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ON THE NUMBER OF SUCCESSES
IN INDEPENDENT TRIALS

Y. H. Wang
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Abstract: A unified combinatorial approach is used to obtain many theorems about
S,, the number of successes in n independent non-identical Bernoulli trials. The
following results are, in particular, proved: (1) The variance of S, increases as the set
of success probabilities {p:} tends to be more and more homogeneous and attains its
maximum as they become identical; (2) The density of Sn is unimodal: first increasing
then decreasing; (3) Four different versions of Poisson’s theorem; (4) An upper bound
for the total variation between the distribution of Sn and that of the Poisson.

Key words and phrases: Bernoulli trials, Poisson’s binomial distribution, unimodality,
Poisson’s theorem, total variation.

1. Introduction

Let S,, denote the total number of successes in n independent Bernoulli tri-
als. If the trials are identical, the distribution of S, and many of its properties
and theorems are well known and well treated in many books on statistics and
probability.

Historically, the distribution of S, plays a very important role in the develop-
ment of probability theory. It is for S, that the very first forms of the law of large
numbers (by Jacob Bernoulli in 1713), the central limit theorem (by Abraham De
Moivre in 1714) and Poisson’s theorem — the binomial-to-Poisson convergence
theorem (by Simon Denis Poisson in 1837) were obtained.

If the trials are not identical, the probability of success at each trial varies
from one trial to another, the distribution of S, and many of its properties and
theorems are not as well known, nor as readily available.

In this paper, we shall use a unified combinatorial approach to investigate
the distribution of S, for the non-identical Bernoulli model and systematically
examine many of its theorems and properties. Even though most of the results
in this paper are known, the derivations and the proofs we present here are
elementary and unique.

The presentation of derivations in mathematics using combinatorial approach
is often bogged down by messy notations. The unified approach we use in this
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paper was inspired by the notations introduced recently in Brown and Rinott
(1988) in describing multivariate infinitely divisible distribution.

In recent times, Hoeffding (1956) was the first person to systematically look
into the non-identical Bernoulli model and obtain many interesting results. His
works have been followed and extended by many others. The most recent one is
Nedelman and Wallenius (1986).

2. Preliminaries

Let n be a positive integer and z = 0,1,...,n. Define

{fx={A:A§{1,---,n}7 |Al =z} (1)

P, = {n(A) : A € Fr, 7 is a permutation in R*},
where |A| denotes the number of elements of A. If A € F5, then A = (i1,...,1z)

is an ordered set such that i; < ix if j < k, and w(A4) = (7(i1),...,7(iz)) is a
permutation of the elements of A. :

There is only one element in F,,, namely the n-tuple (1,...,n); but \Fzl = (0)
is the number of subsets of size z of {1,...,n} and |Pn| = n! is the number of
permutations of {1,...,n}. For each fixed A € F, there are z! corresponding

elements in P, which is the number of permutations of the elements of A, hence
1P| = n!/(n — z)! equals |Py| divided by (n — z)!.
The relations between F,, Pn, F. and P, can be summarized as:

n!
fn Pn
(%) :
z (n —z)!
x!
fm v ’/‘Da;
Let «;, B;, 1 = 1,...,n be 2n non-zero real numbers. Then
n n
Me+s=> % {(Ma)( T 8) @)
i=1 z=0 A€F, i€A JEAS

where A¢ denotes the complement of 4 and we take H a; =1 for A € Fo = ¢.
iCA
An alternate expression for (2) is

[H(ei +8:) =11 8 [Z > { H(ai/ﬁi)}} : (2a)
=1 i=1

z=0 AcF, “i€A
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Because H «; are permutation invariant, we have the following identity,

i€A
Z Hai;-(Z Ha,)/:c!, forallz =0,1,...,n. (3)
ACF. i€A A€P, icA

Looking at the sum Z H o; as z iterated summations we have:

AcF: i€A

n—z+1 n—=I n
S [le = 3 en| & ear( 2 aw)
AcF . i€A 1= 19=t1+1 1z=1z-1+1

n n n
p— Z e 79 Z Qiy Z Qa;, .o /x‘ (4)
11=1 12711 i i
7=1,..., -1

For two integers z and y with 0 <z <y < n, we can write

(L) Oe)-2 % ¢iptm e ©

AEF, i€A BeFy, i€B k=y CeFy ieC

where s; = 1 or 2, Zsi =z+y, M =min(z +y,n) and r =z +y — k.
ieC
Equality (5) above can be proved as follows: For k = y,y+1,...,M and
C € F; fixed, in the expansion of (T 4cz, [lica o) (T ez, llien @;), there are
exactly r = £ +y — k of the s;’s equal to 2, and k —r of the s;’s equal to 1, so that

2r + (k —7) = 7+ k = z +y. The number of such occurrences is K(’";——_T})"%:{T—T%]-‘
which is the number of ways of distributing [(z — ) + (y — )] distinguishable a’s
with (z — r) in one group and (y — r) in the other.

Denote N = (1,...,n) and define the cross product

NfE=Nx---xXxN
of N with itself z times. Then P, is a subset of N* and can be written as
Po = {(it,. .. iz) € N i # i if j # k}.

Denote by B, the complement of P, with N® as the universal set. Then the
multinomial expansion can be written as;

(gai): S Qo+ 3 e 6)

A€EP: €A A€B; i€EA
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We note here that for £ = 4 the last term on the right-hand-side of (6) in
the more familiar and conventional expression is

n n n
SHea=3e? Y ajor+> 02y aj+3 af.

A€ByicA =1 jk#i =1 i i=1

3. Poisson’s Binomial Distribution

We shall call the distribution of S, in the independent but non-identical
Bernoulli model “Poisson’s binomial distribution”. Historically Poisson (1837)
was supposedly the first person to consider this extension of the binomial dis-
tribution. (See Cramér (1946) and Edwards (1960).) “Poisson’s binomial distri-
bution” is called “the Poisson-binomial distribution” by many authors, i.e. Le
Cam (1960), Hodges and Le Cam (1960), Edwards (1960) and Chen (1974). We
have always felt the use of the latter terminology in this context inappropriate,
because it could be confused easily with (a) mixtures of binomial distributions
and (b) compound Poisson distribution with binomial compounding distribution.
(See Johnson and Kotz (1969, Pages 78 and 190). Our terminology “ Poisson’s
binomial” was suggested by an anonymous member of the Editorial Board of
Statistica Sinica, for which we express our gratitude.)

Denote by p; the probability of success at the ith trial. Without loss of
generality, we shall assume 0 < p; < 1 for all 7. The extensions to 0 < p; <1
are immediate, even though cumbersome reformulations of our statements may
sometimes be required. Denote

p=(p1,---ypn), I=(1,...,1) and p=pl,
where 5 = S, pi/n.

Define
fep) = 5 (IIw)( I a-2)). (7)

A€F, “i€A JEA®

For simplicity, we shall write f, f(z), fn(z) or f(z;p) for fn(z;p) and restore
it whenever confusion may arise.
If p; = p for all ¢, (7) reduces to the usual binomial distribution

b(e) = () - (8)

A useful property of f is that it is invariant under the permutation of
(p1,...,pn). Asin (2), an alternate expression for f is

fn(m;p)=ﬁ(1—Pj)[z (T (& ))J (72)

j= Acr, Niga N pi
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(Using different notations, the expression (7a) is used in Barbour, Holst and
Janson (1992, Equation (1.4)).)
Combining (3) and (7a), a third expression for f is

Fula;p) :jlillu ~ps) [Z (1 (1’_’1'%))} /= (7b)

AP, “i€A

In this paper, we take the distribution of Sn to be “as is” in (7). For all the
computations concerning S, we use only (7) and its two alternates. A recourse
taken by almost every author on this topic is to use the fact that S, = X1 +---+
X, is the sum of n independent Bernoulli random variables. We shall forgo using
this fact for it does not make our job easier.

Summing both sides of (7) over z = 0,1,...,n and using (2) we have Y7 _q f(z)
= [T~,(p: + (1 — pi)) = 1, for all n and p. Thus (7) is a bona-fide probability
mass function (p.m.f.) satisfying the following relation

f(z;p) = f(n—=z;1 —p), foralln,zand p. (9)

Multiplying both sides of (7) by e*, summing over z = 0,1,...,n and using
(2), we obtain the moment generating function (m.g.f.) of S, as

m(t) = H(l — p; + pset), for all real t. (10)

1=1

Denote p'~* as the (n — k)-tuple obtained from p by omitting pi,, .. ., Piy,
=1,...,n—1

Lemma 1. For 1 < k < & < n, Poisson’s binomial p.m.f. f, satisfies

z(z — 1) (z - k+1)fn(z;P)

= Zn:Pi] zn:p'iz"' Z pik(fn_k(x—k;pil'“ik)) (1)

11=1 1:2#1:1 ik;éij
J=1,...,k-1

Proof. Using (7b) with a; = p;/(1 — p;), we have

z(z = 1)+ (z — k + 1) fn(z; p)

= ]Z[l(l_Pj)< Z Hai>/(m—k)!

AEP, i€EA
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I

n n n
H(l"Pj) Zailzaig"' z aik( Z Hm)/(x-k)!
j=1 11=1 ia#1) _ ik?&ii’ ) AEP, . _1€EA

1=1,... k-~

3 - . .
= Z Piy Z Piy Z Pip frk(z — k; piieik)

11=1 1971 i #ij
j=1,.. k=1

Two special cases of (11) are worth mentioning. For z = k, it becomes

n n . .
2 f(z;p) = D Piy | D Pire+ > i (fn—z(O;P”"'”)) e, (12)
aET

which is the same as (7b) in iterated summation form (4).
For k = 1, it reduces to the well-known and often-used identity

2ia(@ip) = Y pifar(@ - L;p), foralle=1,...,n, (13)
i=1

The identity (13) was first seen in the literature in Samuels (1965) who ob-
tained it “by differentiating (10) with respect to e* and identifying coefficients”.
It appeared later in Chen (1974) and again in many of his other publications.
Chen derived it from an identity on conditional expectation due to Stein. (See
Stein (1986).) It has also been used by many other authors mostly in problems
concerning the Poisson approximation to Poisson’s binomial distribution.

Here is another derivation of (13) which gives one a good feel of its meaning.
Denote by E; the event that the ith trial is a success. Then

{S, =z} C UEi’ forallz=1,...,n.

=1

If a sample point w is in {S,; = z}, then it is in exactly z of E;’s. Hence

zP(S, =1z) =Y P(Sn = z|E;)P(E)),

=1
which is another form of (13).
By (9), an equivalent expression for (13) is

n

(n— z)fu(z;p) =Y (1 = pi)fn-1(z;p'), forallz=0,...,n—1.  (13a)

1=1
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Summing both sides of (11) over z = k,k+1,...,n, we obtain

n n
13=1 e j:lk.;.t.ii—l

It follows from (14) that

E(S,) = Zpi and Var(Sp) = Zpi(l — pi). (15)
i=1 i=1 '
About a century and a half ago, it was observed by Poisson (1837) (see also
Edwards (1960)) that
Var(Sy,) = np(l — p) — nsf),

where sg =15 (pi - — $)? is the “variance” within {p1,. ..,Pn}. Therefore, the
variance of Sn increases as the set of probabilities {p1,...,pn} tends to be more

and more homogeneous and attains its mazimum as they become identical.
We reformulate Poisson’s observation as follows:

Theorem 1. Denote by Var(p) the variance of S, corresponding to the probability
vector p = (p1,.--,Pn). Then

Var(p) < Var(pIl) < Var(pI). (16)
for all n x n doubly stochastic matrices Il = (7i5)-
Proof. Let g(p) = p(1 — p) for 0 < p < 1; then g is concave, satisfying
glapy + (1 - a)p2) > ag(p1) + (1 - @)g(p2),

forall 0 < @ <1 and 0 < p1, p2 < 1. Therefore, it follows from (15) that for all
doubly stochastic matrices IT = (m;;) and p = (p1,---,Pn);

NgE
gk
3
5
<

N

v
NE
9 =

Var(pll) =

XY
I
NS
-
|
—

7"13 g (Pz)

LY
I
a
.
i
NS

I
NE

g(p:) = Var(p).

s
Il
-

On the other hand, let IT be an arbitrary doubly stochastic matrix and denote
g = pll. Let Ilp = ((1/n)) be an n x n square matrix with all the entries
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equal to 1/n. Then gIly = (pI)Ilp = pllo = pI. ( The first and the third
equalities are evident while the second one can be easily verified.) Therefore,
Var(pll) = Var(q) < Var(qIly) = Var(pI) for all doubly stochastic matrices II.

An interpretation of Theorem 1 is as follows: Let ¥, = Sp/n be the “sample
mean” of n independent, but not necessarily identical, Bernoulli trials. Then
E(Y,) = p and Var(¥,) < p(1 — p)/n, with equality holding if and only if p =
pI. What this means in statistical terminology is that to estimate an unknown
proportion p, the “unbiased sample mean” from a sequence of non-identically
distributed Bernoulli random variables has smaller variance than the uniformly
minimum variance unbiased estimate obtained by using the binomial density b
with parameter p.

Here is a practical example: In a big American city, there are two candidates,
one black and one white, running for the mayorship in an election. It is desired to
estimate the voters’ preference of the black candidate over the white candidate.
Past experience indicates that the probability that a black voter prefers a black
candidate is usually very high while for a white voter it is the opposite. Theorem 1
says that instead of taking a single sample of size n from the total population
(simple random sampling) it is better to take two subsamples of sizes n; and ng
(proportional to their respective subpopulations) with n; + ny = n (stratified
sampling). This of course is a well-established fact in sampling theory. (This
example was suggested by Moishe Belinsky, for which the author is very grateful.)

Since Var(Y;,) < (1 —5)/n < 1/(4n), the next corollary follows immediately

Corollary 1. For all ¢ > 0 and probability vector p = (p1,.--,Pn),
P(|¥, -5l > e) <1/(4ne’).

It is well known that the binomial distribution b first increases monotonically,
attains its maximum at = [(n+1)p] ([s] denotes the integral part of s) and then
decreases monotonically. ( If m = (n + 1)p is an integer, b(m) = b(m — 1).) The
corresponding property for Poisson’s binomial distribution f was first noticed by
Samuels (1965) who used an inequality of Newton to obtain

fA(z)> fz -1 f(z+1) forz=1,...,n—1, (17)

(i.e. f is log concave). “Hence f is unimodal, first increasing, then decreasing,
and the mode is either unique or shared by two adjacent integers”, he observed.
Inequality (17) was later quoted by many authors, but a comprehensive direct
proof of it seems elusive.

Here we shall obtain an inequality sharper than (17) together with a simple
proof.
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Lemma 1. Define
g(z) = Z Hai, for all real a; >0, i=1,...,7.
AEF. icA
Then

rz+1

g*(z) > (————)g(x——l)g(m—i—l) forall z=1,...,n— 1. (18)

Proof. We expand g%(z) and g(z — 1)g(z + 1) according to (5). Since the first
term in the expansion of g%(z) is strictly positive, we have

gz(a:)—<x+1>g(:c—1 (z+1)> Z Z r)‘ K(cc T)Ha (19)

z k=z+1 Ceﬂ 1€C

where s =1 or 2, Y;ccsi =2z, M = min(2z,n), r = 2z — k and

K(z,r)=[1—<z+1> x—T ]
T z—1+1
For fixed z = 1,...,n = 1 K(z,7) > 0, for = 0,1,.... Therefore the

left-hand-side of (19) is greater than or equal to zero and the lemma follows.

Define

1 n— 1
C’(:z:)zmax(x: ’n s ), foralz=1,...,n— L

n—=r

Theorem 2. Poisson’s binomial p.m.f. is unimodal, first increasing, then de-
creasing, and satisfies the following inequality

fA(z;p) > C(z)f(z - 1;p)f(z + L p), (20)
for allp = (p1,...,pn) andz=1,...,n— 1.
Proof. It follows from Lemma 1 and the alternate expression (7a) that

z+1

P(z;p) > ( )f<x _Lp)f(z+1;p). (21)

On the other hand, using (9) and Lemma 1 again we get

) > (5 ) fle - Lp)ie + 1p) (22)



304 Y. H. WANG

Both (21) and (22) are valid forz =1,...,n—1and all p = (p1, . .. ,Dn)-
Combining (21) and (22) we obtain (20).

To conclude this section, we present a numerical comparison of the binomial
b with parameter p and Poisson’s binomial f distributions, for n =5, p1 = .10,
po = .30, p3 = .45, ps = .60, ps = .80 and p = .45.

binomial Poisson’s binomial
.05033 02772
.20589 .19010
.33691 .38690
.27565 .30150
11277 .08730
.01845 .00648

G o WY = O

As expected, both b and f are unimodal, first increasing, then decreasing
and attain their unique maximum at z = 2. The values of f is more concentrated
toward its mode at z = 2 than those of b. For z = 2 and 3, f(z) > b(z), whereas
f(z) < b(z) for other values of z.

In the next section, most of the results concern the limiting behavior of S, as
n tends to infinity. Strictly speaking, the probability of success at the ith trial p;
should be written as p,; to emphasize the dependence on n. But to save us from
cumbersome notations, we drop the subscript n and believe that unnecessary
confusions will not arise.

Before presenting the next section, we make some remarks here. In recent
years, there are two popular approaches used by many authors working on prob-
lems in Poisson approximation: One is known as “the Stein-Chen method” in
which functional equations such as (13) were derived by using conditional expec-
tation and used to find upper bounds for the total variations such as (39) or to
solve other problems in Poisson approximation. (See Chen (1974, 1975), Barbour
and Hall (1984), Arratia, Goldstein and Gordon (1990) and the references cited
there.) The Stein-Chen method is used mainly for sequences of weakly depen-
dent (asymptotically independent) Bernoulli random variables with Poisson limit
distribution. (See Steele (1990).) In many situations it is not the best method to
use. For example to show that Poisson’s binomial distribution is dominated by
the Poisson distribution, the method we present in the next section (see Inequal-
ity (26)) is much simpler than the proof in Chen (1974) using the Stein-Chen
method.

The other approach is called “the semi-group approach” which was first in-
troduced into the problem of Poisson’ theorem by Le Cam (1960). (See Pfeifer
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(1985), Deheuvels and Pfeifer (1986) and the references cited there.) The semi-
group approach is very much limited to sequences of independent Bernoulli ran-
dom variables having Poisson as the limiting distribution.

To deal with sequences of random variables having strict dependent relation
and/or with ranges in the set of integers and/or having limit distributions larger
than Poisson, the above two approaches offer limited usefulness. Some possible
recourses are offered in Wang (1986) and Lin and Wang (1993).

4. Poisson’s Theorem

The Poisson p.m.f.
P(z) = e *N%/z!, =0,1,2,..., A>0,

was originally derived as a limit of the negative binomial distribution by Poisson
(1837). But in the literature today it is generally known as the limit of ‘the
binomial distribution as n — oo and np — A. The related theorem is called
“Poisson’s theorem”.

Almost a century later, von Mises (1921) pointed out that the Poisson dis-
tribution is also the limit of Poisson’s binomial p.m.f. provided that

n
S pi=A>0 (fixed) and maxp; —0asn— oo. (23)
1

=1

His proof utilizes probability generating functions and can be found in Feller
(1968). Later, Koopman (1950) showed that conditions (23) are also necessary.

In this section, we present several versions of Poisson’s theorem for Pois-
son’s binomial distribution. We first present two lemmas needed in the sequel.
Lemma 3 follows immediately from the iterated summations (4) and shall be
stated without proof.

Lemma 2. If a1, ..., an are non-negative real numbers in the closed unit interval
[0,1], then
n n 1 n
0 <ex ( —a-)— l1—a;) <= af, orall n=1,2,.... 24
P £ i z::1__[1( ) < 2 ; f (24)

Proof. For any a > 0, we have

' 1
1—a§e—°‘§1—a+5a2.
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On the other hand, for 0 < a;, b; < 1,1 = 1,...,n, c1 = [[j=2bj, & =
( ;;11 a;)([17=i+1b;), we can write 1™, a;i— 17y bi = iz ci(ai—b;). Therefore

T oo 3 - —Q; 1o 2
Oége “’—i:]:[l(l—ai)ﬁg[e @ —(l—ai)]gigai,
Lemma 3. If A\ =Y -, pi, then
> I <X/z!, 2=0,1,2,..., (25)
AcF €A

with equality holding if and only if £ =0 or 1.

A consequence of Lemma 3 is that for A = > p;
fulz) < A%/z! = Se”™ )% /z!  forz=0,1,2,..., (26)

where S = e¢* > 0. Therefore Poisson’s binomial distribution is dominated by the
Poisson distribution. As stated in Section 3 that Chen (1974) obtained similar
result by using the Stein-Chen method. His proof was very long, complicated
and hard to understand. Furthermore, he only showed the existence of S in (26)
while here we specify the least possible value of S. Another more general method
of deriving (26) can be found in Wang (1991).

Theorem 3 below is the first version of Poisson’s theorem for Poisson’s bino-
mial distribution. Its sufficient part is more general than the result obtained by
von Mises (1921). (Von Mises’ two conditions are “Y I ; p; = A and max;<i<n P;
— 0” which are equivalent to “S%;p; = A and S, p? — 0”7 (as n — 00).) A
much more general extension of Poisson’s theorem in this direction is Theorem 3
in Wang (1989).

Theorem 3. For a sequence of Poisson’s binomial p.m.f. {fn} to have the
following point-wise convergence

nlingo falz) =e*X%/z!, £=0,1,2,..., (27)

it is necessary and sufficient that the two limit conditions below hold:

)\nzz:pi—a)\>0 and Zp,z—»O (as n — 00). (28)

=1 =1

Proof. First we show that the two conditions in (28) are sufficient.
For z = 0, (27) follows from (24).
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Let v, = maxXi<i<nPi. Denote H(""t) o; (Z(""t) ;) as the product (the
summation) of elements of a subset of size (n — t) of {@1,...,an}. Then for
z=12,...,

) (n—2)

(n—z
[J a-p)<exp(= 3 pi) e (29)

[[a=-p) <
1=1

and for 0 < s <z -1,
(n—s)
A2 D Pi2An = ST (30)

By (11) with k = z, and (29) and (30), we obtain

z—1

fn(0) H()‘n — s7m) S zlfn(z) < /\ﬁe‘&ﬂvn. (31)

s=0

Letting n — oo and noting that

o N\12
Yo = X pi < (lei) :
1=

(28) implies both ends of (31) converge to A%e~? for all fixed z.
Next we show (28) also necessary for (27).
By (26) and the Lebesgue dominated convergence theorem, it follows that

n oo
Jim 3 pi = lim B(Sa) = 3 weT A2l =X, BNCE)

1=1 z=0

which proves the first part of (28). Similarly,

n o0
i (1 —p:) = I - — M2 2)\" =
nlg%o sz(l pi) = nllngoVar(Sn) = Z(m A)e AT [zl = A,

i=1 z=0
which, together with (32), concludes the second part of (28).

Theorem 4. If

1??5)%% — 0, as n— oo, (33)
then a sequence of Poisson’s binomial p.m.f. {fn} converges to a non-degenerate
p.m.f. g if and only if
(a) g is a Poisson p.m.f. with mean A,
(b) both conditions in (28) hold.
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Proof. The “if” part is obvious. For the “only if” part, denote Sf1 =S, - X;,
i=1,2,...,n; then, by (33)
P(S, # 8) =p; — 0 (uniformly in i as n — o). (34)

In view of (33), we shall assume, without loss of generality, that f2(0;p) >0
for all n. Since fn_1(z;pt) is the p.m.f. of St . it follows from (34) that

lim fn—l (0; pi)
n—co  fn(0;p)

~ We take z = 1 in (13) and divide both sides of it by fr(0; p); then (35) with
z = 1 implies that

=1 uniformly in i. (35)

n Zn:Pifn-l(O;Pi) .
1. ;= : 1=1 — 1- f‘i’l(]‘;p) — g(l) —
dm, 2 pi= = neo fu(0;) | 9(0)

A, (say). (36)

(The ratio A > 0 because g is non-degenerate.)
Since fn(z) and fn—1(z) have the same limit g(z) for all z, Equation (13)
and the limit (36) imply that g must satisfy the functional equation

rg(z) = Ag(z —1) forallz=1,2,.... (37)

It is well known that the solution of (37) is that g is Poisson with mean A. (See
Exercise #3.22 in Hogg and Craig (1978).)
Finally, by (33) and (36),

n n
Y pi < (m.axm) (Zpi) —0, n— oo
i=1 : i=1

For two discrete p.m.f.’s g; and g2 having a common domain in a countable
set D, define a metric d by

d(g1,92) = Y Igl(k) - gz(k)|~

keD

The total variation d was first introduced into the problem of Poisson’s the-
orem by Khintchine (1933). He obtained an upper bound for

o0

d(b,P)=>_

z=0

3 (38)

(7 )rr=pr== s
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and showed that it tends to zero as n tends to infinity and np = X (fixed). It
was considered a big step from the pointwise convergence (27) (for b) to the
convergence to zero of (38). In the next, we shall derive an upper bound for the
total variation of Poisson’s binomial and the Poisson p.m.f.. Our upper bound
also tends to 0 under the two conditions in (28) with A = 3 7, p:.

Theorem 5. For Poisson’s binomial p.m.f. fn(x)

2An+1
zo,fnz) e /\/arl 3e Zp,+e P g (39)
where A = Y-, Ds.
Proof. Let B = {z € {0,1,...,n};e"*X%/z! > fa(z)} and .
h(z)= > []p, £=01,2,.... (40)
A€Fz i€A
Then
Z |fn(a: —e€ ’\A/m" =2 Z ( ANzt — fo( z)) +2 z ’\)\m/x!. (41)
z€B z=n-+1
It follows from Lemma 3 and 1 — o < e™© for all & > 0 that
H(l — pi)h(z) < min (e"’\/\m/x!,fn(z)), z=0,1,2,.... (42)

=1

Using Inequality (42) twice, we can approximate the first term on the right-
hand-side of (41) by

< 23 (eae/al - H<1 - p)h(2))

<B
< 2 Z (e—’\)\z/x!. H(l — pi)h(z) )
=0 i=1
~ 2 L}; (e—A _ izﬁlu _?")) -j-; + 1:'[(1 -—pi); <§ - h(m)ﬂ . (43)

By Lemma 2 the first summation in (43) is bounded above by 2e A pi
In the second summation, the first two terms vanish. For z > 2, let A\; = A — p;
and B, = N*\P, (as defined in Section 2); then we have

n

(3/at - h(z)) = X Hmngéj( )[Z z)\‘;."'"j}/x!, (44)
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by equations (6) and (40). In (44), equality holds if and only if z = 2 and 3. By

interchanging the order of summations, the right-hand-side of (44) can be further
approximated by

(3% /) [ij (1- (= pi/A) = o/ N1 - pz‘/A)“‘l)}

< 07|30 (1= (1= 2o/ ) — 2o/ V(L = (2 - Dpi/ ) |

1=1
< (/@ -2)). (45)
=1
Summing (44) over z = 2,3, ... and using (45), we get an upper bound for

the second summation in (43) as e* 37, P}
The last term in (39) comes from the second term on the right-hand-side of
(41)

> el < e—A{(:T;![”(nil>+(<nil)>2+'"]}

z=n-+1
< e A [nl(n + 1 - ).

This completes the proof.

It should be remarked here that the upper bound in (39) is not the sharpest
possible bound. Our main purpose is to demonstrate that simple combinatorial
approach works in this otherwise difficult case. Much sharper bounds can be
found in Barbour and Hall (1984) for Poisson’s binomial distribution and in
Kennedy and Quine (1989) for the binomial distribution.

The following two corollaries are other versions of Poisson’s theorem for Pois-
son’s binomial distribution. Corollary 2 follows immediately from Theorem 5 or
Corollary 3, while Corollary 3 is a consequence of Theorem 3 and the Lebesgue
dominated convergence theorem.

Corollary 2. For Poisson’s binomial p.m.f. fn(z), if A = n o p; and S0, p?
— 0 as n — oo, then

nl_i_&i ’fn(:r) - e_’\)\z/x!i = 0.

1=1

Corollary 3. For Poisson’s binomial p.m.f. fn, if A = SEypiand i p? — 0
as n — oo, then

Jim_ {2 h(a:)‘fn(:c) — e_’\/\m/m!‘ =0 (46)
z=0
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for all non-negative function h with 35229 h(m)e"’\)\m/m! < 0.

The mode of convergence (46) in Corollary 3 was first introduced into the
problem of Poisson’s theorem by Simons and Johnson (1971) for the binomial
distribution. Their result was later shown to be true also for Poisson’s distri-
bution by Chen (1974). Corollary 3 is equivalent to the main theorem in Chen
(1974). A more general result along the line can be found in Wang (1991). Re-
cently, in Wang (1989, 1991 and 1992) and Wang and Ji (1993), we have obtained
many results on this topic to cover the cases of compound Poisson and other
related distributions. In Wang (1991) different modes of convergence are dis-
cussed and compared. According to a method used in that paper, the condition
“\ =S, p;”, in Corollaries 2 and 3, can be relaxed to “>i-;pi — A > 0.
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