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Abstract: Yuan an Lin (2004) proposed the grouped LASSO, which achieves shrink-

age and selection simultaneously, as LASSO does, but works on blocks of covariates.

That is, the grouped LASSO provides a model where some blocks of regression co-

efficients are exactly zero. The grouped LASSO is useful when there are meaningful

blocks of covariates such as polynomial regression and dummy variables from cat-

egorical variables. In this paper, we propose an extension of the grouped LASSO,

called ‘Blockwise Sparse Regression’ (BSR). The BSR achieves shrinkage and se-

lection simultaneously on blocks of covariates similarly to the grouped LASSO, but

it works for general loss functions including generalized linear models. An efficient

computational algorithm is developed and a blockwise standardization method is

proposed. Simulation results show that the BSR compromises the ridge and LASSO

for logistic regression. The proposed method is illustrated with two datasets.

Key words and phrases: Gradient projection method, LASSO, ridge, variable selec-

tion.

1. Introduction

Let {(yi,xi), yi ∈ Y ⊂ R, xi ∈ X ⊂ R
k, i = 1, . . . , n} be n pairs of

observations, assumed to be a random sample from an unknown distribution over

Y × X . For (generalized) linear models, the objective is to find the regression

coefficient vector, β ∈ R
k, which minimizes the prediction error evaluated by the

expected loss E[L(y,x′β)] where L : Y × R → R is a given loss function. The

choice of L(y,x′β) = (y−x′β)2 renders the ordinary least square regression. For

the logistic regression, L(y,x′β) is given as the negative log likelihood, −yx′β +

log(1 + exp(x′β)).

Unfortunately, prediction error is not available since the underlying distribu-

tion is unknown. One of the techniques for resolving this situation is to estimate

β by minimizing the empirical expected loss C(β) defined by
∑n

i=1 L(yi,x
′

iβ).

However, it is well known that this method suffers from so-called ‘overfitting’ ,

especially when k is large compared to n. A remedy for ‘overfitting’ is to restrict

the regression coefficients when minimizing C(β).

The LASSO proposed by Tibshirani (1996) has gained popularity since it

produces a sparse model while keeping high prediction accuracy. The main idea
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of the LASSO is to estimate β by minimizing

C(β) subject to

k
∑

j=1

|βj | ≤ M,

where βj is jth component of β. That is, the L1 norm of the regression coefficients

is restricted. Since the LASSO has been initially proposed by Tibshirani (1996) in

the context of (generalized) linear models, the idea of restricting the L1 norm has

been applied to various problems such as wavelets (Chen, Donoho and Saunders

(1999) and Bakin (1999)), kernel machines (Gunn and Kandola (2002), Roth

(2004)), smoothing splines (Zhang et al. (2003)), multiclass logistic regressions

(Krishnapuram et al. (2004)), etc.

Another direction of extending the LASSO is to develop new restrictions on

the regression coefficients using other than the L1 penalty. Fan and Li (2001)

proposed the SCAD, Lin and Zhang (2003) proposed COSSO, Zou and Hastie

(2004) proposed the elastic net and Tibshirani et al. (2005) proposed the fused

LASSO.

Recently, Yuan an Lin (2004) proposed an interesting restriction called the

grouped LASSO for the linear regression. The main advantage of the grouped

LASSO is that one can make a group of regression coefficients be zero simulta-

neously, which is not possible for the LASSO. When we want to produce more

flexible functions other than linear models or to include categorical variables, we

add new variables generated from original ones using appropriate transforma-

tions such as polynomials or dummy variables. In these cases, it is very helpful

in interpretation to introduce the concept of ‘block’, which means a group of co-

variates highly related to each other. For examples, dummy variables generated

from the same categorical variable is a block. When the concept ‘block’ is impor-

tant, it is natural to select blocks rather than individual covariates. The ordinary

LASSO is not feasible for blockwise selection since the sparsity in individual co-

efficients does not ensure the sparsity in blocks while the grouped LASSO selects

or eliminates blocks.

The objective of this paper is to extend the idea of the grouped LASSO

for general loss functions, to include generalized linear models. We name the

proposed method “Blockwise Sparse Regression” (BSR). We develop an efficient

computational algorithm, a GCV-type criterion and a blockwise standardization

method for the BSR.

The paper is organized as follows. In Section 2, the formulation of the BSR

is given and an efficient computational algorithm is developed. In Section 3,

a way of selecting the restriction parameter M using a GCV-type criterion is

proposed. Section 4 presents a method of standardizing covariates by blocks. In
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Section 5, simulation results for comparing the BSR with the LASSO and ridge

are given, and the proposed method is illustrated with two examples in Section

6. Concluding remarks follow in Section 7.

2. The Blockwise Sparse Regression

2.1. Definition

Suppose the regression coefficient vector is partitioned into p blocks denoted

by β = (β′

(1), . . . ,β
′

(p))
′ where β(j) is a dj-dimensional coefficient vector for the

jth block.

The standard ridge solution is obtained by

minimizing C(β) subject to ‖β‖2 ≤ M,

where ‖ · ‖ is the L2 norm on the Euclidean space. Since ‖β‖2 =
∑p

j=1 ‖β(j)‖2,

we can interpret ‖β‖2 as the squared L2 norm of the p-dimensional vector of the

norms of the blocks, i.e. (‖β(1)‖, . . . , ‖β(p)‖). For sparsity in blocks, we introduce

a LASSO-type restriction on (‖β(1)‖, . . . , ‖β(p)‖). That is, the BSR estimate β̂

is obtained by

minimizing C(β) subject to

p
∑

j=1

‖β(j)‖ ≤ M.

Since the regression coefficients are restricted by the sum of the norms of blocks,

some blocks with small contribution would shrink to exact zero as in the LASSO,

and hence all the coefficients in those blocks become exactly zero simultaneously.

For blocks with positive norms, the regression coefficients in the blocks shrink

similarly to the ridge regression. Note that the usual ridge regression is obtained

if a block contains all covariates. On the other hand, when each covariate sepa-

rately forms a block, the BSR reduces to the ordinary LASSO. That is, the BSR

compromises the ridge and LASSO. Also, under squared error loss, the BSR is

equivalent to the grouped LASSO.

Figure 2.1 compares the ridge, LASSO and BSR methods on the simulated

model whose details are given in Section 5.2. The simulated model has eight

blocks, each of which consists of three covariates, and among which only the

first two blocks are informative to responses and other six blocks are just noise.

Figure 2.1 shows the paths of the norms of each block for various values of

the restriction parameter M. The vertical line in the middle of the each plot

represents the optimal M selected by 5-fold Cross Validation. It is clear that the

BSR method outperforms the other two methods in terms of block selectivity.

The correct two blocks are selected by the BSR while the LASSO includes some

noise blocks. The Ridge is the worst since it includes all blocks.
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Figure 2.1. Paths of the norms of each block for example 1 in Section 5.

The solid curves denote the signal blocks and the dashed curves denote the

noise blocks. The vertical solid lines are positioned on the models selected

by CV. The values in the horizontal axes are the ratios of the values of the

restriction M to the norms of the ordinary logistic regression solutions.

2.2. Algorithm

We first introduce the Gradient Projection Method, a well known technique

for optimization on convex sets, and explain how to modify it for the BSR.

Consider a constrained optimization problem given by

minimizing C(β) subject to β ∈ B,

where B is a convex set. Let ∇C(β) be the gradient of C(β). The algorithm

of the gradient projection method, which finds the solution by iterating between

moving toward the opposite direction of the gradient and projecting it onto the

constraint set B, is given in Table 2.1. If the gradient function is convex and

Lipschitz continuous with the Lipschitz constant L, the sequence of solutions

generated by the gradient projection method, with step size s < 2/L, converges

to the global optimum. s can be selected by calculating the Lipschitz constant

L or by trial and error. The speed of convergence does not depend strongly on

the choice of s unless s is very small. For details of the algorithm, see Bertsekas

(1999), and for its application to various constrained problems, see Kim (2004).
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Table 2.1. Algorithm for Gradient Projection Method.

1. Initialize : β0 ∈ B, s : sufficiently small positive scalar

2. For t = 1 to T :

(a) [Gradient step]: Calculate ∇C(βt−1)

(b) [Projection step]: Let βt = argminβ∈B‖β
t−1 − s∇C(βt−1) − β‖2

end For.

3. Return βT

For the BSR, we can easily check that the constraint set, B = {∑p
j=1 ‖β(j)‖ ≤

M}, is convex, and so we can apply the gradient projection method. The hardest

part of the algorithm is the projection (2b of Table 2.1. In general, computational

cost here is large. However, for the BSR, projection can be done easily as follows.

Let b = βt − s∇C(βt) and let b(j) be the jth block of b. Then βt+1 is the

minimizer of

p
∑

j=1

‖b(j) − β(j)‖2 subject to

p
∑

j=1

‖β(j)‖ ≤ M (2.1)

with respect to β. Suppose Mj = ‖βt+1
(j) ‖ are known for j = 1, . . . , p. Then, we

have

βt+1
(j) = b(j)

Mj

‖b(j)‖
. (2.2)

So, for finding βt+1, it suffices to find Mjs. For Mj, plugging (2.2) to (2.1), we

solve the reduced problem as

minimizing

p
∑

j=1

(‖b(j)‖ − Mj)
2 subject to

p
∑

j=1

Mj ≤ M (2.3)

with respect to Mjs with Mj ≥ 0. For solving (2.3), note that if the projection of

(‖b(1)‖, . . . , ‖b(p)‖) onto the hyperplane of the form
∑

Mj = M has non-positive

values on some coordinates, then the solution of (2.3) should have exact zeros on

those coordinates, which we call inactive. Once inactive coordinates are found,

we rule out them and re-calculate the projection onto the reduced hyperplane

until no more negative values occur in the projection. A small number, at most

p, of iterations is required. Once we solve (2.3), we get βt+1 by (2.2). The

procedure is summarized in Table 2.2.
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Table 2.2. Algorithm for the Blockwise Sparse Regression.

1. Initialize : β0 = 0, s : sufficiently small positive scalar

2. For t = 1 to T :

• Calculate gradient ∇C(βt−1).

• Set b = βt−1 − s∇C(βt−1) and τ = {1, . . . , p}.
• Start loop.

– Calculate the projection

Mj = I(j ∈ τ) ×
(

‖b(j)‖ +
M −

∑

j∈τ ‖b(j)‖
|τ |

)

for j = 1, . . . , p.

where |τ | is the cardinality of τ .

– If (Mj ≥ 0) for all j, then abort the loop.

– Else update the active set τ = {j : Mj > 0}.
• End loop.

• Get a new solution, βt
(j) = b(j)

Mj

‖b(j)‖
for j = 1, . . . , p.

end For.

3. Return βT

3. Selection of the restriction parameter M

In this section, we describe methods for selecting the restriction parameter
M of the BSR. One popular method for selecting M is the K-fold cross-validation

(CV). However, the K-fold CV suffers from its computational burden. Another

method is to use the generalized cross validation (GCV) proposed by Craven
and Wahba (1979). A GCV type criterion for the LASSO is found in Tibshirani

(1996), where the LASSO solution is approximated by the ridge solution. An

extended GCV type criterion is proposed by Tibshirani (1997), where the LASSO
technique is applied to the proportional hazard model.

We propose a GCV type criterion for the BSR, as in Tibshirani (1996, 1997).
Suppose that all blocks have nonzero norms. When some blocks have zero norms,

we reduce the design matrix by eliminating the blocks whose norms are zero.

Using the relation,
∑p

j=1 ‖β(j)‖ =
∑p

j=1 ‖β(j)‖2/‖β(j)‖, β̂ can be obtained as
the solution of minimizing

C(β) +
λ

2

p
∑

j=1

‖β(j)‖2

‖β(j)‖
,
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for some λ uniquely defined by M. Now, assuming that the ‖β̂(j)‖ are known, we

expect that the solution β̃ of minimizing

C(β) +
λ

2

p
∑

j=1

‖β(j)‖2

‖β̂(j)‖
, (3.1)

gives an approximation to β̂. Let X denote the design matrix with x′

i as the

ith row and let η = Xβ. The iterative reweight least square method for solving

(3.1) gives a linear approximation

β̃ ≈ (X ′AX + λW )−1X ′Az, (3.2)

where A = ∂2C(β)/∂ηη′, u = ∂C(β)/∂η, z = Xβ − A−1u and W is the

k × k diagonal matrix whose
(

∑j−1
h=1 dh + l

)

th diagonal element is 1/‖β(j)‖ for

j = 1, . . . , p, l = 1, . . . , dj , all evaluated at β = β̂. From (3.2), we construct a

GCV-type criterion

GCV (M) =
1

n

C(β̂)

(1 − p(M)
n )2

,

where p(M) = tr[X(X ′AX + λW )−1X ′A] as in by Tibshirani (1997). We

agree that the GCV is a rough approximation, but we show that the GCV gives

comparable performances to the 5-fold CV in the simulation study.

4. Standardization within Blocks

A common way of generating blocks is to use transformations such as polyno-

mial or dummies from the original covariates. In many cases, there is more than

one transformation. That results in the same model. Unfortunately, the block

norm is not invariant with transformations. For example, consider a covariate x

having values on the three categories denoted by {1, 2, 3}. For dummy variables

(z1, z2) to represent x, we can let (z1, z2) = (1, 0) for x = 1, (z1, z2) = (0, 1) for

x = 2, and (z1, z2) = (0, 0) for x = 3. Suppose that the regression coefficients of z1

and z2 are 1 and -1, respectively. In this case, the block norm becomes
√

2. Now,

we can use as dummy variables (z1, z2) = (1, 0) for x = 1, (z1, z2) = (0, 0) for

x = 2, and (z1, z2) = (0, 1) for x = 3. The corresponding regression coefficients

become 2 and 1, and so the block norm is
√

5. Hence, different transformations

may result in different block selections in the BSR. In this section, we propose a

method of blockwise standardization of covariates to resolve this problem.

Let X1 and X2 be two design matrices of a given block such that there are

two regression coefficients β1 and β2 with X1β1 = X2β2. The blockwise stan-

dardization is based on the fact that ‖β1‖ = ‖β2‖ when X
′

1X1 = X
′

2X2 = tI



382 YUWON KIM, JINSEOG KIM AND YONGDAI KIM

for some t > 0. Hence, when a design matrix for a block is given, we propose

to orthogonalize the design matrix in advance, and then to estimate the corre-

sponding regression coefficients using the BSR.

Specifically, let X be a design matrix partitioned into p sub-matrices (X (1),

. . . ,X(p)), where X(j) corresponds to the jth block. For simplicity, we assume all

columns of X are centered at zero. Using the spectral decomposition X ′

(j)X(j) =

P (j)Λ(j)P
′

(j), where Λ(j) is the diagonal matrix with positive eigenvalues and

P (j) is the corresponding eigenmatrix, we can construct blockwise orthogonal

design matrices as

Z(j) =
1√
tj

X(j)T (j), (4.1)

for some tj > 0 where T (j) = P (j)Λ
−1/2
(j)

. We can easily check Z ′

(j)Z(j) = t−1
j I .

For tj , we recommend using the number of positive eigenvalues of X ′

(j)X(j).

This recommendation is motivated by the observation that the block norm tends

to be larger when the size of the block is larger. Hence, blocks with more coef-

ficients have more chance to be selected. With our recommendation, the deter-

minants of Z ′

(j)Z(j), j = 1, . . . , p, are all the same, and so the contribution of

each block to the response can be measured only by the norm of the regression

coefficients.

To demonstrate the necessity of the recommended choice of tjs, we compare

the selectivity of the recommended choice of tjs with the choice tj = 1 for all j.

We generated 100 samples of 250 observations which consist of 14 independent

uniform covariates (x1, . . . , x14) with range [−1, 1] and response y generated by a

logistic regression model with f(x) = x1. We assigned the covariates into three

blocks. Block 1 has the signal covariate x1, Block 2 has three noise covariates

(x2, x3, x4). The other ten noise covariates are assigned to Block 3. We investi-

gated which of Blocks 2 and 3 went to zero first as the restriction parameter M

decreased. When we used tj = 1 for all j, Block 2 went to zero first in 96 samples

out of 100, which means that Block 3 was selected more frequently. When we

used the recommended choice of tjs, Block 2 went to zero first in 58 samples out

of 100. That is, the recommended choice of tjs helped the ‘fair’ selection.

Once the solution β∗ with the blockwise standardized design matrix given

in (4.1) is obtained by the BSR, the coefficient β on the original design matrix

is reconstructed as β(j) = tj
−1/2T (j)β

∗

(j).

5. Simulation

5.1. Outline

We compare the prediction error and the variable selectivity of the BSR

with the ridge and LASSO on three examples with logistic regression models.



BLOCKWISE SPARSE REGRESSION 383

The restriction parameters of the three methods are chosen using GCV as well
as 5-fold CV. Prediction errors are measured by the averages of test errors using
two loss functions, the logistic loss (LOL) and the misclassification rate (MIR)
on 10,000 randomly selected design points. The blockwise standardization is not
used for the BSR to make the comparison fair.

5.2. Example 1

We generated 100 samples, each of which consisted of 250 observations. The
covariates were generated from the 8-dimensional independent uniform distribu-
tion on [−1, 1]. The binary response y was generated by a logistic model with
Pr(y = 1) = exp(f(x))/(1 + exp(f(x))) and Pr(y = 0) = 1 − Pr(y = 1), where
the true regression function is

f(x) = 2p1(x1) + 2p2(x1) + 2p3(x1) + p1(x2) + p2(x2) + p3(x2),

with p1(x) = x, p2(x) = (3x2 − 1)/2, and p3(x) = (5x3 − 3x)/2, the first three
Legendre polynomials. Thus all covariates except the first and second ones are
pure noise.

The design matrix has 24 columns consisting of p1(xj), p2(xj) and p3(xj)
for j = 1, . . . , 8. The three columns of p1(xj), p2(xj) and p3(xj) from a original
covariate xj form a natural block. Consequently, we fit the logistic regression
model with the BSR penalty with the eight blocks, each of which has three
regression coefficients. The ridge and LASSO penalty put restrictions on 24
individual regression coefficients.

Table 5.3. The averaged prediction errors (standard errors) and averaged
number of blocks and individual regression coefficients being zero from Ex-
ample 1.

Method Average prediction error Average count of zeros

LOL MIR Block Covariate

Ridge(CV) 0.5534 (0.0013) 0.2696 (0.0011) 0.00 0.00
BSR(CV) 0.5334 (0.0011) 0.2545 (0.0009) 1.99 5.97

LASSO(CV) 0.5405 (0.0013) 0.2606 (0.0011) 0.91 9.33

Ridge(GCV) 0.5609 (0.0018) 0.2711 (0.0012) 0.00 0.00

BSR(GCV) 0.5337 (0.0011) 0.2552 (0.0009) 1.39 4.17

LASSO(CV) 0.5411 (0.0013) 0.2615 (0.0011) 0.31 7.07

The results are shown in Table 5.3. The BSR had the lowest prediction
error, followed by LASSO. For variable selectivity, LASSO solutions included
fewer variables but more blocks than did BSR solutions.

The box plots of the norm of each block are presented in Figure 5.2. It is
clear that the norms of the noise blocks (blocks generated from x3, . . . , x8) from
the BSR were smaller than those from the other two methods.
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Figure 5.2. Boxplots of the norms of the eight blocks for Example 1.
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5.3. Example 2

In this example, we only change the regression function in Example 1 to be
more suitable to LASSO. The true regression function is

f(x) = 2p1(x1) + 2p2(x2) + 2p3(x3) + p1(x4) + p2(x5) + p3(x6),

where only one column among p1(xj), p2(xj) and p3(xj) is related to the response
for j = 1, . . . , 6, and x7 and x8 are pure noises.

The results are shown in Table 5.4, where LASSO outperforms the others in
prediction accuracy and the BSR is slightly better than the ridge. For variable
selectivity, the BSR does not work well since it includes too many noise covariates.
This is partly because the BSR includes all covariates in the block when the block
has nonzero norm.

Table 5.4. The averaged prediction errors (standard errors) and averaged
number of blocks and individual regression coefficients being zero from Ex-
ample 2.

Method Average prediction error Average count of zeros

LOL MIR Block Covariate

Ridge(CV) 0.5148 (0.0012) 0.2523 (0.0009) 0.00 0.00

BSR(CV) 0.5117 (0.0013) 0.2499 (0.0010) 0.48 1.44

LASSO(CV) 0.5018 (0.0012) 0.2428 (0.0010) 0.48 10.05

Ridge(GCV) 0.5229 (0.0017) 0.2530 (0.0010) 0.00 0.00
BSR(GCV) 0.5156 (0.0015) 0.2506 (0.0010) 0.20 0.60

LASSO(CV) 0.5031 (0.0013) 0.2441 (0.0010) 0.09 7.14

5.4. Example 3

We try a different model from that in Example 1 to be more suitable to the
ridge. Here

f(x) =

8
∑

j=1

1

2
(p1(xj) + p2(xj) + p3(xj)).

Table 5.5. The averaged prediction errors (standard errors) and averaged
number of blocks and individual regression coefficients being zero from Ex-
ample 3.

Method Average prediction error Average count of zeros

LOL MIR Block Covariate

Ridge(CV) 0.6193 (0.0009) 0.3412 (0.0010) 0.00 0.00

BSR(CV) 0.6244 (0.0011) 0.3462 (0.0012) 0.13 0.39

LASSO(CV) 0.6336 (0.0012) 0.3546 (0.0015) 0.08 4.46

Ridge(GCV) 0.6217 (0.0011) 0.3413 (0.0010) 0.00 0.00

BSR(GCV) 0.6269 (0.0011) 0.3486 (0.0014) 0.23 0.69

LASSO(CV) 0.6336 (0.0011) 0.3564 (0.0013) 0.04 4.73
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The results are shown in Table 5.5. For prediction accuracy, the ridge worked
the best, the BSR next and LASSO the worst. Note that the BSR selects most
of variables while LASSO fails to detect significant amount of covariates. That
is, the BSR is better in variable selectivity than LASSO.

6. Examples

6.1. German credit data

German credit data consists of 1,000 credit histories with a binary response,

and 20 covariates. The binary response represents good (700 cases) and bad cred-
its (300 cases), respectively. Seven covariates are numerical and the rest are cate-
gorical, with the number of categories ranging from 2 to 10. The data set is avail-
able from UCI Machine Learning Repository (http://www.ics.uci.edu/∼mlearn/
MLRepository.html). The 20 covariates are given below.

V1 :Status of existing checking account (4 categories).

V2 :Duration in month (numerical).

V3 :Credit history (5 categories).

V4 :Purpose (10 categories).

V5 :Credit amount (numerical).

V6 :Savings account/bonds (5 categories).

V7 :Present employment since (5 categories).

V8 :Installment rate in percentage of disposable income(numerical).

V9 :Personal status and sex (4 categories).

V10 :Other debtors / guarantors (3 categories).

V11 :Present residence since (numerical).

V12 :Property (4 categories).

V13 :Age in years (numerical).

V14 :Other installment plans (3 categories).

V15 :Housing (3 categories).

V16 :Number of existing credits at this bank (numerical).

V17 :Job (4 categories).

V18 :Number of people being liable to provide maintenance for (numerical).

V19 :Telephone (2 categories).

V20 :Foreign worker (2 categories).

We expand each of the numerical covariates to a block using transformations
up to the 3th order polynomial, and each of the categorical covariates to a block
with the corresponding dummy variables. The blocks are standardized as in (4.1).
Then, the logistic regression model with blockwise restriction is fitted, where the
restriction parameter M is chosen by GCV. For GCV, we used the 0-1 loss in
the numerator instead of the log-likelihood, for the former tends to yield better

models.
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The BSR eliminates the covariates V16 and V17, whose block norms are zero.

The partial fits on the remaining 18 covariates are shown in Figure 6.3, where

the covariates with larger block norms appear first. This suggests that V1 and

V4 are the most important covariates.
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Figure 6.3. The partial fits on 18 selected covariates in German credit data.

We compare the prediction accuracies of the BSR with those of the ridge

and LASSO. The misclassification rates are estimated by 10 repetitions of the
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10-fold CV. For each repetition, the restriction parameters are chosen by GCV.

The results summarized in Table 6.6 show that the LOL and MIS of the BSR

and LASSO are close, and that the ridge does less well.

Table 6.6. Estimates of LOL and MIS and their standard errors in German
credit data.

Method LOL MIS

Ridge 0.6926 (0.0008) 0.2446 (0.0014)

BSR 0.6882 (0.0011) 0.2399 (0.0020)
LASSO 0.6888 (0.0010) 0.2399 (0.0020)

6.2. Breast cancer data

The second example is the Breast cancer data, available from UCI Machine

Learning Repository (http://www.ics.uci.edu/∼mlearn/MLRepository.html).

The data set includes nine covariates and a binary response. The response

has “no-recurrence-events” in 201 cases, which are coded to 0, and “recurrence-

events” in 85 cases, which are coded to 1. Five covariates are categorical and

four covariates are numerical.

We expand covariates as was done for the German credit data. The BSR

eliminates three covariates and the partial fits on remaining six covariates are

shown in Figure 6.4.
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Figure 6.4. The partial fits on 6 selected covariates in Breast Cancer data.

The prediction accuracies of the ridge, BSR and LASSO obtained by 10
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repetitions of the 10 fold CV are summarized in Table 6.7, which shows that the

BSR is the best in prediction accuracy.

Table 6.7. Estimates of LOL and MIS and their standard errors in Breast

cancer data.

Method LOL MIS

Ridge 0.6976 (0.0028) 0.2700 (0.0052)

BSR 0.6917 (0.0015) 0.2578 (0.0028)

LASSO 0.6964 (0.0016) 0.2646 (0.0028)

7. Concluding Remarks

Even though we focused on logistic regression the proposed method can

be applied to many problems, such as Poisson regression and the proportional

hazard model. The only modification required for such extensions is to calculate

the corresponding gradient.

There are various possible extensions of the BSR. For example, we can com-

bine the idea of blockwise sparsity with other sparse penalties such as SCAD,

fused LASSO or the elastic net mentioned in the Introduction. We believe that

the computational algorithm proposed in this paper is general enough to be easily

modified for such extensions.

The asymptotic properties of the BSR can be derived following Knight and

Fu (2000). This is important for variance estimation of the estimated regression

coefficients. We will pursue this problem in the near future.
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