36 combinations, we computed the mean, the median, the
standard error, and the 5th and 95th percentiles of the 500 estimations for each
of the seven alternatives. We analyzed the results over the seven alternatives case
by case, and also over the 36 combinations for each of the seven alternatives. The
median bias will not be discussed here as it is in good agreement with the mean
bias. We begin with the analysis for each fixed alternative.

Table 1. Ratio of the number of parameters to the number of observations

I | J | K| ratio I | J K| ratio I | J | K| ratio
51310467 || 55| 3]012 1 10 3] 5] 0.080
513130156 || 5|5]|5 ] 00721 10|51 1] 028
53] 510093 |10 3| 1] 0400 || 10|51 3| 0.093
515 | 11]0360 |10 3] 3| 01331 10| 5|5/ 0056
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In Remark 4, we noted that if the ratio of the number of parameters to the
number of observations does not tend to zero, the bootstrap may not work. We
have found that using this ratio as a dependent variable explains most of the
variability in the mean bias and in the standard error of the 36 cases that we
have considered. Table 1 provides the value of the ratio for the 12 combinations
of number of blocks, treatments, and cell sample size. Figures 1 and 2 show
plots of the mean bias and of the standard error versus the ratio of parameters
to observations when the true power is 50% and 90% respectively. Each of these
four plots contains 36 points corresponding to the 36 cases studied. The plotting
character identifies the distribution: N for normal, D for double exponential and
U for uniform. The same plots when the true power is 10%, 25%, 75% and 95%
are nat included as each of them is similar to one of the two presented. When the
true power is 5% we simply have noise since the test is distribution-free under
H,. Looking at these two figures, we find that, as expected, the performance of
the bootstrap procedure gets better as the ratio decreases; except perhaps for
the mean bias of the double exponential distribution which does not improve in
absolute value. When the true power is 50% (Figure 1), the fit for each distri-
bution is almost linear both for the mean bias and the standard error. Looking
at the upper plots, the mean bias curve of the double exponential distribution is
always below the other two which are similar. The plots of standard error show
that the uniform distribution has the smallest standard errors when the ratio is
small. When the ratio is large, no distribution dominates. In summary, for the
designs and distributions considered here, the mean bias (in absolute value) is
less than 0.04 and the standard error less than 0.10 everywhere along the power
curve when the ratio of parameters to observations is below 1/10.

We also analyzed the results case by case by plotting the mean, and the 5th
and 95th percentiles of the difference between the estimated power and the true
power for each of the seven alternatives versus the true power. Figures 3 and
4 show four typical examples. These figures were inspired by Figures 5 through
10 of Collings and Hamilton (1988). In Figures 3 and 4, the distributions are
normal and double exponential, respectively, while the results for the uniform are
usually similar to those of the normal. In both cases, the upper and lower plots
correspond to designs with a small and a large ratio, respectively. The two upper
plots of Figures 3 and 4, with a design of 75 observations and 7 parameters,
compare well with Figures 7, 8 and 9 of Collings and Hamilton (1988) which
correspond to 40 observations and 1 parameter (the shift parameter). These
plots give a very good idea of the general pattern when the ratio varies and the
procedure seems reasonably reliable when the ratio is below 1 /10.
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Figure 1. Mean bias and standard error versus the ratio of the number of parameters to
the number of observations when the true power is 50%. The letter N stands for normal,
D for double exponential and U for uniform random errors.
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Figure 3. Mean curve and 90% envelope curves for the deviation of the estimated power
from the true power. The distribution of the random errors is normal and the design is
5 (10) blocks, 3 (5) treatments and 5 (1) observations per cell for the upper (lower) plot.
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5. Conclusion

We have used the bootstrap to estimate the power of a rank test introduced by
Mack and Skillings (1980) to test the hypothesis of no treatment effect in a randomized
block design. To use the bootstrap, bootstrap errors must be simulated from a smoothed
version of the empirical distribution function of the residuals. The bootstrap estimate
of power is consistent under local alternatives provided that the estimator of the distri-
bution of the errors is smooth enough. A kernel estimate is an example. Results from a
simulation study are very good, especially when the ratio of the number of parameters
to the number of observations is less than 1 /10. In that case, for all powers, the absolute
mean bias is less than 0.04 and the standard error less than 0.10.

Appendix

This appendix contains the proof of Theorem 1. Since it is possible to use many
estimates of F' in applying the bootstrap, we will use the approach of Beran (1984) to
show the asymptotic consistency.

Let Cr be the class of sequences of fixed distribution functions {Fn} with densities
{f~} and its first derivatives {f4} such that the conditions

sup |[F(z) = F(z)] = O(N"'/2In N), (10)
Sup sup |fn (@)l = 0(1), (11)

and o o
/ 3 (z)de — / f2(z)dz as N — oo (12)

are satisfied where f is the density of F.

We begin with a lemma. Let R;jx be the rank of X,j; in Xi11, Xi12y ooy Xidna,s
l.e., its rank in the ¢th row. For now, let the index i be fixed and consider the vector
RY = (R, RSy, ... RY ) where

(1) vi2 [ 1 p.j(ng. +1) f_gi)bij(nr +1)
i P Y A

VN

with R;; the sum of the ranks in the ijth cell, i.e., R;; = .7, R;;x, and

fj(-i)= \/ftTppj—< Zﬁm)/ Pz (13)

bi]‘ = n,-.p.j(l -—p.j), (14)

with f the density of F'. The following lemma shows that Rf,\i,) 1s asymptotically normal.
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Lemma 1. Let F have a density f with bounded derivative f'. Let {Fn} be
in Cp. Consider the local alternatives Model (5) with €;;x independently and
identically distributed from Fy, and n;; = Np;; = Npip; > 0, for all i and
7. Then the vector R%) has a multivariate asymptotic normal distribution with
mean 0 and covariance matrix p; =, where L, = px(l —px), k=1,...,J, and

k1 = —pipa for k #1.

Proof. We begin by showing the asymptotic normality of a vector'S%), apply a linear
transformation to it, modify its mean, before concluding that Rg\z,) is asymptotically
normal. Consider the simple linear rank statistic Sx?j given by

Nij

i n;. nz + 1) <
S( Nj = (n;. + 1 (Z Rijk = pj—F— : ) chgka(Rilk)’ (15)
— z] 1

where ) _
J (1—p.j)/b1j, lfl=],

Cie = »

—p-j/bij’ l#],

and the scores a(k) are generated as follows

a(k) = ¢ <nk+1>

with ¢(u) = u, and b7; defined in (14). Now let S%) = \/E(S%)l gf,l, . Sj(f, J ug\,)J)
where

J ng J nim _
S

We now show that SI(\Z;) is asymptotically normal with mean 0 and covariance matrix V
Witth’k=1,k=1 Jandel \/])_u)—./\/l—pk(1*~p1)f0rk#l

Let X = (XAy,... )\J) be any fixed vector in R’ and let Z' = (Z;,...,Z;) be
a multivariate normal random vector with mean 0 and covariance matrix V. Using
Theorem C of Serfling (1980, p.303), we now show that )\’Sﬁ) converges weakly to a
normal random variable with mean 0 and variance X'V A. Since ¢ has a bounded second
derivative, £c¢7, = 0, 22( )% = 1, and max(cj,)? = O(N~1/2), then the conditions of
Serfling’s Theorem on c7, and ¢ far Sg\,) are satisfied. Now consider E; = )33] 1A S§V)J
We can write F; = E{ i dlka(de) where dj, = E )\Jclk Because the sum of the
clk for fixed j is 0, then the sum of the djj is also 0. Also since max(c lk) = O(N~/?),
the same is true of the dj;. Let T;_, X7 d% = e* > 0. Before applying Serfling’s
Theorem, we must first show that the following condition is satisfied:

sup |Fn,(z) — FNj(a:)| = O(N‘l/2 log N), (16)
1<i,j<Jiz
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where Fy,(z) = Fn(z — 6;/N/?). Now
sup  |Fy,(z) — Fn,(z)| < sup |Fn,(z) - F(z - 6;/N'/?)]

1<i,j<J;z 1<i,j<J:z
+ sup |F(z—6;/N'V?) ~ F(z—8;/N'/?)|
1<4,5<J;
+ sup |F(z——6j/N1/2)—FNj(m)|.
1<ij<J;z

The first and third terms are O(N~'/21n N) by Condition (10) of Cr while the second
one is O(N~1/ 2) under the assumption that ' is bounded, using a Taylor series expansion
of F. Therefore, applying Serfling’s Theorem and some algebra we find that /12 2(E; —
EJ =1 uf,v)})\ ;) converges weakly to a normal distribution with mean 0 and variance e?,

since 0} = fo [t —1/2]%dt = 1/12. Through simple algebra, it can be shown that
NVA = €2, so that V12(E; — E‘] lug\,)J)\ ;) converges weakly to Z 1A;Z;. Hence the

vector S}V) converges weakly to a multivariate normal dlstnbutlon with mean 0 and

covariance matrix V.

() ()

Next, we develop the term py’;. First, start with the integral in

J nim
/ (ZZFN - m/\/—)>fN(a:—6l/\/JV)dac

m=1n=1

= me/ FN(z = 6m/VN)fn(z — 61/VN)dz
m=1 —oo

since nim/ni. = Npip.m/(Npi.) = p.m by the proportional frequencies hypothesis.
If m = [, then using integration by parts we obtain ffooo Fn(z — Gm/\/N)fN(x -
81/v/N)dz = 1/2. If m # I, making the change of variable y = z — 8/vN, then

/ ” Fn(z = 0, /VN)fn(z — 6;/VN)dz
_ / " Fn(y+ (00— 0m)/VN) i (v)dy

— 00

= /oo [Fn(y) + (61 = 6m)/VN fn(y)] fv (yv)dy + O(1/N)

— 00

=1/2+ (6; - /\/_/ 3 (z)dz + O(1/N),

using a Taylor series expansion and Condition (11) of Cp. So,

nil

ZZ% me /fNZ"l/\/—ZCfi) i Pom

l 1 k=1 m=1;m#l
J n; ng J
[REEG Y el SR S psoum
=1 k=1 m=1;mz#l =1 k=1 m=1;m%*l

=A+B+C+D.
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Since the sum of the Cz(i) is 0, it follows that A = 0.
Using the definition of c(] ) and some algebra, we obtain that

N x d L .
[ BT (gt - 3 bpa+ Y 0t
1_p'7 =1 =1

J
D. p1
/fN & (—p~j9j + 29117.21) ;

=1
and D = O(1/N). Hence

J
_ /fN VP ibi <9j —Zelp.,) +0(1/VN).
=1

Since [ f%(z)dz — [ f*(z)dz by Condition (12) of Cp, and S(t \/1_2(51(\;?1 -

ugf,)l, . S}(f,) ug\,) ;) is asymptotically normal with mean 0 and covariance matrix V,

we can replace u} N ;i by & @) of (13). But the vector Rgv) is (n;. +1)/n;. times the product
of the diagonal matrix D with the vector v1 (S N1~ & ® Sj(f, 7 - ¢ )), where the

vector on the diagonal of D is (bj1/VN,...,bis/VN). Therefore RSV) is asymptotically
pormal with mean 0 and covariance matrix DV D. But DVD = p;.Z, which concludes
the proof of the lemma.

In the next lemma, we sum up independent asymptotically normal vectors to obtain
the asymptotic normality of the vector based on which the test statistic Ty is a quadratic
form. Since all observations are independent and the ranking is done independently in
each row, the proof is straightforward and not included.

Lemma 2. Let UN = (UN,l,...,UN’J)I where Uij = \/12/Np.j[Rj - (N —+ I)/Z]
and R; = 1_, Rij/ni.. Under the conditions of Lemma 1, Uy is asymptotically
multivariate normal with mean vector v and covariance matriz £ of Lemma 1
where v; = V12 [ f2(z)p.;(8; — Si-,61p.1)dz.

Consider the diagonal matrix C with vector (1/p.1,...,1/p.s)" on its diagonal. Then
Ty = N/(N + I)UyCUy. It can easily be shown that CX is idempotent and that
trace(CT) = J — 1. Hence, using Lemma 2, T is asymptotically distributed according
to a chi-squared distribution with J — 1 degrees of freedom and noncentrality parameter
+'C~ = Ar of Equation (6), proving the following Lemma.

Lemma 3. Suppose that F has a density f and that its derivative f' is bounded.
Let {Fn} be in Cg. Consider the local alternatives Model (5) with €;jx tndepen-
dently and identically distributed from Fy, and n;; = Npij = Npipj > 0, for
all i and j. Then the asymptotic distribution of Tn is a noncentral chi-squared
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distribution with J — 1 degrees of freedom and noncentrality parameter given by
(6).

Note that Lemma 3 is a generalization of the result of Mack and Skillings (1980)
which was for Fy = F. Let us now prove Theorem 1.

Proof of Theorem 1. We must show that the conditions (10)— (12) are appropriately
satisfied by the random sequence {F) , }.

For Condition (10), we write v N (E), (z) — F(z)) as VN(Ey,(z) — EFy, () +
EF,,(z) — F(z)). Following the proof of Theorem 23.2.1 of Shorack and Wellner (1986)
(which will be referred to as S&W), p.765, we get

VE(By @) -Fe) = [ & ( z

([ x (552) arw - ro)
= Ry n(z) + Ron(z),

N
) aVR (B - P

where Fy is the empirical distribution function of the residuals. Using integration by
parts, Ry y(z) = — [* \/]_V[F’N(a: — 8An) — F(z — sAn)]dK(s). Since conditions (F1)
and (F2) are satisfied, we can use Theorem 4.6.2 of S&W, p.198, and their special
construction of Theorem 3.1.1, p.93, to find a version of Fiy and a Brownian bridge U (z)
with uniformly continuous sample paths such that

sup VN(En(z) — F(z)) - {U(F(x)) + f(:v)/o F_l(:c)dU(w)}‘ — 0, in probability.

Now, since sup, |U(F(z)) + f(z) fo z)dU(z)| is Op(1), then sup, |V N(Fy(z) -
F(z))| is also Op(1). Hence sup, |R1,N( )| is Op(1). Moreover, from the proof of
Theorem 23.2.1 of S&W, sup, | Ry n(z)| is O(VNA%) provided that Condition (K1) is
satisfied. Therefore, since N/2)2,/log(N) — 0,

rog(]JVV)‘ sup|Fiy(2) — F(a)| = 0, in probability. u)

To consider conditions (11) and (12), first note that

I i
o 3SR () -t
i=]1 j=1k=1 i=1 j=1

where 13’/{'}3)(17) is the kernel estimate constructed from the residuals in the ijth cell.
It is sufficient to show that each F )(‘zti)( ) satisfies the two conditions. Fix the cell ij
and note that fy,\],),(m) = fi’h’l)'(:c + 7i;) where f( ])'(:v) is the derivative of the kernel
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density estimate computed from the i.i.d Xjj1,..., Xijn,;, and 735 = o+ &; + 6, /Nl/2
is computed from the least squares estimates of the model (5). So supy , [fy flig)’ (z)] =
sup .z | f3 Fu ] ! (z)| and we need only prove that the derivative of a kernel dens1ty estimate
based on 1.1.d. observations f ,’\N is uniformly bounded over z and N. Assuming that f' is
uniformly continuous, that ffooo k(z)dz = 1 (satisfied under conditions (F3) and (K1)),
that Condition (K3) is satisfied, and provided that N=1A3log(1/An) — O, Silverman
(1978) has shown that sup, | f,\N( ) — f'(z)] — 0 almost surely. Since it is assumed that
f' is bounded under (F3), then for almost all sample paths, f)‘ is uniformly bounded.
Therefore, for almost all sample paths of F),,, Condition (11) is satisfied.

Now for Condition (12), note that [ [f/\”) J2dz = [, [f(”) (z + 7;)]?dz which

by a change of variable is f_ (” )(x)]Qda: Hence, it is sufficient to consider a ker-
nel estimate from i.i.d.observatlons. But Hall and Marron (1987) have shown that
= [ N 79 (2))2dz — [ > |f(z)]?dz in probability under general conditions which are sat-
isfied if the kernel k(z) is symmetric, of order 2, and vanishes at 0o and if the derivative
of the density f is uniformly bounded, these conditions being satisfied under (K1), (K2),
(K3)(a) and (F3).

Finally, to show (9), all we need do is prove that for any subsequence there is a
further subsequence for which (9) holds almost surely (e.g., Theorem 20.5 of Billingsley
(1986)). Let N; be any subsequence. Since [°° f2 (x)dz converges to [0 f%(x)dz
in probability, there exists a further subsequence N;(;) such that f f)‘N (:c)da: —

f f?(z)dz almost surely. Moreover, by (17), there exists a further subsequence Ni)ik]

such that sup, /Ni(jyk)/ log(Nigiyk)) | £ ANy (z) — F(z)| — 0 almost surely. Hence the
subsequence {F N,(‘)m} satisfies conditions (10), (11), and (12) almost surely. Thus

sup IGNi(j)[k] (z, FANi(j)[k]) NiGiik) (:C F|
X

< sup|G i,y (2, F'\N.-(j)[k] Yy—H(z; M, J — 1)
T

+ sup !GN;(J-)(;;] (CE, F) - H(Z‘, AT, J - l)l
—0, almost surely,

using Lemma 3 twice and where H(z; A, J) is the distribution function of a noncentral
chi-squared distribution with J degrees of freedom and noncentrality parameter A. This
completes the proof of Theorem 1.
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