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Abstract: We derive rates of convergence and asymptotic normality of the least
squares estimator for a large class of parametric inverse regression models Y =
(®2f)(X)+e. Our theory provides a unified asymptotic tretament for estimation of
f with discontinuities of certain order, including piecewise polynomials and piece-
wise kink functions. Our results cover several classical and new examples, including
splines with free knots or the estimation of piecewise linear functions with indirect
observations under a nonlinear Hammerstein integral operator. Furthermore, we
show that fp-penalisation leads to a consistent model selection, using techniques
from empirical process theory. The asymptotic normality is used to provide confi-
dence bands for f. Simulation studies and a data example from rheology illustrate
the results.
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1. Introduction

We consider the inverse regression model

yi = (Pfo)(x;) +e; for i=1,...,n, (1.1)
where X = (z1,...,2,), n € N is a (possibly random) vector of design points
in a bounded interval I C R, and € = (e1,...,&,) denotes the observation error

that is assumed to be independent of X, with mean zero. Further, ® denotes
some integral operator ® : L?([a,b]) — L?(I),

b
(@f)(x) = / (@, y) fy)dy, (1.2)

acting on a piecewise continuous function f(y) = f(y,0), which is determined by
a parameter vector 8 € ©; C R? for some d € N. Here k describes the number
of (unknown) discontinuities of f. The aim is to reconstruct the true function
foly) = f(y,6p) from the observations (X,Y) = ((x1,91), ..., (Tn,Yn)).
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This class of models covers a large variety of applications, ranging from
multiphase regression to piecewise polynomial splines. Model () has been
introduced in Boysen, Bruns, and Munk (20094) for piecewise constant functions
f, where the integral kernels ¢ was restricted to the class of piecewise Lipschitz
continuous convolution kernels p(z,y) = ¢(z — y).

Integral equations as in ([Z2) are well known to generate ill posed problems,
that is, small perturbations on the right hand side of (ITT) induce large errors
in the solution. Therefore, reconstruction of fy from () requires appropriate
regularization. In this paper we show that this can be achieved in good generality
by an ¢y penalized least squares estimator restricted to suitable compact func-
tion classes,indexed in ©f. To this end we extend the model of Boysen, Bruns!

ered classes of objective functions as well as with respect to the integral kernels
. We show n~Y* convergence rates of the least squares estimator f (y,0,) of a
piecewise continuous parametric function f(y,6y) with known number of change

1/2 rates for the convergence of the respective

points. Furthermore we obtain n~
parameter estimate 0,, of the true parameter 6y and show that it is asymptoti-
cally multivariate normally distributed. However, we mention that the obtained
asymptotic normality, together with “model consistency” in general, is not uni-
form in these models, as the kinks or jumps may degenerate. This is well known
already from much simpler cases, see e.g., Boysen, Bruns, and Munk (2009a).
The particular case in which fy has no jumps but kinks is treated in detail.
Here the continuity assumption on fy improves the convergence rate of the least
squares estimate f(y, én) The improvement depends directly on the smoothness
of the pieces between the kinks. For instance, for piecewise linear kink functions,
~1/2_consistency of f, := f(y,én).
In order to obtain our results, we require techniques that are substantially

we obtain n

different from those in Boysen, Bruns, and Munk (2009a). The extension of the
class of objective functions from step functions to general piecewise continuous
parametric functions requires existence and uniform L? boundedness of the first
derivative of the pieces of the objective function 6 +— f(y,6) for almost every
y € [a,b]. This differentiability allows for a general estimate of the entropy of
the class of piecewise continuous parametric functions, a main ingredient in the
proof of consistency. Moreover, we will see that exactly this property implies
continuous differentiability of the mapping 6 — (®f)(y,#). This differentiability
in turn paves the way to the second order expansion of the expectation of the
score function, required for the proof of asymptotic normality. This is more
straightforward and in particular more general, than the elementary expansion
in Boysen, Bruns, and MunK (2009a). Remarkably, this approach abandons the
assumption of Lipschitz continuity of y — f(y,0) and (z,y) — ¢(z,y). The
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generality of the applied techniques furthermore covers the case of dependencies
between the parameter components of 6, as in the case of kinks functions.

When the number of change points of the objective function in () is not
known, we show that, under the additional assumption of subgaussian tails of the
error distribution, the number of change points can be asymptotically estimated
correctly with probability one.

A key ingredient of our consistency proof is the injectivity of the integral
operator ® in (I2). Two main classes are discussed in detail: product kernels
o(z,y) = ¢(zy) and convolution kernels p(x,y) = ¢(x — y). For the asymptotic
normality to hold injectivity of the corresponding integral operator plays an
important role. To this end we introduce an injectivity condition for general
symmetric and positive definite kernels (not restricted to one of the above classes)
that is based on the theory of native Hilbert spaces and on the so-called full
Miintz Theorem, Borwein and Erdélyi (I995). We mention, however, that our
asymptotic results are valid for every injective integral operator ® with certain
properties (cf., Assumption C).

Our method can even be applied to the Hammerstein integral operators (see
e.g., Hammerstein (T930))

b
[ / o y)L(F (), )y,

where the additional operator L f(y) := L(f(y),y) is injective and satisfies certain
smoothness conditions to preserve essential properties of f, as e.g., the differen-
tiability for £f. This allows one to provide estimators and confidence bands for
the time relaxation spectra of polymer melts reconstructed from their dynamic
modul (see Roths et all (2000)).

We apply the asymptotic results to the estimation of a step function from
the noisy image of an integral operator with convolution kernel (inverse two
phase regression) and to the estimation of a piecewise linear kink function from
the noisy image of an integral operator with product kernel (inverse multiphase
regression). In both cases, we calculate confidence bands of the reconstructed
function that give an impression of the reliability of the estimate.

Our results differ substantially from the “truly nonparametric” kink models
that have appeared, including Kaorostelev ([987), Nenmannl ([997), Raimondd
(1998), Goldenshluger, Tsybakov. and Zeevi (2006), (Goldenshluger et all (2008H),
Goldenshluger et all (2008a) for independent error and, recently, Wisharfi (2010,
2011) for long range dependent error. In the present paper f is modeled as a
piecewise “parametric” function that is \/n estimable between kinks, leading to
asymptotic normality and a parametric rate of convergence. It is easily seen that
this rate is minimax for bounded kernels ¢ in (I”2), and can be even improved for
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singular kernels (see Boysen, Bruns, and Munk (2009a)). This is in contrast to
the afore mentioned papers, where piecewise (nonparametric) smooth functions
are treated which requires a different estimation technique and analysis. This
also leads to different rates of convergence which are additionally deteriorated by
the smoothness between discontinuities. Roughly speaking, the situation treated
here can be viewed as a limiting case, when the degree of smoothness tends to
infinity.

The paper is structured as follows. Section 2 gives some basic notation and
the main assumptions. The estimator and its asymptotic properties are given in
Section 3. Section 4 discusses injectivity of the considered integral operators. In
Section 5 we show how asymptotic normality can be used for the construction
of confidence bands for the case of jump and kink functions, respectively. The
finite sample performance of the asymptotic distribution is briefly investigated in
a simulation study. The proofs of the asymptotic results from Section 3 and the
injectivity statements from Section 4 are given in a supplement to this paper.

2. Definitions and Assumptions
2.1. Notation

For functions g, f : I — R, we denote by | f| 2 the L?-norm and by
(f,9) r2(r) the corresponding inner product. The essential supremum is denoted
by || f]|co, the empirical norm and the empirical inner product by

92 = ") and (fgh = > flaolw),
i=1 =1

where x1,...,x, are given design points. Accordingly, the empirical measure is
P, :==n"t3" | 6, For vectors 0,61,0, € R we use the Euclidean norm |6y
and the maximum norm |0|s, and take (61,60s) := {6 € R? | § = 6, + t(02 — 60y),
for t € (0,1)}.

2.2. Piecewise continuous parametric functions

We start by introducing the class of functions f to be estimated in model
(Im). Throughout this paper we assume that a,b € R, a < b and r,k € N\ {0}.

Definition 1. Assume that ¥ C R" is convex and compact and choose M > 0
such that |J]oc < M for all ¥ € ¥. Let f: [a,b] x ¥ — R satisfy:

(i) f is continuous and continuously differentiable with respect to ¥;

(i) for all open subintervals I C [a,b] the mapping §; : ¥ — C(I), §1(¢) =
f(-,9)|r is injective, and its derivative §;[¥] : R™ — C(I) is also injective for
all ¥ € ¥, where C(I) denotes the set of continuous functions on I.
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Then, F := {f(-, ) | ¥ € ¥} is called a family of continuous parametric functions
with parameter domain W.

Example 1 (Constant functions). If ¥ = [-M, M] and f(y,?) := 0 we obtain
Jr = {ﬁl[a,b] | [9] < M},

Example 2 (Linear functions). If ¥ = [—~M, M]? and §(y,?) 1= 91 + yds we
obtain
Fr = {291 + Jqge | ‘791‘, ‘02‘ < M}

Definition 2. Let F = {f(-,9) : ¥ € U} be a family of continuous parametric
functions on the interval [a,b]. A function f € L*([a,b]) is called a paramet-
ric piecewise continuous function (pc-function) generated by F if there exists a

partition @ = 79 < 71 < - < Tp1 = b and parameter vectors 91, ..., 91 € ¥
such that k1
f= Zf('aﬂj)lhj,l,rj) : (21)
j=1

The function f is also denoted by f(-,9',71,..., 9% 7, 9¥*1). We call the ele-
ments of the set

J(f) :={m|ie{l,...,k} such that 9" # "' and 7; < 7,41}

change points of the function f € Fy, and denote its cardinality by #7(f). The
set of all parametric piecewise continuous functions with at most k change points
generated by F is denoted by Fy[a, b] (or shortly by Fy). With

[f1(7) == li{%(f(T +e)—f(r—¢),

we say that f has a jump at 7 if [f(-,0)](7) # 0, and that f has a kink at 7 if 7
is a change point and [f(-,0)](7) = 0. Moreover, we say that f is a kink function
(or jump function) if it has kinks (or jumps) at all change points.

Note that 6 := (9,71, ...,9%, 7, 9%+1) lies in the convex and compact pa-
rameter set Op C R%, d = (r + 1)k + r where

O = {(191,71,...,19k,7k,29k+1) € (\I’X[a,b])kx\ll la <1 <--- <7, <b}. (2.2)

Thus Fr, = {f(-,0) | 0 € ©y}. Accordingly we define

Fa,b] = Ej Fila,b].
k=1
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Example 3. The families /7 and Fj generate sets of step functions T} and
piecewise linear functions Ly, respectively.

Note that for functions f € Fj with less than k change points there is more
than one parameter vector in O generating f. In other words, the implication
f(,0) = f(-,0p) = 6 = Oy is true if and only if §7(f) = k. If uniqueness of
the parameter vector is required, we have to confine ourselves to functions in F,
with precisely k change points. Consider the subset of T, C T}, with precisely
k jumps,

Tp={f=f0) €T | [fl(7) #0, 71 <T5,i=1,---,k+1}, (2.3)
and the subset Ly C Ly, of piecewise linear functions with precisely & kinks,

Ly :={feLy |9 =0 (5 —04)mi 1, and 95 1494, 71 <7 i=2,..., k+1}.

(2.4)
As in the case of kinks there may occur dependencies among the parameter com-
ponents such that actually the number of parameters which determine f(-,6) is
smaller than the dimension of #. Therefore we define a so-called reduced param-
eter domasin.

Definition 3. ©, C R? denote the parameter domain of a family F} of pc
functions. If © ¢ R? is convex and compact and if there exists a continuously
differentiable function h : © — ©p such that the mapping

0 — Fy, 0 — f(-,h(A))

and its derivative 60 — %(',h(é))éé are injective, then © is called a reduced

parameter domain of ¥y, := {f(-,h(h)) | § € O}, and the elements 6y € O are
called reduced parameter vectors of the functions f(-, h(6)) € Fy.

Note that if we consider a class of pc-functions Fj that is generated by a
parametric class F, and if (y,9) — f(y,?) is continuously differentiable, then
the condition [f(+,0)](7) = 0 often implies local existence of a function h as in
Definition 3, by the Implicit Function Theorem. More precisely, if f(y,6p) is a
kink function in such a space, the function

F: @k — Rk,
0 — F(0) := (f(ﬁ,ﬂl) —§(r1,9?), ..., §(7%, 9%) — f(Tk,ﬁkH))T

vanishes in 6y. Due to the differentiability of the map 6 — F(6), the Implicit
Function Theorem implies that there exists a function A and a reduced parameter
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domain ©, with © C (0;)ie; € RY*, where I C {1,...,d} if the Jacobian
0/(00;)1¢1F (0o) is invertible. )

Consider for example the set L; in (24). There we have 93 = 91 + (93 —93)11
and, choosing the reduced parameter vector 6= (19%, 19%, T, 19%) and the function
h(0) = (01,95, 71,91 + (03 —03)71,93), the conditions of Definition 3 are satisfied.

2.3. Assumptions on the model

Assumption A (Assumptions on the error).

A1: the vector ¢ = (e1,...,e,) consists of independent identically distributed
random variables with mean zero for every n and E(e3) = 02 < o0.

In some situations, the error is additionally needed to satisfy a sub-gaussian
condition.

A2: ¢ satisfies A1, and there exists some o > 0 such that E(esﬁ/a) < 00.

Assumption B (Assumptions on the design). There exists a function s : [ —

[Su, 1] with 0 < s, < 57 < 00 and fabs(x)dzc =1, such that
7 Z(4)
- = / s(zx)dz + 9;
a

n

with v, = max;=1__, |0;| = o,(1). Here z(;) denotes the i-th order statistic of

Z1,...,Tn. Moreover, the design points x1,...,z, are independent of the error
terms €1,...,&n.
The above assumption covers random designs. If the design points x1,...,z,

are nonrandom, the o,(1) term above is to be understood as o(1). We do not
pursue this situation further, but with a slight change of technicalities, all sub-
sequent results hold analoguously.

2.4. Integral operator

The integral operator ® in (I2) acts on Fj C L?([a,b]), hence it can be
considered as a map, acting on the parameter space Oy, for x € [a, b], by

b
0 s Bf(-0) = / () F(y.0)dy. (2.5)

In the following we require the Frechet differentiability of ® to ensure identifiabil-
ity of the parametrization in (Z8). To this end we introduce the space M (]a, b))
of all signed Borel measures p on [a,b] of the form u = f + Z?:l 7vj0z; With
f €LY (a,b]), n €N, z; € [a,b], and v; € R, and define

b b n
(Bp)(x) == / () dpu(y) = / o, y) F) dy + 3 (e, z;), vl (2.6)

j=1
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for p € M. We denote by L£(X,)) the space of bounded linear operators of a
normed space X into a normed space Y. We denote by C%!(I) the space of uni-
formly Lipschitz continuous functions with norm || f||co.1 := || fl|leo +8sup,, | f()

—fl/lz —yl.

Assumption C (Assumptions on the integral operator). The operator ® in
(I22) satisfies the following.

(i) @€ L£(L>([a,b]),C%(I)) and @ € L (L*([a,b]), L=(1)).
(ii) The mapping [a,b] — L2(I), y — ©(-,y) is continuous, so in particular ®
is well defined on M([a,b]) by (28). Moreover, ® : M([a,b]) — L*(I) is

injective.

Conditions (ii) is essential in the consistency proof for the estimator of fj.
Condition (i) especially is needed to estimate the L?-norm of ®f by means of
the empirical norm. In Section 4 we introduce some special classes of operators
satisfying Assumption C.

The results of this paper can also be formulated for ® : L?([a, b]) — L2(I),
with an interval I C R that need not coincide with the interval [a, b], but for ease
of notation we only discuss the case I = [a, b].

3. Estimate and Asymptotic Results
3.1. Known number of jumps

Estimate. An estimate of f for given k and F is found by taking & fn to
minimize the empirical distance to the observations Y in (IT) with respect to
the space F',. That is, f, € Fy and

9. = YI2 < min |0F = Y[3 +op(n ™) (3.)

This estimator depends implicitly on k and F'j, but we supress this when no con-
fusion is expected. It then follows from Definition 2 that there exists a parameter

vector 6, € Oy, such that
k+1

Faly) = F(y,00) =D 1y, 0015, 2,
i=1

where 9% and 7; also depend on the index n.

It is easy to see that the minimum at (8) is attained, since F' is closed
and compact. It need not be unique. We do not require that fn minimizes
the functional | ®f — Y||? exactly, but only up to a term of order op(n~1); this
allows for numerical approximation of the minimizer and gives an intuition of the
required precision for the asymptotic results to be valid.
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Consistency and asymptotic results. We give the asymptotic behavior of
the estimator in (B) for the case where the true function fy € Fy has precisely
k change points, that is §7(fo) = k, and for the case where the number of change
points is not known.

Let A : ©, — L%([a, b]) denote the mapping

A9 = Df(-,0). (3.2)

We show in the supplement that A is differentiable and denote by A’[f] €
L%([a,b])? its gradient at 6. With this, we define the d x d matrix Vj by

b
(Vo) = [ XOI10)s(w)en, (33)
where s is as in Assumption B.

Theorem 1. Suppose that Ass. A1, B, and C are satisfied and let fn(y)

~

f(y,6,) be the estimator of the true fo = f(-,6) € Fy at (B), with §7(fo)

If the matriz Vy, is nonsingular, then

k.

(i) Valbn — o) 2 N(0,0%V; 1),

(ii) |60 — Op|2 = Op(n~1/2),

(iif) [ fo — full 2o (ja)) = Op(n~Y2P) for any p € [1,00),
(iv) [|®fo — (I)anLOO([a,bD = Op(n~1/?2).

If fo depends on a reduced parameter vector 6 as in Definition 3, the deriva-
tive of @ — A(h(0)) can be calculated by the chain rule, due to the differentiability
of the function h and we have the following.

Corollary 1. Suppose that Ass. A1, B, and C are satisfied and that the true
foly) = foly, h(é)) can be parameterized by a reduced parameter domain. Then Vj
is nonsingular, and the results of Theorem 1 are valid with 6y and 0,, substituted
by the reduced parameter vector 0~0 and its estimator 0~n

Nonsingularity of the covariance matrix Vp, is essential for Theorem 1 to
hold. We characterize this property in terms of the partial derivatives %f(y, 796),
i=1,...,k+ 1, for the case where f(-,6y) has precisely k jumps.

Proposition 1. Suppose that f(-,0) = Efill (-,ﬁi)I[Ti_lm.) € Fy has k change
points and Ass. B and C are satisfied. Then the matriz Vp at (833) is nonsingular
if and only if f(-,0) has jumps in all change points.
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Accordingly, Theorem 1 cannot be applied, if fj is a kink function. This case
requires restriction to a reduced parameter set ©. Then it is even possible to
improve the rate of convergence of f,,, which depends on the modulus of continuity
of the considered function class F,

v(F,0):==sup sup [f(y1) — f(y2)l- (3.4)

JEF ly1—y2|<d
Corollary 2. If the conditions of Corollary 1 are satisfied and the true fo(y, h(0))
s a kink function, then the results of Corollary 1 are valid with the improved rate

Ifo = Falloaey = Op(n ™2+ n=YV2Pu(F,n=V2))  forpe[l,00). (3.5)

For example, we obtain rates of order n= Y2 if f € L. More generally, if F
consists of Holder continuous functions with exponent 0 < o < 1, one gets a rate
of order n~(1+e)/4,

It is straight forward to see that the y/n rate in Theorem 1 (i), (ii) is min-
imax under a normal error for bounded, continuous integral kernels. A similar
argument as in the proof of Theorem 1 in Wisharfl (2011) can be employed to
estimate the Kullback Leibler divergence between the distributions of different
(Y, X) and apply Theorem 2.2.(iii) in [I'sybakov (2009). In a normal model, we
claim the asymptotic variance Vegl in 1 is asymptotically optimal in Le Cam
sense, provided the experiment is differentiable in quadratic mean (see kan_dex
Vaarfi (T99R)).

The ill posedness of the problem is not reflected in the rate of convergence but
rather in the asymptotic variance‘/bgl, as can be seen from (B3). The variance is
large when the gradient of ®f(-, 6y) is flat. Loosely speaking, this happens when
kinks or jumps in the signal are only weakly propagated through the operator @,
and hence hard to detect.

We finally mention that we believe that the rates in Theorem 1 (iii) and (iv)
and in Corollary 2 are minimax but we do not have a proof for this.

3.2. Unknown number of jumps

If we do not know the number of change points of the objective function, we
can use f, penalized by the number of change points 7 (f,). We consider the
{o-minimizer f):

1245, = YIE + AT (£r,) < min [@F = YT+ Xt T () +op(n™!)  (36)

where A, is some smoothing parameter converging to zero and $.7(f) is taken to
be nonzero. In the following result we show that for a large range of parameters
(An)nen, the correct number of change points is estimated with probability tend-
ing to one. That means, for large enough n, the estimators fn in (BI) and fAn
in (BM) coincide.
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Theorem 2. Suppose that Ass. A2, B and C are satisfied. Let fy € Fyoo and
choose {\p}nen such that A, — 0 and Aot/ (9 s 50 for some € > 0.
Then, the minimizer fy, of (8M) satisfies P(87 (fx,) = 8J(fo)) — 1.

This can be viewed as a model consistency result in that, for n large enough,
the correct number of junps/kinks is selected. Viewed as a post model selection
estimator, the normal approximation can become unreliable in Theorem 1 (i),
since the model selection step may affect the distributional limit from the post
model selection estimator (Leeb and Pofscher (2006)). In fact, the convergence
in Theorem 2 is nonuniform in the sense that this probabilty will depend on the
true underlying function f.

We do not know whether A\, ~ logn/n would give model consistency as
well, the penailzation rate required in Theorem 2 is stronger. The choice of
An ~ logn/n would correspond to the classical BIC criterion. The practical
choice of A\, in the last theorem is a subtle task and we do not address this here.
In general, (generalized) cross validation methods could be employed (see e.g.,
Maoand Zhad (2003) in the context of splines), or residual based multiresolution
techniques following Boysen et all (2009H). In general, a severe computational
burden arises in models with many kinks.

3.3. Examples

Example 4 (Hammerstein integral equations). The structure of F[a,b] allows
extension of the results in Theorem 1, and Corollaries 1 and 2, to a class of
nonlinear integral operators of the form

b
Hf@ﬁ=:/sd%yﬂ4f@%yﬁyj (3.7)

known as Hammerstein integral operators. We take L to satisfy the following.

(1) L is continuously differentiable with respect to the first variable and contin-
uous with respect to the second variable.

(2) The operator £ : L*([a,b]) — L?([a,b]) is injective:

(LNy) = L(f(y),y),  y€lab]
(3) For any f € C([a,b]) the derivative £'[f] : L*([a,b]) — L?*([a, b]) is injective.

For a specific application from rheology we refer to Subsection 5.3.

It is straightforward to verify that if £ satisfies (1)—(3) and, if F is a contin-
uous parametric family, then the image £(F) is a continuous parametric family
with f replaced by f1.(y,?) := L(f(y,?),y). Moreover, L(F[a,b]) is again a set
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of pe-functions. That means £ preserves the properties of f € Fpla,b] and all
results from the preceding section hold for Hammerstein integral equations of the
first kind, since for f € F[a,b] we can consider Hf = ® f as a linear operator,
where f is an element of the transformed function space L(F[a,b]). Since esti-
mating a function f(-,0p) € L(F|a,b]), under the conditions of Theorem 1, or
Corollary 1 or 2, yields an estimator for 6y, we obtain an estimator for f(-,6p)
simultaneously.

Example 5 (Free knot splines). The question of what happens if the true func-
tion f in (W) is not an element of Fy, has been treated in Boysen, Bruns, and
Munk (20094, Lemma 3.3). In analogy to this, under certain conditions on the
design the minimizer of (B7) converges to a pc function f € Fy, such that ®f is
the best approximation of ®f.

For the set of piecewise polynomial functions, there is a connection to dis-
tributional asymptotics for splines. According to the Curry and Schoenberg
Theorem (cf., De Boox (2001, Chapter VIII, (44))), for fixed change points, the
set of piecewise polynomials of degree p is the B-spline space of order p with
knots in {70,...,Tg+1} with multiplicity p in the case of jumps, and at most
p—1 in the case of kinks. Here misspecification of the model could be considered
as spline approximation of fy and this leads to “spline-regularization”. Results
concerning spline-regularization with fized knots and its relationship to inverse
problems as in () is a classical topic and can be found e.g., in Cardof (2002).
Here we have to deal with free-knot splines and these spaces are no longer linear.
Approximation of a function by splines improves dramatically if the knots are
free (Rice (1969), Burchard (1973/74)), although stable and effective computa-
tion of optimal knots is in general a challenging task (see e.g., Jupp (T978)). In
the context of regression the optimal knot number and the optimal density for
the knot distribution minimizing the asymptotic IMSE has been characterized
by Agarwal and Studden (I980). Our results do not only yield an asymptotic
expression for the variance of the estimated parameters including knot locations
(which yields the MSE and can be optimized following the lines of Agarwal and
Studden (I980)), but also show that they are asymptotically multivariate nor-
mally distributed and can be used for cofidence bands (see also Mao and Zhad
(2003)). Finally, Theorem 2 gives model selection consistency of knot penali-
sation in F,, new to our knowledge. Thus from Theorem 2 it follows that for
a large range of regularization parameters A, (which should converge to zero
slower than O(n~!)) penalization with the number of knots picks asymptotically
the right number of knots eventually in the set Fo, of free knot splines.

Example 6 (Confidence bands). Theorem 1 (i) implies that the quadratic form
no2(0n — 00) Voo (Or — 00) "
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is asymptotically x? distributed with d degrees of freedom. This is still true if
o and Vp, are replaced by consistent estimators ¢, and V@n’ respectively. Hence

an approximate (1 — a)-confidence ellipsoid for 6, in R is
n(60) (0 = 00) (V) (0 — 00) T < X3(1 — ). (3.8)

By maximizing and minimizing f(y,#) for € inside this confidence ellipsoid, we
obtain simultaneous confidence bands for fn Of course, any of the common
methods for approximate confidence sets, namely Bonferroni, Scheffée or stu-
dentized maximum modulus statistics (for details see e.g., Milled (T966)) can be
applied as well. In fact, some simulation studies show (not presented) that for
functions with discontinuities including jump functions as treated in this paper,
the studentized statistic is the least conservative of them, even for a small num-
ber of parameters as long as these are less than the number of observations.
Moreover, if we consider the surface area of the respective bands as a further
criterion, simulations show that for increasing number of parameters the bands
corresponding to the studentized statistic outperform in terms of smaller surface
area even the exact bands obtained from the elliptic confidence set. Therefore, we
confine ourselves in Section 5.2 to the maximum modulus statistics. Note, that
this extends the pointwise confidence intervals for free knot splines constructed
in Mao and Zhad (2003) (see the previous example) in a simple way to bands.

4. Injectivity and Mapping Properties for Some Classes of Integral
Operators

We consider product and convolution kernels that assure L? injectivity and
range inclusions for the corresponding linear integral operator ® in (I2) as re-
quired by Ass. C.

We start with a theorem that establishes a connection between injectivity of
an integral operator with product kernel p(z,y) = ¢(zy) and the expansion of ¢.
The main argument in the proof is given by the Full Miintz Theorem in Borwein
and Erdelyi (1997, Thm. 6.2):

Lemma 1 (Full Miintz-Theorem). Suppose that J C N and that 0 < a < b.
Then span({y’ : j € J}) is dense in C([a,b]) with respect to the mazimum norm

if and only if
Y it =cc. (4.1)
JjeJ

Theorem 3 (product kernels). Suppose 0 < a < b and 0 < ¢ < d and that

o(z,y) = ¢(xy) for some piecewise continuous function ¢ € L*([ac,bd]). Then
(i) and (ii) of Ass. C are satisfied under the following conditions:
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C(i): We have ® € L(L'([a,b]),L>([c,d])). Moreover, ® € L(L*([a,b]),
C%Y(le,d))) if ¢ € BV(lac,bd)), the space of functions of bounded vari-
ation on [ac, bd].

C(ii): Suppose there exists an interval [p1, p2] C [ac, bd] with 22 < B2, such that
¢ has an absolutely convergent expansion

B(z) = Zajzj with aj € R for all j €N, z € [p1,pa] (4.2)
j=0

and the set J := {j € N : a;j # 0} satisfies (E0). Then ® : B([a,b]) —
L?([a, b)) is injective on the space B([a,b]) of signed Borel measures on
[a,b]. If p1 = ac and py = bd, then (E) is also necessary for injectivity
of ® on B([a,b]).

One example of such a kernel occurs in the example from rheology, which is
discussed in Section 5.2. The Gaussian kernel, ¢(z) = (2r02)~1/2e=(@/9)*/2 g a

well known example of a function satisfying the assumptions of Theorem 3.

Theorem 4 (positive definite convolution kernels). Suppose ¢(x,y) = ¢(x —y)
for all z,y € [a,b] for some function ¢ € C(R)NLY(R). Then (i) and (ii) of Ass.

C are satisfied under the following conditions:
C(i): If ¢ € BV([a —b,b— a]), then ® € L (L>([a,b]),C%!([a,b])) and ® €
L (L' ([a,0]), L%([a, b])).

C(ii): If the Fourier transform gg 1s integrable and strictly positive a.e. on R,
then @ : M([a,b]) — L*([a, b)) is injective.

Examples of kernels satisfying the assumptions of Theorem 4 include the
Laplace kernel ¢(z) = %e"x‘ and kernels of the type ¢(z) = max(1 — |z|,0))? for
p=2,3,....

Theorem 5 (analytic convolution kernels). Suppose p(z,y) = ¢p(z—y) forx,y €
[a,b] for some analytic function ¢ € L*(R), and that the Fourier transform ¢
vanishes at most on a set of Lebesgue measure 0. Then the operator ® satisfies

Ass. C.

5. Simulations and Data Example
5.1. Example: Inverse two phase regression

To evaluate the speed of convergence and quality of the approximation by
the asymptotic law given in Theorem 1, we did a simulation study with the true
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Figure 1. Asymptotic and finite sample size distribution of the jump loca-
tion for different sample sizes n. 10° simulation runs with data generated
according to (B1) were performed. The finite sample size distribution is
given by the black line and the asymptotic distribution by the gray line.
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Figure 2. Empirical coverage probability for different sample sizes n of confi-
dence bands for the estimated jump location. 10° simulation runs with data
generated according to (B1) were performed. The x-axis shows the nominal
and the y-axis the empirical coverage.

function fy € ’i‘l, a step function with one jump given by the parameter vector
0o = (b1, 7,b2) = (—3,1/2,3). We generated the observations Y by

. 1 .
Yi=®(=3-1p1jo) +3-1upy (7)) 38 i=1....n (5.1)

where (®f)(z) = fol 1jo,00)(* —y) f(y)dy and e ~ N(0,1) for i = 1,...,n. Theo-
rem 1 yields
Vil —00) > N(0,0°Vy )

where the (non-singular) covariance in (B33) is

12 —6
3 (b1—b2)T2 0

oy, 6 4 —6

o Vo = | Gime? GriomP(=rr i) (1—Z | °
0 —6 12

(b1—b2)(1—7)2 (1—7)3
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0.0 0.5 1.0 ' 0.0 0.5 1.0

Figure 3. Simulated data examples and confidence bands for the two phase
regression with n = 100 (left) and n =1,000 (right) observations. The first
row displays the observations and the reconstruction in the image space, and
the second row shows the estimate for the signal f. The gray line represents
the true function and the solid black line the estimate. The dashed lines show
the confidence bands for the function and the gray dots the observations.
The ellipses in the second row show the confidence sets for (,b1) and (7, b2),
respectively.

In particular for the jump location we obtain

402 )

~ D
Vi =) % N (0, (b = b)2(1 —7)r

This was used to calculate confidence intervals for 7. Figure 1 shows the empirical
and the asymptotic distribution of 7 for different sample sizes n.

The quality of approximation by the asymptotic law is reflected in the em-
pirical coverage of the confidence bands for 7, as displayed in Figure 2.

As described in Example 6 we can calculate confidence bands for the esti-
mated function fn as well as for its image ¢ fn Figure 3 shows two simulated
data sets, including their 95%-confidence regions, for n = 100 and n =1,000.
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5.2. Example: inverse multiphase regression

In this subsection we discuss an application of Corollary 2 to a problem
from rheology. The aim here is the determination of the so called relazation
time spectrum (see Rofhs ef all (2000)). This is a characteristic quantity used
in rheology that describes the viscoelastic properties of polymer solutions and
polymer melts. Given the spectrum, it is very easy to convert one material
function into another. Additionally, many theories are based on the spectrum
or provide predictions about its character (see for example Ferry (1970)). The
relaxation time spectrum is not directly accessible by experiment and has to be
inferred from dynamic stress moudli. It is common to assume that these are
observed (with gaussian noise) under a nonlinear integral transform (see Rofhs
efall (2000)).

Definition 4. Let 0 <a <1 < b < oo and ¢ # 0. The relazation time spectrum
transform is given as

H : L°([a,b]) — L*([a, b)),

S I

Note that this is a Hammerstein integral H = ® o £, where £ : L*°([a, b]) —
L?([a,b]) and ® : L?([a,b]) — L?([a,b]) are defined by

(L)) =y e W),

b
(@g)(y) :== / mg(y)dy-

m2y2

The exponential operator L satisfies the assumptions claimed in Example 4. Fur-
thermore, the integral operator ® satisfies Assumption C by virtue of Theorem
3.

The function f describing the relaxation time spectrum is known to have the
interpretation f(-,6) = f(log(-),0) such that f(-,6) is continuous and piecewise
linear with two kinks (see Princé (T953)). This means that f is an element of Ly
as defined in (24) with reduced parameter vector 6= (91,935, 71,923, 79, 93). For
simplicity we rename 6 as 0 = (bg, by, 1, ba, 72, b3). Then we have

Ly = {f € L*([log(a),log(b)]) | f(y.0) = bo+biy+ba(y—71)++b3(y—72)1, 0 €O2},

where O is assumed to be compact. The true function fo(y) = f(y,0) we intend
to estimate is an element of the set

Liog == {f(y,0) = f(log(y),0) | f € Lo},
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Figure 4. A log —log- plot of the w frequency of harmonic stress (x-axis)
against the dynamic stress moduli of a polymer melt.

which satisfies the conditions of Definition 2. In Rofhs ef all (2000) it is as-
sumed that the observation model coincides with (I0) with fy substituted by
L fo, namely

yi = Hf(z;,00) + ¢ =PLf(x5,00) +e; for i=1,...,n,

where Ass. A1 and B on error and design are fulfilled. Figure 4 shows a sample
of stress moduli measurements on a log-scale performed at the Center of Ma-
terial Sciences at Freiburg for a certain polymer melt (see Roths et all (2000)
for details). For estimation we use the estimator at (B). Then, application of

Corollary 2 yields
V(b — b0) 25 N(0,02V, 1), (5.2)

where 02 = E(e?) if Vp, is regular. By the chain rule the derivative of the

mapping A : R® — L2([a,b]), A := ®LF(-,0) is

:L'2y
Cf(y700) T
1+ $2y2 € <h df(yv 90)) dy)

(5.3)

(A'[Bo]h) (z) =@ (aae IL£(-,60)] h) (ﬂf):c/ab
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Figure 5. From Lt.r.: 0.95- and 0.80-confidence bands for the estimated kink

function f, of the log relaxation time spectrum with two (typical) kinks
plotted on a log scale
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Figure 6. Empirical coverage probability (grey lines) of confidence bands
for the estimated kink function for normal observations with o2 = 0.01
for different sample sizes. From the left, n = 100, 1,000, 5,000, and 10*
simulations each. The z-axis shows the nominal and the y-axis the empirical
coverage probability. The black line x = y is for comparison, it shows perfect
coincidence of empirical and nominal coverage.

where
1

log(y)
—b21 T1h
df (y,0) = [e2,b]
T 0= | (og(y) — 7)1
—b31[e7‘2’b]
(log(y) — 72)L(em2 )
Remembering that by # 0 # b3 and 7 < 72 by Definition P4, it is easy to see
that the components of df(-,6y) are linearly independent. Together with the
injectivity of @, it follows that A’[fp] is injective, and hence Vp, € R*6 defined
as in (B833) is nonsingular.
The results of Theorem 1 hold with the improved rate

Ifo = fallr2jay = Op(n ™), (5.4)

which for comparison is the square of the rate in (iv) of Theorem 1. Equa-
tion (54) directly follows from Corollary 2, since linear functions with bounded
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slopes are Lipschitz continuous with a uniform Lipschitz constant. Hence, for
the modulus of continuity it holds that v(Fz,n~"/2) = O(n=1/?).

Figure 5 shows the estimated kink function for the polymer melt data of the
relaxation time spectrum from dynamic moduli (see Rofhs et all (2000)), with
95%- and 80%-confidence bands calculated by using a studentized maximum
modulus statistic (Miller (I966)).

As in Subsection 5.1, we evaluated the accuracy of the normal approximation
from (B2) in this special example, by performing a simulation study (see Figure
6). Here we used the operator in Definition 4 acting on the space of kink func-
tions with two kinks. A comparison of Figure 2 and 6 illustrates that increasing
complexity of the kernel in Subsection 5.2 reduces the finite sample accuracy of
the empirical coverage probability.
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