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Abstract: Most of the common estimation methods for sample selection models

rely heavily on parametric and normality assumptions. We consider in this paper

a multivariate semiparametric sample selection model and develop a geometric ap-

proach to the estimation of the slope vectors in the outcome equation and in the

selection equation. Contrary to most existing methods, we deal symmetrically with

both slope vectors. Moreover, the estimation method is link-free and distribution-

free. It works in two main steps: a multivariate sliced inverse regression step, and

a canonical analysis step. We establish
√

n-consistency and asymptotic normality

of the estimates. We describe how to estimate the observation and selection link

functions. The theory is illustrated with a simulation study.
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1. Introduction

Sample selection models (SSM) are described by two equations. A selection
equation specifies the state “observed / non-observed (missing)” of the dependent
variable y as a function of explanatory variables x. An outcome equation specifies
the value of the dependent variable y as another function of explanatory variables
x. Numerous papers dealing with univariate SSM have been published. The
adjective “univariate” refers to y ∈ R. In this paper, we focus on multivariate
SSM, that is, when y ∈ Rq, q > 1.

Let us first briefly review univariate SSM. Heckman (1979) introduced what
is now regarded as the prototype selection model. Amemiya (1985) refers to this
model as the type II Tobit model:

(E1) : y∗1 = θ1 + x′β1 + ε1

(E2) : y∗2 = θ2 + x′β2 + ε2

(E3) : y2 = I[y∗2 > 0]
(E4) : y1 = y∗1y2

(E5) : (ε1, ε2)′|x ∼ N (0,Γ), Γ =
[

σ2
1 σ12

σ12 σ2
2

]
,
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where the notation I designates the indicator function. The observed variables are
y1 ∈ R, y2 ∈ {0, 1} and x ∈ Rp. Note that in this model, the explanatory variable
x does not include the y variable, contrary to Maddala (1983) who considered a
more general simultaneous equation modelling framework where the outcome y

can appear on both right and left hand sides of (E1) and (E2). Note also that,
in (E4), missing values are denoted by zero, leading to possible confusions with
zero as an actual observed value for y1. Equation (E3) is the selection equation
and (E2) is the potential outcome equation. The maximum likelihood method
is generally used to estimate such models. The score function is highly non-
linear. The convergence of the algorithm heavily depends on the choice of good
initial values, and the asymptotic properties of the estimate are very sensitive
to model specification. This has been discussed by Goldberger (1983), among
others. Alternative methods have been designed. Heckman (1979) proposed
a two-step method estimating first the selection equation, and then using the
result to estimate the outcome equation in a second stage. Many authors have
considered parametric estimation methods. For a survey of these aspects, see
Amemiya (1985), Maddala (1983, 1993), or Blundell and Smith (1993).

Semiparametric estimation methods have been developed to bypass the sensi-
tivity to specification assumptions. They handle more general models, especially
for error specification. Melenberg and van Soest (1993) give an overview of the
semiparametric estimation methods for SSM. Most semiparametric estimation
techniques of SSM also proceed in two stages. The first gives a consistent es-
timate of the slope of the selection equation. The second stage works with the
non-missing y only: (i) building a biased estimate of the slope of the outcome
equation, and (ii) correcting for this bias with the help of the slope estimated in
the first step. Duan and Li (1987), Newey (1991) Ahn and Powell (1993), and
Lee (1994) follow such a scheme.

In this paper, we examine multivariate sample selection models (MSSM)
which are a generalization of the type II Tobit model when the dependent variable
y is a vector of Rq. This kind of model can also be seen as a generalization of
classical multivariate Tobit model: y = max(y∗, 0) where y∗ = Cx + ε, ε ∼
N (0, Γ), and C is a q × p matrix of coefficients (see for instance Eiswerth and
Shonkwiler (2006) for a brief presentation and an ecological application of this
model).

We focus on a semiparametric MSSM by introducing unknown link functions
in the selection and outcome equations in order to get a more flexible model.
Moreover, we do not assume that the distribution of the error term is a multi-
variate normal distribution. Like Duan and Li (1987) in the univariate case, we
propose a link-free and distribution-free estimation method. Contrary to most
existing methods, we deal symmetrically with both slopes (of the selection and
outcome equations).
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In Section 2, we give a description of the semiparametric MSSM. In Sec-
tion 3, we employ the geometric approach to the estimation of the slopes of the
outcome and selection equations from a population point of view, and we give
the corresponding sample version in order to obtain the slope estimators. The
estimation method works in two steps (which have nothing to do with the two
classical stages of the approaches mentioned above). The first one performs a
multivariate sliced inverse regression (MSIR) analysis. The second step converts
the MSIR indices to estimators of the slopes by means of two canonical analy-
ses. The corresponding numerical algorithm is fast (since the method is based
on only a few matrix operations and eigen-decompositions, without need for any
time-consuming iterative computations) and does not require starting values.
Asymptotic properties of the slope estimators are derived in Section 4. Simula-
tion results are reported in Section 5. Finally, concluding remarks are given in
Section 6.

2. A Semiparametric Multivariate Sample Selection Model

We consider the following semiparametric multivariate sample selection model:
for j = 1, . . . , q,

y(j) =

{
g
(j)
1

(
x̃′

1γ̃1, ε
(j)
1

)
if g

(j)
2

(
x̃′

2γ̃2, ε
(j)
2

)
> 0

MV otherwise.
(2.1)

- The symbol MV symbolically indicates a missing (non-observed) value for
y(j) in order to avoid any confusion with zero as an observed value.

- The dependent variable y = (y(1), . . . , y(q)) ∈ Rq (when each y(j) is observed)
is a q-dimensional random vector. In the following, we will see that there is
no need to require all values for the y(j)’s to be real.

- The functions g
(j)
1 and g

(j)
2 are unknown link functions. For the j-th compo-

nent y(j) of y, g
(j)
1 is called the observation link function and g

(j)
2 the selection

link function.

- The variables x̃1 ∈ Rp1 and x̃2 ∈ Rp2 are subvectors of a random vector x ∈
Rp, assumed to have an elliptically symmetric distribution with parameters
µ = E(x) and Var(x) = Σ. Let Ak, k = 1, 2, be a p × pk matrix that selects
the components of x̃k in x, that is: x̃k = A′

kx. This matrix has exactly one “1”
in each column and at most one “1” in each row, and the other elements are
“0”. From the definition of Ak, this matrix is a full column rank matrix such
that A′

kAk = Ipk
. The matrices A1 and A2 are assumed to be known a priori;

they are not chosen arbitrarily by the user, they need to be assumed based on
existing theory on the exclusion of specific variables. It follows that x̃1 and
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x̃2 are elliptically distributed with parameters µk = E(x̃k) = A′
kµ, k = 1, 2,

and Σk = Var(x̃k) = A′
kΣAk, k = 1, 2.

- Let ε(j) = (ε(j)
1 , ε

(j)
2 )′, and ε =

(
ε(1)′, . . . , ε(q)′)′. The error term ε is a random

vector independent of x, with an unknown distribution.
- The parameters γ̃1 and γ̃2 are the p1 × 1 and p2 × 1 real unknown slope

parameters. Introduce γk = Akγ̃k ∈ Rp, k = 1, 2, in order to expand γ̃k to a
p × 1 vector with zeros corresponding to the non-selected components.

Under the generality of the unknown link functions in this model, the in-
tercepts, the vector lengths and vector signs of γ̃1 and γ̃2 are not identifiable.
Without additional assumptions, only the directions of the observation and se-
lection slope vectors are identifiable. Then, our main purpose is to estimate the
directions of the vectors γ̃1 and γ̃2. The nonparametric estimation of g

(j)
1 and

g
(j)
2 will also be discussed.

We consider model (2.1) as a particular case of a more general multivariate
two-index semiparametric regression model of the form

y = f(x′γ1, x
′γ2, ε). (2.2)

Model (2.2) was introduced by Li (1991) when y ∈ R. Li (1991) introduced sliced
inverse regression in order to estimate the subspace of Rp, spanned by the γk’s,
which is called the e.d.r. (effective dimension reduction) space. In (2.2), since
the link function f is assumed to be arbitrary and unknown, the γk’s are not
individually identifiable, while the e.d.r. space is identifiable. Some extensions
of the SIR approach to multivariate y have been studied by Aragon (1997),
Li, Aragon, Shedden and Thomas Agnan (2003), Saracco (2005), and Barreda,
Gannoun and Saracco (2007). It is interesting to note that SIR and Pooled
Marginal SIR (a multivariate SIR approach that is used in the next section) do
not require a metric structure for the outcome variable(s). Thus, MV values for
the y(j)’s are easily managed.

In our context, we have to take into account extra information about the
e.d.r. space, namely, structural zeros in the slopes γ1 and γ2, with a link function
f depending on the unknown functions g

(j)
1 and g

(j)
2 , for j = 1, . . . , q.

We now exhibit in Theorem 1 a geometrical property of this model on which
the proposed approach is based. Let E = Span(γ1, γ2) of Rp. Without additional
conditions, we have dim(E) ≤ 2. If γ1 and γ2 are linearly independent, then
dim(E) = 2, and {γ1, γ2} is a basis of the e.d.r. space. In order to ensure that
we are working on a two-index model (that is dim(E) = 2), let us assign the
following identifiability conditions.

(i) Each vector x̃k, k = 1, 2, has at least an x-component not present in the
other x̃k, k = 2, 1; such a component could be considered k-specific.
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(ii) At least one component of γk among the k-specific components is non-null,
k = 1, 2.

Note that these identifiability conditions are stronger than the usual identifiabil-
ity condition, which is that x̃2 contains an x-component that is not in x̃1. The
underlying reason for the stronger condition is that the proposed method deals
symmetrically with the selection and outcome slope vectors. Knowingly, we do
not make use of an important piece of information, namely that the selection
probabilities depend only on one of the two index variables, x̃′

2γ̃2.
We now bring these conditions into a geometrical perspective. Let Ek =

Span(Ak).

Theorem 1. Under the assumptions of model (2.1) and the identifiability con-
ditions, for k = 1, 2, E ∩ Ek = Span(γk).

Proof. From the definition of Ak, we have dim(Ek) = pk. The identifiability
conditions give (i) E1 6⊂ E2 and E2 6⊂ E1, and (ii) E ∩E1 6= E and E ∩E2 6= E.
Since dim(E) = 2, we have dim(E ∩ Ek) ≤ 2. From the definition of E and Ek,
γk ∈ E ∩ Ek and then dim(E ∩ Ek) ≥ 1. From the identifiability conditions we
get, for k? 6= k, γk? ∈ E and γk? 6∈ Ek, thus γk? 6∈ E ∩ Ej and dim(E ∩ Ek) < 2.
Finally, dim(E ∩ Ek) = 1 and E ∩ Ek ⊂ Rp is spanned by γk.

We specify in the next section how to determine a basis of E and to deduce a
basis E ∩Ej from a population point of view. Then we describe how to estimate
the directions of γ1 and γ2.

Remark 1. The full model defined in (2.1) can be interpreted as an item non-
response model, that is the response status for each outcome measure (or survey
item) is governed by a specific selection equation. We can also introduce a sim-
plified model in terms of the type of missing data encountered. Thus we assume
that the same selection equation is used for all outcomes: each selection link
function g

(j)
2 (.) is equal to the same link function g2(.). With unique error term

ε2, the model can be written as

y =
{

g1 (x̃′
1γ̃1, ε1) if g2 (x̃′

2γ̃2, ε2) > 0
MV otherwise,

where the observation link function g1(.) takes its values (when they are observed)
in Rq and the error term ε1 is a q-dimensional random vector. This model can be
interpreted as a case non-response model, when the response status for multiple
outcomes is clustered at the individual level: an individual either responds to all
outcome measures (case response) or does not respond to any outcome measure
(case non-response).
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Remark 2. The proposed approach can cope with the generalized two-limit
selection model of the form: for j = 1, . . . , q,

y(j) =


L
∗(j)
1 if g

(j)
2 (x̃′

2γ̃2, ε2) ≤ L
(j)
1

g
(j)
1 (x̃′

1γ̃1, ε1) if L
(j)
1 < g

(j)
2 (x̃′

2γ̃2, ε2) < L
(j)
2

L
∗(j)
2 if g

(j)
2 (x̃′

2γ̃2, ε2) ≥ L
(j)
2 ,

(2.3)

where L
∗(j)
1 and L

∗(j)
2 are qualitative measures of specific situations, L

(j)
1 and L

(j)
2

are thresholds of the selection equation. This model is a multivariate extension of
the two-limit Tobit model (see e.g. Maddala (1993)). In addition to the two-limit
selection model, it might also be useful to consider more general selection models
with multiple non-response categories, such as refusals, don’t know, etc., with a
distinct selection equation for each category.

Examples for potential application of the proposed model. Semipara-
metric MSSM has many possible applications in economics. For example, it can
be used to study the determinants of innovation behaviour or financial choices.
The Community Innovation Survey collects data on the innovative characteristics
of EU firms. The data include measures of innovation and related expenditures
(Intramural R&D, extramural R&D, Acquisition of machinery, equipment and
software, and other external knowledge). MSSM could be useful to exploit this in-
formation. The selection equation could give the state “observed / non-observed”
of the dependent variable y (having innovation activities) and the outcome equa-
tion would give the value of dependent variables (the amount of expenditure for
each of the four innovation activities) when innovation activities are observed.

Semiparametric MSSM could also be used in a clinical study when the re-
searcher considers relative potency. For instance, consider a clinical study of two
related drugs A and B that belong to the same class (such as two statins), with
the primary goal to determine the relative potency for the two drugs. In this kind
of application, it is reasonable to assume that the relative potency is determined
biologically by the intrinsic nature of the two drugs, therefore the same relative
potency (that is the same γ̃j coefficients) holds for various components of the
multivariate outcome measure.

3. Population and Sample Approaches

Our approach splits into two principal steps. In the first step, the idea is to
use multivariate sliced inverse regression in order to get a Σ-orthogonal basis of
the e.d.r. space E = Span(γ1, γ2). In the second step, since the linear subspaces
E1 and E2 are known (because the matrices A1 and A2 are assumed to be known
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a priori), canonical analyses of the couples (E,E1) and (E,E2) can provide bases
of E ∩ E1 = Span(γ1) and E ∩ E2 = Span(γ2).

3.1. Population version

Step 1: Pooled marginal sliced inverse regression. For model (2.2),
Saracco (2005) has shown that pooled marginal sliced inverse regression based
on the SIRα approach, named PMSα hereafter, provides a basis, denoted B =
[v1, v2], of the e.d.r. space E, that is Span(B) = E. The major novelty is to con-
sider a transformation (slicing) Tj(.) of y(j) with a specific slice for the missing
value (MV) of y(j). The vectors bk are the eigenvectors corresponding to the two
largest eigenvalues of a Σ-symmetric matrix.

More precisely, the idea of this method is to consider the q univariate SIRα

methods of each component y(j) of y on x (based on a specific slicing Tj), and
to combine the corresponding Mα matrices (denoted by M

(j)
αj ) in the following

pooling:

Mα,P =
q∑

j=1

wjM
(j)
αj

, (3.1)

for positive weights wj and parameters αj ∈ [0, 1]. In the Mα,P matrix, the α

index stands for the vector (α1, . . . , αq) and the P index stands for “pooled”.
Each transformation Tj categorizes each response y(j) into a new response with
Hj + 1 levels. We assume that the support of each y(j) is partitioned into Hj

fixed slices s
(j)
1 , . . . , s

(j)
h , . . . , s

(j)
Hj

, plus one slice s
(j)
0 for the missing value of y(j).

For j = 1 . . . , q, the matrices M
(j)
αj are M

(j)
αj = (1 − αj)M

(j)
I Σ−1M

(j)
I + αjM

(j)
II ,

with
M

(j)
I = Var(E(x|Tj(y(j))))

=
∑Hj

h=0 p
(j)
h (m(j)

h − µ)(m(j)
h − µ)′,

M
(j)
II = E

{(
Var(x|Tj(y(j))) − E(Var(x|Tj(y(j))))

)
Σ−1(

Var(x|Tj(y(j))) − E(Var(x|Tj(y(j))))
)′}

=
∑Hj

h=0 p
(j)
h

(
V

(j)
h − V

(j)
)

Σ−1
(
V

(j)
h − V

(j)
)

,

where p
(j)
h = P (y(j) ∈ s

(j)
h ), m

(j)
h = E(x|y(j) ∈ s

(j)
h ), Var(j)h = Var(x|y(j) ∈ s

(j)
h )

and V
(j) =

Hj∑
h=0

p
(j)
h V

(j)
h . The matrix M

(j)
I is the usual matrix used in the classical

SIR approach, often named SIR-I because it relies on a property of the first
inverse conditional moment of x given y, while M

(j)
II correspond with the SIR-II

approach using information from the inverse conditional variance of x given y.
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When αj = 0 (resp. αj = 1), the method used with M
(j)
αj is equivalent to the

SIR-I (resp. SIR-II) approach for the j-th component of y.
For (2.2), crucial conditions for the theoretical success of the SIRα and PMSα

methods are a linearity condition

E(v′x|γ′
1x, γ′

2x) is linear for any v, (3.2)

and a constant variance condition

Var(x|γ′
1x, γ′

2x) is non-random. (3.3)

Note that (3.2) is satisfied when x has an elliptically symmetric distribution,
and (3.3) is satisfied when x follows a multivariate normal distribution (which
is elliptical). Moreover, some mild departure from the elliptical symmetry does
not affect the application of SIR or MSIR, see for instance Li (1991, 1997). Note
also that low-dimensional projections from high-dimensional data are known to
improve the elliptical symmetry of data distribution, see for details Diaconis and
Freedman (1984) or Hall and Li (1993). Finally, an insightful discussion about
the SIR methodology and applications can be found in Chen and Li (1998), and
most of these comments are still valid for the MSIR approach.

Under (3.2) and (3.3), the eigenvectors v1, v2 associated with the largest two
eigenvalues of Σ−1Mα,P are e.d.r. directions and span the e.d.r. space.

Step 2a: Two canonical analysis. Consider the subspaces Ek and E of
Rp equipped with the inner product Σ. Canonical analysis is a useful tool to
find a Σ-orthogonal basis of Ek ∩ E. This basis is formed by the eigenvectors
corresponding to the eigenvalue 1 of PEk

PE , where PEk
and PE are, respectively,

the Σ-orthogonal projectors onto Ek and E.
Specifically, we have PE = B(B′ΣB)−1B′Σ=BB′Σ and PEk

=Ak(A′
kΣAk)−1

A′
kΣ. It is equivalent and simpler to diagonalize PEk

PEPEk
which is a Σ-symmetric

matrix. Call bk the unique eigenvector corresponding to the eigenvalue 1 of
PEk

PEPEk
. From Theorem 1, the eigenvector bk is colinear to γk and is Σ-

normalized: b′kΣbk = 1.

Step 2b: Retrieval of the direction of γ̃k. We can derive a vector, b̃k,
colinear to γ̃k: b̃k = A′

kbk. This vector b̃k is Σk-normalized: b̃′kΣk b̃k = 1.

3.2. Estimation of the directions

Directions are obtained from computations based only on covariance matri-
ces. Substituting estimates in place of these matrices yields estimated directions.
Let {(yi, xi), i = 1, . . . , n} be a sample from the reference model (2.1). Let Σ̂ be
the empirical covariance matrix of the xi’s.
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Step 1: Estimating a basis of the e.d.r. space E by the PMSα method.
We have to estimate the matrix Mα,P . To do this, using the Hj +1 slices of each
component y(j), it is straightforward to estimate the matrices M

(j)
I and M

(j)
II by

substituting empirical versions of the moments for their theoretical counterparts,
and therefore to obtain the estimated matrices M̂

(j)
α̂j

. Note that, for the choice of

the slices of Tj , s
(j)
0 contains the cases corresponding to the missing value (MV)

of y(j). The other slices, s
(j)
h , h = 1, . . . ,Hj , are made by splitting the range

of the non-missing values of the jth component of y into slices of nearly equal
weight. The choice of number Hj of slices is less crucial than the choice of the
smoothing parameter in nonparametric regression: in practice, we propose to
choose Hj such that 2 < Hj < [n∗

j/2], where n∗
j is the number of non-missing

y
(j)
i in the sample and [a] denotes the integer part of a. For the choice of the

weights wj , we use equal weights wj = 1/q for j = 1, . . . , q if we have no a priori
information on the importance of each component y(j) of y. The parameters αj

are individually chosen for each matrix M
(j)
αj , and we propose to use the method

based on the test approach of Saracco (2001) that does not require the estimation
of the link functions. Therefore we obtain the estimated matrix

M̂α̂,P =
1
q

q∑
j=1

M̂
(j)
α̂j

. (3.4)

The two estimated e.d.r. directions, v̂1 and v̂2 , are then the eigenvectors cor-
responding to the two largest eigenvalues of Σ̂−1M̂α̂,P . These vectors form a
Σ̂-orthonormal system. Let Ê = Span(B̂) where B̂ = [v̂1, v̂2].

Step 2a: Estimating the direction of γk, k = 1, 2. We obtain these di-
rections by canonical analyses of (Ê, E1) and (Ê, E2): the estimate of the di-
rection of γk is the eigenvector b̂k corresponding to the major eigenvalue of
the Σ̂-symmetric matrix P̂Ek

P̂ÊP̂Ek
, where P̂Ê = B̂(B̂′Σ̂B̂)−1B̂′Σ̂ = B̂B̂′Σ̂ and

P̂Ek
= Ak(A′

kΣ̂Ak)−1AkΣ̂.

Step 2b: Estimating the direction of γ̃k, k = 1, 2. The estimates of the
direction of γ̃k are then given by ˆ̃bk = A′

k b̂k.

Remarks.
- In order to obtain an estimate of the entire vector γ̃k (and not only of its

direction), we can normalize this vector in the Σk metric, and impose the sign
of a non-null component of γ̃k.

- For the two-limit model (2.3), there must be one slice for each kind of missing
y value. The other slices are built, splitting the other cases in the usual way.
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We study the asymptotic properties of the estimators ˆ̃b1 and ˆ̃b2 in the next
section. First, however, we discuss a topic of practical concern connected with
the estimation process: the estimation of the link functions of the model (2.1).

Rough approximation of the link functions g
(j)
1 and estimation of the

state of y probabilities. Let us simplify the reference model by assuming an
additive error component: for j = 1, . . . , q,

y(j) =

{
g
(j)
1 (x̃′

1γ̃1) + ε
(j)
1 if g

(j)
2 (x̃′

2γ̃2) + ε
(j)
2 > 0

0 otherwise,

with E(ε(j)
1 ) = E(ε(j)

2 ) = 0. A rough approximation of the jth-observation link
function, g

(j)
1 , may be obtained nonparametrically by kernel or spline methods.

Eubank (1988) and Haerdle (1990) give an operational description of these tools.
We may, for instance, build a naive Nadaraya-Watson kernel estimate from the
subsample of cases where y(j) is non missing by regressing y(j) on x̃′

1
ˆ̃b1. This

estimator is generally a biased estimator of g
(j)
1 since E(ε(j)

1 |x̃′
1γ̃1, g2(x̃′

2γ̃2)+ε
(j)
2 >

0) is non-null.
Here is the case of the selection link functions, g

(j)
2 . What is interesting is

to estimate the probability of the state of y(j). In order to describe the state,
introduce the qualitative variable t(j) for the one-limit selection model (2.1) (resp.
for the two-limits selection model (2.3)) as

t(j) =

{
1 if y(j) is observed

0 otherwise

resp. t(j) =


0 if y(j) = L∗

1

1 if y(j) is observed

2 if y(j) = L∗
2

 .

From each sample {(t(j)i , ri), i = 1, . . . , n} where ri = x̃′
2i
ˆ̃b2, we can obtain a

näıve Nadaraya-Watson estimate of the probability P (t(j) = t|r = x̃′
2b̃2) as

p̂(j)
n (t|r) =

n∑
i=1

K ((r − ri)/νn)∑n
l=1 K ((r − rl)/νn)

I[t(j)i = t], (3.5)

where K is a kernel function and νn is the bandwidth chosen by cross validation,
for example.

4. Asymptotic Theory

In the sequel, the notation Xn −→d X means that Xn converges in dis-
tribution to X as n → ∞. Let D1 ⊗ D2 denote the Kronecker product of
the matrices D1 and D2 (see Tyler (1981) for some useful properties of the
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Kronecker product). From now on, for each s × s matrix D =
(
d(jk)

)
, let

vec(D) =
(
d(11), . . . , d(s1), d(21), d(22), . . . , d(ss)

)′
be the s2-dimensional column

vector of all elements of D.
The necessary assumptions are gathered together below for easy reference.

(A1) {(yi, xi), i = 1, . . . , n} is a sample of independent observations from model
(2.1).

(A2) The supports of each component y(j) (when observed) of y are partitioned
into Hj fixed slices s

(j)
1 , . . . , s

(j)
h , . . . , s

(j)
Hj

such that p
(j)
h 6= 0, with a special

slice s
(j)
0 for the missing y(j).

(A3) The covariance matrix Σ is positive definite.
(A4) The two largest eigenvalues of Σ−1Mα,P satisfy λ1 ≥ λ2 > λ3 ≥ 0.

4.1. Convergence in probability of the estimated directions

Theorem 2. Under conditions given in (3.2) and (3.3), and under (A1), (A2)

and (A3), we have ˆ̃bk = b̃k + Op(n−1/2), with the vector b̃k colinear to γ̃k, for
k = 1, 2,.

Proof. Classical asymptotic theory gives us Σ̂ = Σ + Op(n−1/2). By the asymp-
totic theory of PMSα (see Saracco (2005)), we get B̂ = B + Op(n−1/2). Thus,

P̂Ê = PE + Op(n−1/2). (4.1)

From the identifiability conditions, rank(A′
kΣAk) = pk. Since A′

kΣ̂Ak = A′
kΣAk+

Op(n−1/2), we get (A′
kΣ̂Ak)−1 = (A′

kΣAk)−1 + Op(n−1/2) and

P̂Ek
= PEk

+ Op(n−1/2), j = 1, 2. (4.2)

Combining (4.1) with (4.2) yields P̂Ek
P̂ÊP̂Ek

= PEk
PEPEk

+Op(n−1/2), k = 1, 2.

Consequently, the eigenvector of P̂Ek
P̂ÊP̂Ek

corresponding to the major eigen-
value converges at the same rate to the corresponding eigenvector for PEk

PEPEk
:

b̂k = bk + Op(n−1/2), k = 1, 2. Finally, since ˆ̃bk = A′
k b̂k and b̃k = A′

kbk, we con-

clude that ˆ̃bk = b̃k + Op(n−1/2), k = 1, 2. From Theorem 1, we have b̃k colinear
to γ̃k.

4.2. Asymptotic distribution of ˆ̃
bk, k = 1, 2

Theorem 3. Under conditions (3.2) and (3.3), and under (A1), (A2), (A3) and

(A4), we have, for k = 1, 2,
√

n(ˆ̃bk − b̃k) −→d N (0, A′
kGkC

∗G′
kAk), where the

expression of Gk is given in (4.3), and C∗ can be found in Saracco (2005).
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Proof. The proof is divided into three steps.
Step 1: Asymptotic distribution of the Canonical analysis matrix.

Consider the decomposition
√

n(P̂Ek
P̂ÊP̂Ek

− PEk
PEPEk

)

=
√

n(P̂Ek
− PEk

)P̂Ê(P̂Ek
− PEk

) +
√

n(P̂Ek
− PEk

)P̂ÊPEk

+
√

nPEk
P̂Ê(P̂Ek

− PEk
) +

√
n(PEk

P̂ÊPEk
− PEk

PEPEk
).

The first term of the right hand side is Op(n−1/2). Thus,
√

n
[
vec(P̂Ek

P̂ÊP̂Ek
)−

vec(PEk
PEPEk

)
]

has the same asymptotic distribution as the last three terms of
the decomposition. These terms can be written as

([P ′
Ek

P̂ ′
Ê
⊗ Ip] + [Ip ⊗ PEk

P̂Ê ])
√

n[vec(P̂Ek
) − vec(PEk

)]

+[P ′
Ek

⊗ PEk
]
√

n[vec(P̂Ê) − vec(PE)].

We prove in the Appendix that
√

n
[
vec(P̂Ek

)−vec(PEk
)
]
has the same asymptotic

distribution as Nk
√

n[vec(Σ̂) − vec(Σ)] where Nk is defined in (A.1). Moreover,
from Saracco (2005), since Σ̂−1M̂α,P converges in probability to Σ−1Mα,P we
have, with a probability converging to 1, for n sufficiently large, ||Σ̂−1M̂α,P −
Σ−1Mα,P || ≤ λ2/2, where λ2 is the second major eigenvalue of Σ−1Mα,P . Then
we can apply the Lemma 4.1 of Tyler (1981) and obtain the asymptotic distribu-
tion of the eigenprojector on the estimated e.d.r. space:

√
n
[
vec(P̂Ê)− vec(PE)

]
has the same asymptotic distribution as Cw

√
n
[
vec(Σ̂−1M̂α,P )−vec(Σ−1Mα,P )

]
,

where Cw = −
∑

λ∈w[(Mα,P Σ−1 − λIp)+ ⊗ Pλ + P ′
λ ⊗ (Σ−1Mα,P − λIp)+], with

w = {λ1, λ2}.
Finally, the asymptotic distribution of

√
n(P̂Ek

P̂ÊP̂Ek
− PEk

PEPEk
) is then

the same as

Â0√n

([
vec(Σ̂−1M̂α,P )

vec(Σ̂)

]
−

[
vec(Σ−1Mα,P )

vec(Σ)

])
,

where Â0 =
[

A0
1 | Â0

2

]
, with A0

1 = (P ′
Ek

⊗ PEk
)Cw and Â0

2 =
(
[PEk

P̂ ′
Ê
⊗ Ip]+

[Ip ⊗ PEk
P̂Ê ]

)
Nk. Moreover, it is easy to show that Â0 −→P A0 where A0 =[

A0
1 | A0

2

]
with A0

2 = ([PEk
P ′

E ⊗ Ip] + [Ip ⊗ PEk
PE ])Nk.

Step 2: Asymptotic distribution of the major eigenvector.

Remembering that b̂k (resp. bk) is the eigenvector corresponding to the major
eigenvalue of P̂Ek

P̂ÊP̂Ek
(resp. PEk

PEPEk
), we apply Lemma 2 of Saracco (1997).

First, we need to specify the asymptotic distribution of

√
n

([
vec(P̂Ek

P̂ÊP̂Ek
)

vec(Σ̂)

]
−

[
vec(PEk

PEPEk
)

vec(Σ)

])
.
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From Step 1, this vector has the same asymptotic distribution as

B̂0√n

([
vec(Σ̂−1M̂α,P )

vec(Σ̂)

]
−

[
vec(Σ−1Mα,P )

vec(Σ)

])
,

where B̂0 =
[

A0
1 Â0

2

0p2,p2 Ip2

]
. Since Â0

2 −→P A0
2, we get B̂0 −→P B0 where B0 =[

A0
1 A0

2

0p2,p2 Ip2

]
.

Moreover, from an application of the Delta method, Saracco (2005) shows
that

√
n

([
vec(Σ̂−1M̂α,P )

vec(Σ̂)

]
−

[
vec(Σ−1Mα,P )

vec(Σ)

])
−→d Φ∗ =

[
vec(Φ)
vec(ΦΣ)

]
∼ N (0, C∗),

The expression for C∗ can be found in Saracco (2005). Thus we obtain:

√
n

([
vec(P̂Ek

P̂ÊP̂Ek
)

vec(Σ̂)

]
−

[
vec(PEk

PEPEk
)

vec(Σ)

])
−→d B0Φ∗,

where B0Φ∗ ∼ N (0, B0C∗B0′). We can now apply Lemma 2 of Saracco (1997),

and get
√

n(b̂k−bk) −→d Rk, where Rk = [b′k⊗(PEk
PEPEk

−Ip)+]B0

[
vec(Φ)
vec(ΦΣ)

]
−

(1/2)(b′kΦΣbk)bk. Tedious but simple computations give us for Rk a multivariate
normal distribution with mean zero and covariance matrix GkC

∗G′
k, where the

matrix Gk is[
{b′k ⊗ (PEk

PEPEk
− Ip)+}(P ′

Ek
⊗ PEk

)Cw |

{b′k ⊗ (PEk
PEPEk

− Ip)+}((PEk
PE)′ ⊗ Ip + Ip ⊗ PEk

PE)Nk − 1
2bk(b′k ⊗ b′k)

]
.
(4.3)

Step 3: Asymptotic distribution of
ˆ̃bk.

Finally, since ˆ̃bk = A′
k b̂k and b̃k = A′

kbk, we get
√

n(ˆ̃bk − b̃k) −→d R̃j = A′
kRk,

where R̃k ∼ N (0, A′
kGkC

∗G′
kAk).

Remark. From a theoretical point of view, the asymptotic covariances of the two
estimators can be estimated by replacing the theoretical terms by their empirical√

n-consistent counterparts. The corresponding estimated asymptotic matrices
converge to the true ones at rate

√
n. From a computational point of view, it is

tedious to obtain these estimators of the asymptotic covariances. Nevertheless,
we can easily compute bootstrap estimators that are very close to the true ma-
trices (obtained by Monte-Carlo method). We illustrate this point in Section 5.1
on a simulated example.
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5. Simulation Results

In order to evaluate the numerical performance of the proposed method, a
simulation study was carried out. Following Duan and Li (1991), we measure the

quality of the estimate ˆ̃bk of the direction of γ̃k by

cos2
(ˆ̃bk, γ̃k

)
=

(ˆ̃b′kΣkγ̃k

)2

(ˆ̃b′kΣk
ˆ̃bk)(γ̃′

kΣkγ̃k)
,

where Σk = A′
kΣAk. The closer the squared cosine is to one, the better the

estimation.
We generated simulated data from the semiparametric multivariate (q = 2)

model (2.1) with

g
(1)
1 (x̃′

1γ̃1, ε
(1)
1 ) = exp(x̃′

1γ̃1) + ε
(1)
1

g
(1)
2 (x̃′

2γ̃2, ε
(1)
2 ) = x̃′

2γ̃2 + ε
(1)
2

g
(2)
1 (x̃′

1γ̃1, ε
(2)
1 ) = (x̃′

1γ̃1)3 + 3(x̃′
1γ̃1) + ε

(2)
1

g
(2)
2 (x̃′

2γ̃2, ε
(2)
2 ) = (x̃′

2γ̃2)2 + ε
(2)
2 ,

(5.1)

where x follows a p-dimensional standardized normal distribution, and x̃1 (resp. x̃2)
is the (p−1)-dimensional vector corresponding to the first (resp. last) (p−1) co-
ordinates of x. The error term ε = (ε(1)1 , ε

(1)
2 , ε

(2)
1 , ε

(2)
2 )′ was normally distributed:

ε ∼ N4(µε, Σε). Two designs of the covariance of ε were

ΣI
ε =


1 ρ 0 0
ρ 1 0 0
0 0 1 ρ

0 0 ρ 1

 and ΣII
ε =


1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1

 ,

with different values of ρ (0.1, 0.5 and 0.9). In the matrix ΣI
ε the error terms asso-

ciated with the components y(1) and y(2) were assumed to be independent, which
is not the case with the covariance matrix ΣII

ε . Note that we never considered
the most favourable case with an independent error term between the observed
equation and the selection equation. To control the number of non-observed
values for the y(j) component, we used two different values of µε in order to ob-
tain around 25% (resp. 50%) of non-observed values for y(1) and y(2), we chose
µε = (0, 1.5, 0,−0.5) (resp. µε = (0, 0, 0,−2)). For the slope parameters, we took
γ̃1 = (1, 1,−1,−1, 0, . . . , 0)′ and γ̃2 = (0, . . . , 0, 1,−1, 1,−1)′.

To study the performance of the proposed method, we considered different
sample sizes (n = 100, 200 and 300), various dimensions of the explanatory
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Figure 5.1. Plots of y(j) versus the true “observation” index x̃′
1γ̃1 (on the

left) and plots of the latent variables y
(j)
∗ versus the true “selection” index

x̃′
2γ̃2 (on the right).

variable (p = 5, 10), the two different choices of covariance matrix (ΣI
ε and ΣII

ε ),
and two levels L of non-observed values for y(j) (25% and 50%). The number of
slices in the PMSα method, Hj , was specified to be Hj = max(

√
n∗

j , p), where

n∗
j was the number of observed y

(j)
i ’s in the sample.

Simulations were performed with R. All of the source codes are available
from the authors by e-mail.

5.1. Simulated example

In this subsection, we consider the simulated sample with n = 100 for p = 5,
Σε = ΣII

ε , ρ = 0.5 and L = 25%. On the left hand side of Figure 5.1 are
plots of the response variables y(1) and y(2) versus the true “observation” index
x̃′

1γ̃1. Let us introduce the two latent variables y
(1)
∗ = g

(1)
2 (x̃′

2γ̃2, ε
(1)
2 ) and y

(2)
∗ =

g
(2)
2 (x̃′

2γ̃2, ε
(2)
2 ); on the right hand side of Figure 5.1, we plot them versus the

true “selection” index x̃′
2γ̃2. The horizontal line allows us to determine for which

observations the y
(j)
i ’s values will be non-observed in the left hand side graphics.

The directions of γ̃1 and γ̃2 were estimated to get ˆ̃b1 = (−0.483,−0.565, 0.447,

0.497)′ and ˆ̃b2 = (−0.613, 0.539,−0.350, 0.459)′. The corresponding squared co-

sines were, respectively, equal to 0.993 and 0.962. Note that ˆ̃b1 (resp. ˆ̃b2) gave
nearly the same direction as γ̃1 (resp. γ̃2). Moreover, we computed the qual-
ity of the estimation Ê of the e.d.r. space E using Trace(PEPÊ)/2, equal to
0.886 for this simulated sample. Even if this subspace was relatively poorly es-
timated compared with the quality of each estimated direction, the second step
(which takes into account additional information) ensures that we recovered the
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Figure 5.2. Kernel estimate of the observation link functions (left hand
side) and Nadaraya-Watson estimate of the probability of t(j) = 1 (that is
y(j) observed).

good directions of the observation and selection slope vectors. We estimated the
asymptotic covariance matrices, denoted by V̂ (ˆ̃b1) and V̂ (ˆ̃b2), with the bootstrap
method (with 500 replications):

V̂ (ˆ̃b1) = 10−3


4.17 −1.93 1.74 −0.90

4.00 0.24 4.16
2.84 −0.36

17.1

 ,

V̂ (ˆ̃b2) = 10−2


4.54 −2.38 −2.83 0.97

4.36 2.66 −1.52
4.22 −0.58

2.64

 .

These matrices are very close to the “true” asymptotic covariance matrices,V (ˆ̃b1)

and V (ˆ̃b2) (not given here), calculated via the Monte Carlo approach. Note that

the variance terms in V̂ (ˆ̃b2) are greater than those obtained in V̂ (ˆ̃b1), because of
the low level L (=25%) of non-observed values for y(j).

In Figure 5.2, on the left hand side are plots of the response variable y(j)

versus the estimated “observation” index x̃′
1
ˆ̃b1. Note that, since we have ˆ̃b1 '

−γ̃1/||γ̃1|| (resp. ˆ̃b2 ' −γ̃2/||γ̃2||), the scatterplots of Figures 5.1 and 5.2 (left
hand side) do not have the same orientation. We add on these plots the Nadaraya-
Watson estimate of the observation link functions. On the right hand side, we
plot the t(j)’s values versus the estimated “selection” index x̃′

2
ˆ̃b2, and we also plot
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Figure 5.3. Boxplots of the squared cosines when Σε = ΣI
ε and p = 5.

the Nadaraya-Watson estimate of the probability to observe y(j), based on (3.5).

5.2. Results of the simulation study

In our study, we considered combinations of the level L of non-observed
values for y(j) (25% or 50%), the form of the error covariance matrix Σε (ΣI

ε or
ΣII

ε with ρ = 0.1, 0.5 or 0.9, and the dimension p of the covariable (p = 5 or 10).
We also took into account the sample sizes n = 100, 200 or 300.

For each combination, N = 500 samples were generated. For each sample
l = 1, . . . , N , the directions of the slope vectors γ̃1 and γ̃2 were estimated and
we got ˆ̃bl

1 and ˆ̃bl
2. Then, we evaluated the corresponding values of the quality

measure: cl
k = cos2(ˆ̃bl

k, γ̃k) for k = 1, 2, and l = 1, . . . , N .
We show the results via the boxplots of squared cosines for different combina-

tions. When p = 5 and Σε = ΣI
ε (resp. Σε = ΣII

ε ), Figure 5.3 (resp. Figure 5.4)
gives the boxplots for γ̃1 and γ̃2, denoted by G1 and G2 in the graphics, for
the different values of ρ, L and n. Figure 5.5 shows the boxplots when p = 10,
Σε = ΣII

ε , and n = 300, for various ρ; note that the vertical scale in this figure
goes from 0.75 to 1 (contrary to the previous one that goes from 0.4 to 1).

From Figures 5.3, 5.4 and 5.5, we can see that the results with these simulated
data were very good. More precisely, one can observe that:
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Figure 5.4. Boxplots of the squared cosines when Σε = Σ2
ε and p = 5.

Figure 5.5. Boxplots of the squared cosines when Σε = Σ2
ε , n = 300 and p = 10.

- The estimations of the γ̃1 and γ̃2’s directions were good since almost all box-
plots of the squared cosines were concentrated in the interval [0.9, 1].

- The form of the covariance matrix of the error term ε and the value of the
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parameter ρ did not seem to have any influence on the quality of the estimates.

- The level L of the non-observed values for the y(j)’s had only a slight influence
on the quality of the estimation of the selection slope vectors γ̃2, especially
in terms of spread of the squared cosine values. When this level was low
(L = 25%), there was less information on the selection part of the model so
the quality of the γ̃2 estimates was slightly lower than when this level was
larger (L = 50%). On the other hand, not surprisingly, there was an opposite
behavior for the estimates of the observation slope parameter γ̃1, since there
is less information on the observation part of the model when L is large.

- The sample size n had a quite predictable influence on the quality of the
estimates: the larger the sample size, the greater the squared cosines. When
n = 200 or 300, the quality of the two estimated directions was very good.

- Dimension p of the explanatory variable x did not seem to have any effect on
the quality of the estimates.

5.3. Simulation with a non-normal distributed covariable x

In order to investigate the robustness of the method when x does not follow a
multivariate normal distribution, we generated each component of x from various
distributions (far from the normal distribution): discrete rectangular distribution
on {1, . . . , 4}, continuous rectangular distribution on [0,

√
12], binomial distribu-

tion B(4, 0.2). We did not change either the form or the other parameters (p = 5,
Σε = ΣII

ε , with various values of ρ) of the simulated model described at the be-
ginning of Section 5. In order to control the level L, we used different values for
µε to obtain around 25% (resp. 50%) of non-observed values for the y(1)’s and
the y(2)’s. Moreover we took γ̃1 = (1, 1,−1,−1)′/2 and γ̃2 = (1,−1, 1,−1)′/2 for
the observation and selection slope parameters.

In each case, N = 500 samples of size n = 200 were generated, and for each
simulated sample, the directions of γ̃1 and γ̃2 were estimated with the proposed
method. Then the corresponding squared cosines were calculated. Figure 5.6
reports the results of this simulation study via the boxplots of these squared
cosines for the discrete rectangular distribution. One can see that the estima-
tions of the directions of the slopes for the selection equations and the outcome
equations were quite good, even for a discrete x that does not follow an ellipti-
cally symmetric distribution. Note that, as in the multivariate normal case (in
the previous subsection), we can observe the same influence of the level L on the
quality of the estimates and no influence of parameter ρ. Very similar results
(not detailed here) were observed for the two other distributions.
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Figure 5.6. Boxplot of the squared cosines when x follows a (discrete) rect-
angular distribution on {1, . . . , 4}.

5.4. Comparison with a parametric approach

We compared in this simulation the parametric Tobit II model (implemented
in Henningsen and Toomet (2008)) with our semiparametric approach using var-
ious error distributions and various selection and observations link functions. We
considered two models, (M1) and (M2), from the sample models defined in (2.1)
with q = 1:

(M1) :
{

g1(x̃
′
1γ̃1, ε1) = x̃

′
1γ̃1 + ε1

g2(x̃
′
2γ̃2, ε2) = x̃

′
2γ̃2 + ε2

and (M2) :
{

g1(x̃
′
1γ̃1, ε1) = exp (x̃

′
1γ̃1) + ε1

g2(x̃
′
2γ̃2, ε2) = exp (x̃

′
2γ̃2) + ε2

.

Model (M1) is in favour of the parametric approach with linear link functions,
whereas model (M2) has non-linear link functions. For these two models, the er-
ror term ε = (ε1, ε2) was normally distributed as in the previous simulation study,
x followed a five-dimensional standardized normal distribution, x̃1 (resp. x̃2) the
4-dimensional vector corresponding to the first (resp. last) four coordinates of x.
To control the level L of non-observed values for y, we used different values of µε.
For the slope parameters , we took γ̃1 = (1, 1,−1,−1)

′
and γ̃2 = (1,−1, 1,−1)

′
.

We present in Figure 5.7 only the results for n = 200, ρ = 0.9 and L =
50%, over N = 500 replicated samples. As expected, the Tobit II approach
performed poorly for model (M2) only for the outcome equation, not for the
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Figure 5.7. Boxplot of the squared cosines n = 200, where the notation G
(resp. T) is used for our proposed estimators (resp. Tobit II estimators).

selection equation, and the proposed method was somewhat inferior to Tobit II
approach for model (M1).

We also considered various combinations of the simulation parameters: the
level L of non-observed values for y(j) (25% or 50%), the error term correlation
ρ = 0.1, 0.5 or 0.9. In any case, we observed very similar results. Moreover, we
compared the two approaches with the linear model (M1) when the error term
was non-normally distributed. The Tobit II method appears to be robust to mild
violations of the normality assumption like our approach (which does not rely on
this kind of assumption).

6. Concluding Remarks

We have proposed a semi-parametric estimation method for a multivariate
sample selection model (MSSM). The proposed geometric approach to the esti-
mation of the slope vectors in the outcome equation and in the selection models
has the advantage of dealing symmetrically with both slope vectors. The con-
vergence in probability at root n rate, and the asymptotic normality of the slope
estimators, has been established. This estimation method is numerically very fast
since it is based on only a few matrix operations and eigen-decompositions and
does not demand any time-consuming iterative computations. The correspond-
ing algorithm is easy to implement and the R source code is available from the
authors. From a practical point of view, a simulation study has highlighted good
behaviour of the estimation method even for non-elliptical distribution of the
covariate. Finally an interesting thought direction would be to develop another
two-step semi-parametric estimation methods: in a first step, we could take into
account the MSIR estimator of the selection slope parameter since the selection
probability only depends on the index x̃′

2γ̃2; in a second step, we could incorpo-
rate the additional information in order to get the observation slope vector from
the entire e.d.r. space.



534 MARIE CHAVENT, BENOÎT LIQUET AND JÉRÔME SARACCO

Acknowledgement

The authors are very grateful to the Editor, an associate editor, and the
three referees for their valuable comments and constructive suggestions. They
thank Jean Belin, economics researcher of the GREThA laboratory of Bordeaux 4
University, for numerous discussions and future work on applications in economics
of the proposed semiparametric multivariate sample selection model.

Appendix: Asymptotic Distribution of P̂Ek

Let P̂Ek
= Ak(A′

kΣ̂Ak)−1A′
kΣ̂ ( resp. PEk

= Ak(A′
kΣAk)−1A′

kΣ) be the
Σ̂ (resp. Σ) orthogonal projector onto the linear subspace Ek spanned by the
columns of Ak.

For an elliptically distributed x, with covariance matrix Σ and kurtosis pa-
rameter κ, Tyler (1981) gave the following asymptotic distribution:

√
n(Σ̂ −

Σ) −→d ΦΣ where vec(ΦΣ) ∼ N(0, CΣ) and CΣ = (1 + κ)(Ip2 + Kp)(Σ ⊗
Σ) + κvec(Σ)[vec(Σ)]′. Kp is the p2 × p2 commutation matrix (see Magnus and
Neudecker (1979)).

We obtain the asymptotic distribution of P̂Ek
through the following three

steps.
Step 1. Let f1 : Rp2 −→ Rpkp+p2

k be defined by

f1(vec(M)) =
[

(Ip ⊗ A′
k)vec(M)

(A′
k ⊗ A′

k)vec(M)

]
.

Then, from the Delta method, we get:

√
n

([
vec(A′

kΣ̂)
vec(A′

kΣ̂Ak)

]
−

[
vec(A′

kΣ)
vec(A′

kΣAk)

])
−→d U1k,

where U1k ∼ N (0, C1k) with C1k =
[

Ip ⊗ A′
k

A′
k ⊗ A′

k

]
CΣ

[
Ip ⊗ Ak Ak ⊗ Ak

]
.

Step 2. From the following first order approximation:
√

n((A′
kΣ̂Ak)−1 − (A′

kΣAk)−1)
.= −(A′

kΣAk)−1
[√

n(A′
kΣ̂Ak − A′

kΣAk)
]
(A′

kΣAk)−1,

we derive:

√
n

([
vec(A′

kΣ̂)
vec((A′

kΣ̂Ak)−1)

]
−

[
vec(A′

kΣ)
vec((A′

kΣAk)−1)

])
−→d U2k = SkU1k,

where U2k ∼ N(0, C2k) with C2k = SkC1kS
′
k and

Sk =

[
Ipkp 0pkp+p2

k

0p2
k+pkp − (A′

kΣAk)−1 ⊗ (A′
kΣAk)−1

]
.
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Step 3. Let us introduce the function f2 : Rpkp+p2
k −→ Rp2

defined by

f2

(
vec(M1)
vec(M2)

)
= vec(AkM2M1). Then from a second application of the Delta

method, we derive:
vec(

√
n[P̂j − PEk

]) −→d Uk,

where Uk ∼ N(0, CUk
) with CUk

= NkCΣN ′
k and

Nk = Ip ⊗ Ak(A′
kΣAk)−1A′

k − P ′
Ek

⊗ Ak(A′
kΣAk)−1A′

k

= (Ip − P ′
Ek

) ⊗ [Ak(A′
kΣAk)−1A′

k]. (A.1)

References

Ahn, H. and Powell, J. (1993). Semiparametric estimation of censored selection models with a

nonparametric selection mechanism. J. Econometrics 58, 3-29.

Amemiya, T. (1985). Advanced Econometrics. Basil Blackwell, Oxford.

Aragon, Y. (1997). A Gauss implementation of multivariate sliced inverse regression. Comput.

Statist. 12, 355-372.

Barreda, L., Gannoun, A. and Saracco, J. (2007). Some extensions of multivariate sliced inverse

regression. J. Statist. Comput. Simulation 77, 1-17.

Blundell, R. W. and Smith, R. J. (1993). Simultaneous microeconometric models with censored

or qualitative dependent variables. In Handbook of Statistics 1 (Edited by G. S. Maddala,

C. R. Rao and H. D. Vinod), 117-143. North-Holland.

Chen, C. and Li, K. C. (1998). Can SIR be as popular as multiple regression? Statist. Sinica 8,

289-316.

Diaconis, P. and Freedman, D. (1984). Asymptotics of graphical projection pursuit. Ann. Statist.

12, 793-815.

Duan, N. and Li, K. C. (1987). Distribution-free and link-free estimation method for the sample

selection model. J. Econometrics 53, 25-35.

Duan, N. and Li, K. C. (1991). Slicing regression: a link-free regression method. Ann. Statist.

19, 505-530.

Eiswerth, M. E. and Shonkwiler, J. S. (2006). Examining post-wildfire reseeding on arid range-

land: A multivariate tobit modelling approach. Ecological Modelling 192, 286-298.

Eubank, R. (1988). Spline Smoothing and Nonparametric Regression. Dekker, New York.

Goldberger, A. S. (1983). Abnormal selection bias. In Studies in Econometrics, Times Series,

and Multivariate Statistics. (Edited by S. Karlin, T. Amemiya and L.A. Goodman). Aca-

demic Press, New York.

Haerdle, W. (1990). Applied Nonparametric Regression. Cambridge University Press.

Hall, P. and Li, K. C. (1993). On almost linearity of low dimension projection from high dimen-

sional data. Ann. Statist. 21, 867-889.

Heckman, J. (1979), Sample selection bias as a specification error. Econometrica 47, 153-161.

Henningsen, A. and Toomet, O. (2008). sampleSelection - A package for the free Statisti-

cal Software “R” for estimating sample selection models. Published on: CRAN (The

Comprehensive R Archive Network). Further information is available at http://www.

sampleSelection.org/.

http://www.sampleSelection.org/
http://www.sampleSelection.org/
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