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Abstract: In this paper, we consider additive stochastic nonparametric regression
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taneous estimation procedure for the nonparametric components is constructed.
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1. Introduction

Recent developments in additive nonparametric regression and autoregres-
sive models have provided a practical and efficient way to model multivariate data
sets. Hastie and Tibshirani (1990) proposed a number of iterative estimation pro-
cedures to estimate additive and generalized additive regression functions, which
can avoid the difficulty of the “curse of dimensionality”. See Hastie and Tib-
shirani (1990) and others for more details. Chen and Tsay (1993) considered a
class of additive autoregressive models and proposed two kernel-based iterative
estimation procedures for the nonparametric components.

Let us now consider a general stochastic nonparametric regression model
Y = m(X) + e, where X = (X1, . . . ,Xp)τ is a vector of p stochastic regressors
{Xi : 1 ≤ i ≤ p}. Given the data {(Yt,Xt) : t ≥ 1}, a crucial problem is
how to analyse the structure of (Yt,Xt) and how to determine the relationship
between the present observation Yt and the regressor vector Xt = (Xt1, . . . ,Xtp)τ .
Yao and Tong (1994) proposed using a consistent cross-validation (CV) criterion
to select an optimum subset of regressors. See also Vieu (1994). More recently,
Gao, Wolff and Anh (1999) considered using a CV criterion to select an optimum
subset of linear regressors from Xt and illustrated the CV criterion on several
real data sets.
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In this paper, we consider the following p-order additive stochastic nonpara-
metric regression model:

Yt =
p∑

i=1

gi(Xti) + et, t = 1, . . . , T, (1.1)

where T is the number of observations, p ≥ 1 is an integer, {gi(·) : 1 ≤ i ≤ p} are
unknown functions over R1, {et} is a sequence of martingale differences. For Yt =
yt+p and Xti = yt+p−i, (1.1) is a p-order additive nonparametric autoregressive
model studied extensively by Chen and Tsay (1993). See also Wong and Kohn
(1996), who considered using a Bayesian approach to estimating and forcasting
a special case of (1.1) with p = 2, Yt = yt+2 and Xti = yt+2−i. Recently, Gao
and Liang (1995) studied another special case of (1.1) with p = 2, Yt = yt+2,
Xti = yt+2−i, g1(yt+1) = βyt+1 and g2(·) approximated by a piecewise polynomial
function. See also Gao and Yee (2000), who constructed a data-based adaptive
estimator for β based on g2 being estimated by a kernel function. See Härdle,
Liang and Gao (2000) for recent developments in partially linear models.

Here we consider (1.1). For the sake of identifiability, we only need to con-
sider the transformed model Yt = α + g̃1(Xt1) + · · · + g̃p(Xtp) + et, t = 1, . . . , T ,
where α =

∑p
i=1 E[gi(Xti)] is an unknown parameter and g̃i(Xti) = gi(Xti) −

E[gi(Xti)] satisfies E[g̃i(Xti)] = 0. It is obvious from the proofs in the Appendix
that the conclusion of Theorems 2.1-2.3 remains unchanged when Yt is replaced
by Ỹt = Yt − α̂, where α̂ = 1

T

∑T
t=1 Yt is defined as the estimator of α.

In this paper, we propose using the orthogonal series approach to construct-
ing adaptive estimators for (1.1). As suggested in the recent econometric litera-
ture (see Eastwood and Gallant (1991)), the orthogonal series method can be an
alternative to the kernel estimation method. Recently, Linton and Nielson (1995),
Linton (1997), and Fan, Härdle and Mammen (1998) proposed the so-called
“marginal integration method” coupled with the Nadaraya-Watson approach for
the independent and identically distributed (i.i.d.) case, and Tjøstheim and Aues-
tad (1994a, 1994b) proposed a “projection method” for the time series situation.
See also Masry and Tjøstheim (1995, 1997). However, these methods (even the
latest paper by Fan, Härdle and Mammen (1998)) have not extensively considered
selecting the bandwidth parameters involved in their methods. By contrast, the
proposed orthogonal series method provides not only a simultaneous estimation
procedure for all the nonparametric components, but also a practical procedure
for selecting the truncation parameters involved in the orthogonal series.

By approximating each gi(·) by an orthogonal series
∑hi

j=1 fij(·)θij , we have
the following approximate model

Yt =
p∑

i=1

hi∑
j=1

fij(Xti)θij + et, (1.2)
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which is a natural extension of an additive linear model. Therefore, some existing
estimation procedures can be used to obtain explicit estimators for {gi(·) : 1 ≤
i ≤ p}. In the meantime, we propose a data-based criterion to determine the
truncation parameters {hi : 1 ≤ i ≤ p}. We illustrate the estimation procedure
by simulated and real examples later.

The organisation of this paper is as follows: Section 2 proposes an adaptive
and simultaneous estimation procedure for {gi(·) : 1 ≤ i ≤ p}. Illustrations of
the proposed estimation procedure are given in Section 3. Mathematical details
are given in the Appendix.

2. Adaptive and Simultaneous Estimation Procedure

The approach taken in this section is to approximate each gi(·) by the orthog-
onal series

∑hi
j=1 fij(·)θij , where {fij(·) : 1 ≤ j ≤ hi} are prespecified families of

continuous functions from R1 to R1, θi = (θi1, . . . , θihi
)τ is a vector of unknown

parameters and hi = hi(T ) is the truncation parameter.
Based on (1.2), we define the least squares (LS) estimator θ̂(h) = (θ̂1(h)τ ,

. . ., θ̂p(h)τ )τ of θ = (θτ
1 , . . ., θτ

p)τ as the solution of

T∑
t=1

(
Yt −

p∑
i=1

Fi(Xti)τθi

)2
= min!, (2.1)

where h = (h1, . . . , hp)τ and Fi(Xti) = Fihi
(Xti) = (fi1(Xti), . . . , fihi

(Xti))τ .
It is obvious that

θ̂(h) = (F τF )+F τY, (2.2)

provided the right-hand side is well defined, where Y = (Y1, . . ., YT )τ , F =
(F1, . . . , Fp), Fi = Fihi

= (Fi(X1i), . . . , Fi(XT i))τ , and (·)+ denotes the Moore-
Penrose inverse.

In the case of p = 2, by Theorem 3.7 of Seber (1977), we obtain the LS
estimators θ̂1(h) = (F̂ τ

1 F̂ τ
1 )+F̂ τ

1 Y and θ̂2(h) = (F τ
2 F2)+F τ

2 (I −F1(F̂ τ
1 F̂ τ

1 )+F̂ τ
1 )Y ,

where F̂1 = (I − P2)F1 and P2 = P2(h) = F2(F τ
2 F2)+F τ

2 . If F2 is of full column
rank h2, then (F τ

2 F2)−1 exists.
For the given truncation parameters {hi : 1 ≤ i ≤ p}, we propose the

prediction equation

ĝ(Xt, h) =
p∑

i=1

Fi(Xti)τ θ̂i(h), (2.3)

where Xt = (Xt1, . . . ,Xtp)τ .
It follows from (2.3) that the prediction equation depends on not only the

series functions {fij : 1 ≤ j ≤ hi, 1 ≤ i ≤ p} but also h, the vector of truncation
parameters. Our experience suggests that the choice of the series functions is
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much less critical than that of the vector of truncation parameters. The series
functions used in this paper need to satisfy Assumptions 2.2 and 2.3 below, which
hold when each fij belongs to either the class of trigonometric series used by East-
wood and Gallant (1991), or the general class of orthogonal series presented by
Kashin and Saakyan (1989). See Examples 3.1-3.2 and Remark 2.1 below for
more details. Therefore, a crucial problem is how to select h practically. Li
(1987) has discussed the asymptotic optimality of a generalized cross-validation
(GCV) criterion as well as other model selection criteria. See also Li (1985, 1986)
and Shao (1997). Wahba (1990) provided a survey of nonparametric smoothing
spline literature up to 1990. Chen and Chen (1991) considered using a general-
ized cross-validation criterion for selecting an optimum subset for the i.i.d. case.
Gao (1998) applied a generalized cross-validation criterion for smoothing trun-
cation parameters for the time series case. More recently, Shi and Tsai (1999)
considered semiparametric regression model selections and proposed a so-called
“AICC small-sample criterion” coupled with the B-spline approach for the i.i.d.
case. They showed that their criterion has advantages over some existing criteria.
In this paper, we apply a generalized cross-validation method to estimate h and
then determine model (1.1).

Let

D̂(h) =
1
T

T∑
t=1

{ p∑
i=1

Fi(Xti)τ θ̂i(h) −
p∑

i=1

gi(Xti)
}2

. (2.4)

Before establishing the main results of this paper, we first need to introduce
the following assumptions and definitions.

Assumption 2.1. (i) Assume the process (Xt, Yt) is strictly stationary and α-
mixing with mixing coefficient α(T ) = CαηT , where 0 < Cα < ∞ and 0 < η < 1
are constants.

(ii) Assume et = Yt − E[Yt|Xt] satisfies E[et|Ωt−1] = 0, E[e2
t |Ωt−1] =

E[e2
t ] a.s., and E[e4

t |Ωt−1] < ∞ for all t ≥ 1, where Ωt = σ{(Xs+1, Ys) : 1 ≤ s ≤ t}
is a sequence of σ-fields generated by {(Xs+1, Ys) : 1 ≤ s ≤ t}.

Let g
(mi)
i be the mi-order derivative of the function gi and M0i be a constant.

Let

Gmi(Si) =
{
g : |g(mi)

i (s) − g
(mi)
i (s′)| ≤ M0i|s − s′|, s, s′ ∈ Si ⊂ R1

}

where mi ≥ 1 is an integer, 0 < M0i < ∞, and each Si is a compact subset of
R1 = (−∞,∞).

Assumption 2.2. (i) For gi ∈ Gmi(Si) and {fik(·) : k = 1, . . .} given above,
there exists a vector of unknown parameters θi = (θi1, . . . , θihi

)τ such that for a
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sequence of constants {Bi : 1 ≤ i ≤ p} (0 < Bi < ∞ independent of T ) and large
enough T ,

sup
xi∈Si

|Fi(xi)τθi − gi(xi)| ≤ Bih
−(mi+1)
i (2.5)

uniformly over hi ∈ HiT and 1 ≤ i ≤ p. Here HiT = {piT , piT + 1, . . . , qiT }, in
which piT = [aiT

di ], qiT = [biT
ci ], 0 < ai < bi < ∞, 0 < di < ci < 1

2(mi+1) are
constants, and [x] ≤ x denotes the largest integer part of x.

(ii) There exists a sequence of constants {Ci : 1 ≤ i ≤ p} (0 < Ci < ∞
independent of T ) such that, for large enough T ,

h
2(mi+1)
i E {Fi(Xti)τθi − gi(Xti)}2 ≈ Ci (2.6)

uniformly over hi ∈ HiT and 1 ≤ i ≤ p. (“≈” indicates that the ratio of the
left-hand side and the right-hand side tends to one as T → ∞).

Assumption 2.3. (i) Fi is of full column rank hi ∈ HiT for T large enough, {fij :
1≤j≤hi, 1≤ i ≤ p} are continuous functions with supx supi,k≥1 |fik(x)|≤c0 <∞.

(ii) For all 1 ≤ i, j ≤ p and s �= t, E[fij(Xsi)fij(Xti)] = 0, and for all t ≥ 1

E[fik(Xti)fjl(Xtj)] =




c2
ik, if i = j and k = l

0, if (i, j, k, l) ∈ IJKL,

where IJKL = {(i, j, k, l) : 1 ≤ i, j ≤ p, 1 ≤ k ≤ hi, 1 ≤ l ≤ hj} − {(i, j, k, l) :
1 ≤ i = j ≤ p, 1 ≤ k = l ≤ hi}.
Assumption 2.4. There are positive constants {CK : K ≥ 1} such that for
K = 1, 2, . . ., supx E(|Yt|K |Xt = x) ≤ CK < ∞.

Remark 2.1. (i) Assumption 2.1 is quite common in such problems. See
Doukhan (1995) for the advantages of the geometric mixing. However it would
be possible, but with more tedious proofs, to obtain Theorems 2.1-2.3 below un-
der less restrictive assumptions that include some algebraically decaying rates.
If et is i.i.d. and et is independent of Xt, then Assumption 2.1(i) only requires
that the process Xt is strictly stationary and α-mixing, and Assumption 2.1(ii)
yields E[et] = 0 and E[e4

t ] < ∞. This is a natural condition in nonparametric
autoregression. See for example, Assumption 2.1 of Gao (1998). For the het-
eroscedastic case, one needs to modify both Assumptions 2.1(i) and 2.1(ii). See
for example, Conditions (A2) and (A4) of Hjellvik, Yao and Tjøstheim (1998).

(ii) Assumption 2.2(i) is imposed to exclude the case that each gi is already
a linear combination of {fij : 1 ≤ j ≤ hi}. If (1.1) is an additive polynomial
regression, the choice of hi is a model selection problem already discussed by Li
(1987).
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(iii) The purpose of introducing Assumptions 2.2(i) and 2.2(ii) is to replace
the unknown functions by finite series sums together with vectors of unknown
parameters. Equation (2.5) is a standard smoothness condition in approximation
theory. See Corollary 6.21 of Schumaker (1981) for the B-spline approximation,
Chapter IV of Kashin and Saakyan (1989) for the trigonometric approximation,
Theorem 0 of Gallant and Souza (1991) for the flexible Fourier form, and Chapter
7 of DeVore and Lorentz (1993) for the general orthogonal series approximation.
If Assumption 2.2(ii) holds, then (2.6) is equivalent to

h
2(mi+1)
i

∫
[Fi(ui)τθi − gi(ui)]2pi(ui)dui ≈ Ci, (2.7)

where pi(ui) denotes the density function of Xti. Equation (2.7) is a standard
smoothness condition in approximation theory. See Theorems 3.1 and 4.1 of
Agarwal and Studden (1980) for the B-spline approximation, and §3.2 of East-
wood and Gallant (1991) for the trigonometric approximation.

(iv) A technical advantage of Assumption 2.2(i) over previous assumptions
of this type (see Assumption 2.2 of Gao (1998)) is that the range of hi under

consideration has been extended from {[aiT
1

2mi+3
−εi ], . . . , [biT

1
2mi+3

+εi ]} with 0 <

εi < (2mi − 1)/[4(2mi + 3)] to {piT , . . . , qiT }. This provides more security and
theoretical underpinning for consideration of hi both large and small. The choice
of di and ci is due to the fact that each theoretical optimum value of hi is
proportional to [T

1
2(mi+1)+1 ]. See the proof of Theorem 2.1 below. This choice is

more reasonable in practice.
(v) A technical restriction of Assumption 2.2 is that each gi is defined on the

compact subset Si. As discussed in the references cited in this paper, compactness
is a very natural condition in approximation theory. But it can be weakened by
introducing a weight function into (2.4). Details are similiar to those used in
nonparametric kernel regression. See Härdle and Vieu (1992).

(vi) Assumption 2.3 is a kind of orthogonality condition, which holds when
the process Xt is strictly stationary and {fij : 1 ≤ j ≤ hi, 1 ≤ i ≤ p} is either
in the family of trigonometric series or of Gallant (1981)’s flexible Fourier form.
For example, the orthogonality condition holds when Xt1 is strictly stationary
and distributed uniformly over [−1, 1] and f1k(Xt1) = sin(kπXt1) or cos(kπXt1).
Moreover, orthogonality is a natural condition in nonparametric series regression.

(vii) Assumption 2.4 is required to deal with this kind of problem. Many
authors have used similar conditions. See for example, (C.7) of Härdle and Vieu
(1992).

Definition 2.1. A data-driven estimator ĥ is asymptotically optimal if
D̂(ĥ)/infh∈HT

D̂(h) →p 1, where ĥ=(ĥ1, . . . , ĥp)τ , h ∈ HT ={h=(h1, . . . , hp)τ :
hi ∈ HiT } and HiT is defined in Assumption 2.2.
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Definition 2.2. Select h, denoted by ĥG = (ĥ1G, . . . , ĥpG)τ , so that

GCV (ĥG) = inf
h∈HT

GCV (h) = inf
h∈HT

σ̂2(h)
[1 − 1

T

∑p
i=1 hi]2

, (2.8)

where σ̂2(h) = 1
T

∑T
t=1

{
Yt −

∑p
i=1 Fi(Xti)τ θ̂i(h)

}2
.

Theorem 2.1. (i) Let Assumptions 2.1-2.2(i), 2.3 and 2.4 hold. Then

D̂(h) =
σ2

T

p∑
i=1

hi +
1
T

E[∆τ∆] + op(D̂(h)), (2.9)

where ∆ =
∑p

i=1[Fiθi − Gi], Fi = (Fi(X1i), . . ., Fi(XT i))τ and Gi = (gi(X1i),
. . ., gi(XT i))τ .

(ii) In addition if Assumption 2.2(ii) holds, then

D̂(h) =
σ2

T

p∑
i=1

hi +
p∑

i=1

Cih
−2(mi+1)
i + op(D̂(h)) (2.10)

uniformly over h ∈ HT , where σ2 = E[e2
t ] < ∞ and mi is the smoothness order

of gi.

Theorem 2.2. (i) Under the conditions of Theorem 2.1(i), ĥG is asymptotically
optimal.

(ii) Under the conditions of Theorem 2.1(ii)

D̂(ĥG)
D̂(ĥD)

− 1 = op(T−τ ), (2.11)

p∑
i=1

∣∣∣∣∣
ĥiG

ĥiD

− 1

∣∣∣∣∣ = op(T−τ ), (2.12)

where ĥiD is the i-th component of ĥD = (ĥ1D, . . . , ĥpD)τ that minimises D̂(h)
over HT , 0 < τ = min(τ1−ε1, τ2−ε2), in which τ1 = 1

2d, τ2 = 1
2 −2c, both ε1 and

ε2 satisfying 0 < ε1 < τ1 and 0 < ε2 < τ2 are arbitrarily small, d = min1≤i≤p di

and c = max1≤i≤p ci.

Proofs of Theorems 2.1 and 2.2 are relegated to the Appendix.

We now define the adaptive and simultaneous estimation procedure as fol-
lows:
(i) solve the LS estimator θ̂(h) by (2.2);
(ii) define the prediction equation by (2.4);
(iii) solve the GCV-based ĥG from (2.8);
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(iv) define the following adaptive and simultaneous prediction equation

ĝ(Xt, ĥG) =
p∑

i=1

FiĥiG
(Xti)τ θ̂i(ĥG).

If σ2 is unknown, it estimated by σ̂2(ĥG) = (1/T )
∑T

t=1{Yt − ĝ(Xt, ĥG)}2.

Theorem 2.3. Under the conditions of Theorem 2.1(i), as T → ∞,
√

T (σ̂2(ĥG)−
σ2) → N(0, var(e2

1)).

The proof of Theorem 2.3 is postponed to the Appendix.

Remark 2.2. Equations (2.9) and (2.10) provide asymptotic representations
for the average squared error D̂(h). See Härdle, Hall and Marron (1988) for an
equivalent result in nonparametric kernel regression, and Hall and Patil (1995)
for a corresponding form in non-linear wavelet estimation. In addition, Theorem
2.2(i) shows that the GCV based ĥG is asymptotically optimal. This conclu-
sion is equivalent to Corollary 3.1 of Li (1987) in the model selection problem.
However, the fundamental difference between our paper and Li (1987) is that
this paper uses the GCV method to determine how many terms are required to
ensure that each nonparametric function can be approximated optimally, while
Li (1987) suggested using the GCV selection criterion to determine how many
variables should be employed in a linear model. Due to the different objectives,
our conditions and conclusions are different from those of Li (1987), although
there are some similarities.

Remark 2.3. Theorem 2.2(ii) not only establishes the asymptotic optimality
but also provides the rate of convergence. This rate of convergence is equivalent
to that of bandwidth estimates in nonparametric kernel regression. See Härdle,
Hall and Marron (1992). More recently, Hurvich and Tsai (1995) have established
a similar result for a linear model selection. Moreover, it follows from Theorem
2.2(ii) that the rate of convergence depends heavily on di and ci. Let di = 1

2mi+3

and ci = 1
2mi+3 + ηi for arbitrarily small ηi > 0. Then the rate of convergence

will be of order

min
(

min
1≤i≤p

( 1
2(2mi + 3)

)
, max
1≤i≤p

( 2mi − 1
2(2mi + 3)

))
− ε

for some arbitrarily small ε > 0. Obviously, if each gi is continuously differen-
tiable, the rate of convergence will be close to 1

10 − ε.

Remark 2.4. In this paper, we assume the data {(Yt,Xt) : t ≥ 1} satisfy (1.1)
and then propose the orthogonal series method to model the data. In practice,
before applying the estimation procedure to model the data, a crucial problem
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is how to test additivity. Related results for additive nonparametric regression
have been given by some authors. See for example, Gao, Tong and Wolff (2000).
In this paper, we do not discuss the problem further.

Remark 2.5. This paper only considers the case where {et} is a sequence of
martingale differences. In practice, there are data sets where these assumptions
are far from being satisfied, and there is an increasing awareness of deviations
from these assumptions in general. In particular, econometricians have assem-
bled increasing evidence for non-constant conditional variance describing a fluc-
tuating risk structure for financial time series (see Bera and Higgins (1993)).
For example, Tjøstheim and Auestad (1994a, 1994b) mention σ2(xt) = E[(Yt −
E(Yt|Xt))2|Xt = xt] =

∑p
j=1 σ2

j (xtj), where xt = (xt1, . . . , xtp)τ and {σ2
i (·) : 1 ≤

i ≤ p} are unknown functions. In this case, we need to approximate each σ2
i (·)

by an orthogonal series and then construct the weighted LS estimators θ̂ and γ̂

as the solution of
T∑

t=1

(Yt − F (Xt)τθ

Σ(Xt)τγ

)2
= min!,

where Σ(·)τγ is used to approximate σ(·), Σ(·) is a vector of known functions
and γ is a vector of unknown parameters.

Analogous to Theorems 2.1-2.3, we can establish corresponding results.

Remark 2.6. As mentioned in Tjøstheim (1994), the following additive model is
very useful in economic time series analysis: Yt =

∑p
i=1 gi(ατ

i Xt)+et, where Xt =
(Xt1, . . . ,Xtd)τ , αi = (αi1, . . . , αid)τ is a vector of unknown parameters, {gi(·) :
1 ≤ i ≤ q} are unknown functions over R1, and p and d are positive integers.
Recently, Gao and Liang (1997) considered a special case of this model and
constructed series estimators through approximating each gi(·) by a finite series.
Similar to the discussion of (1.1), we can construct some explicit estimators
for {gi(·) : 1 ≤ i ≤ p}, but can only provide some iterative estimators for all
{αi : 1 ≤ i ≤ d}. Existing iterative estimation procedures for {αi : 1 ≤ i ≤ d}
can be found in Seber and Wild (1989).

Remark 2.7. We choose the traditional LS method. However, it is well known
that estimators based on the LS method are sensitive to outliers and that the
error distribution may be heavy-tailed. Thus a more robust estimation procedure
for all {gi(·) : 1 ≤ i ≤ p} might be worth study to achieve desirable robustness
properties. A recent paper by Gao and Shi (1997) on M -type smoothing splines
for nonparametric and semiparametric regression may be useful to construct and
study the following M -type estimator θ̂M (h) = (θ̂M1(h), . . . , θ̂Mp(h))τ :

T∑
t=1

ρ
(
Yt −

p∑
i=1

Fi(Xti)τ θ̂Mi(h)
)

= min!,
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where ρ(·) is a convex function.

3. Applications and Examples

In this section, we illustrate the above estimation procedure by two examples.

Example 3.1. Consider the model

Yt = 0.25Yt−1 + 0.25
Yt−2

1 + Y 2
t−2

+
1
8π

X2
t + et, t = 3, 4, . . . , T, (3.1)

where et is uniformly distributed over (−0.5π, 0.5π), Y1 and Y2 are mutually
independent and uniformly distributed over [1/128, 2π − 1/128], (Y1, Y2) is inde-
pendent of et for t ≥ 3;

Xt = 0.25Xt−1 − 0.25Xt−2 + εt, (3.2)

in which εt is uniformly distributed over (−0.5π, 0.5π), X1 and X2 are mutu-
ally independent and uniformly distributed over [1/128, 2π − 1/128], and εt is
independent of (X1,X2) and et for all t ≥ 3.

First, it follows from Lemma 3.1 of Masry and Tjøstheim (1997) that both
the stationarity and the mixing condition are met. See also Chapter 4 of Tong
(1990), §2.4 of Tjøstheim (1994) and §2.4 of Doukhan (1995). Thus, Assumption
2.1(i) holds. Second, it follows from (3.1) and (3.2) that Assumption 2.1(ii) holds
immediately. Third, let

g1(x) = 0.25x, g2(x) = 0.25
x

1 + x2
and g3(x) =

1
8π

x2. (3.3)

Since {gi : 1 ≤ i ≤ 3} are continuously differentiable on (−∞,∞), there exist
three corresponding periodic functions defined on [0, 2π] that are continuously
differentiable on [0, 2π] and coincide with {gi : 1 ≤ i ≤ 3} (see Hong and White
(1995, p.1141)). Similar to §3.2 of Eastwood and Gallant (1991), we can show
that there exist the following three corresponding trigonometric polynomials

g∗1(x) =
h1∑

j=1

sin(jx)θ1j , g∗2(x) =
h2∑

j=1

sin(jx)θ2j and g∗3(x) =
h3∑

j=1

cos(jx)θ3j (3.4)

such that Assumptions 2.2(i) and 2.2(ii) are satisfied, and the same convergence
rate can be obtained as in the periodic case. Obviously, it follows from (3.3)
and (3.4) that Assumption 2.2(i) holds. Fourth, Assumption 2.3 is satisfied due
to (3.4) and the orthogonality of trigonometric series. Finally, Assumption 2.4
holds due to the fact that supt≥1 |Yt| ≤ 2π.
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We now define g∗1 , g∗2 and g∗3 as the corresponding approximations of g1, g2

and g3 with

x ∈ S = [1/128, 2π − 1/128] and hi ∈ HiT = {[aiT
di ], . . . , [biT

ci ]}, (3.5)

in which i = 1, 2, 3, di = 1
2mi+3 and ci = 1

2mi+3 + 2mi−1
6(2mi+3) .

In the following simulation, we consider the case where ai = 1, bi = 2 and
mi = 1 for i = 1, 2, 3. Let F1(x) = (sin(x), sin(2x), . . . , sin(h1x))τ , F2(x) =
(sin(x), sin(2x), . . . , sin(h2x))τ and F3(x) = (cos(x), cos(2x), . . . , cos(h3x))τ .

The LS estimator θ̂(h) = (θ̂1(h)τ , θ̂2(h)τ , θ̂3(h)τ )τ of θ = (θτ
1 , θτ

2 , θτ
3 )τ can be

computed from (2.2) and (3.1)-(3.4). In the meantime, the optimum value ĥD

can be solved from minimising D̂(h) over HT .
(i) Compute σ̂2(h) = 1

N

∑N
n=1

{
Yn+2−

[
F1(Yn+1)τ θ̂1(h)+ F2(Yn)τ θ̂2(h) +

F3(Xn+2)τ θ̂3(h)
]}2

.

(ii) Compute GCV (h) = σ̂2(h)(
1−h1+h2+h3

N

)2 .

Now, the minimizer ĥG is ĥG = arg minh∈HT
{GCV (h)}.

(iii) For the cases of T = 102, 252, 402, 502, and 752, compute for i = 1, 2, 3,

di(ĥiG, ĥiD) =
ĥiG

ĥiD

− 1, d4(ĥG, ĥD) =
D̂(ĥG)
D̂(ĥD)

− 1,

ASEi(ĥG) =
1
N

N∑
n=1

{
Fi(Zni)τ θ̂i(ĥG) − gi(Zni)

}2
,

ASE4(ĥG) =
1
N

N∑
n=1

{ 3∑
i=1

(
Fi(Zni)τ θ̂i(ĥG) − gi(Zni)

)}2
,

V AR(ĥG) =
∣∣∣σ̂2(ĥG) − σ2

∣∣∣,
where σ2 = π2

12 = 0.822467, ĥG = (ĥ1G, ĥ1G, ĥ3G)τ , Zn1 = Yn+1, Zn2 = Yn and
Zn3 = Xn+2.

The simulation results below were performed 1000 times using the Splus
commands (see Becker, Chamber and Wilks (1988)) and the means are tabulated
in Table 1 below.

Remark 3.1. Both Theorem 2.2(ii) and Table 1 demonstrate that the rate
of convergence of the GCV-based di for i = 1, 2, 3, 4 is of order T−1/10. This
suggests the question of whether any better selection rule exists for the truncation
parameters. This is beyond the scope of this paper. In addition, both (2.10) and
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the simulation results for ASEi(ĥG) given in Table 1 show that when hi is of
order T−1/5, the rate of convergence of each ASEi is of order T−4/5.

Table 1. Simulation Results for Example 3.1

N 100 250 400 500 750
HiT {1,. . . ,5} {1,. . . ,6} {1,. . . ,6} {1,. . . ,6} {1,. . . ,7}

d1(ĥ1G, ĥ1D) 0.10485 0.08755 0.09098 0.08143 0.07943
d2(ĥ2G, ĥ2D) 0.11391 0.07716 0.08478 0.08964 0.07983
d3(ĥ3G, ĥ3D) 0.09978 0.08155 0.08173 0.08021 0.08371
d4(ĥG, ĥD) 0.32441 0.22844 0.24108 0.22416 0.22084
ASE1(ĥG) 0.03537 0.01755 0.01123 0.00782 0.00612
ASE2(ĥG) 0.02543 0.01431 0.00861 0.00609 0.00465
ASE3(ĥG) 0.02507 0.01348 0.00795 0.00577 0.00449
ASE4(ĥG) 0.06067 0.03472 0.02131 0.01559 0.01214
V AR(ĥG) 0.05201 0.03361 0.01979 0.01322 0.01086

Example 3.2. In this example, we consider the Canadian lynx data. This
data set is the annual record of the number of Canadian lynx trapped in the
MacKenzie River district of North-West Canada for the years 1821 to 1934.
Tong (1977) fitted an eleventh-order linear Gaussian autoregressive model to
Yt = log10{number of lynx trapped in the year (1820 + t)} for t = 1, 2, . . . , 114
(T = 114). It follows from the definition of (Yt, 1 ≤ t ≤ 114) that all the
transformed values (Yt : t ≥ 1) are bounded.

We apply the above estimation procedure to fit the real data set listed in
Example 3.2 by a third-order additive autoregressive model of the form

Yn+3 = g1(Yn+2) + g2(Yn+1) + g3(Yn) + en+3, n = 1, . . . , N, (3.6)

where N = T − 3, {gi : i = 1, 2, 3} are unknown functions, and en+3 is assumed
to be independent random error with zero mean and finite variance.

Similarly, we approximate g1, g2 and g3 by

g∗1(u) =
h1∑

j=1

f1j(u)θ1j , g∗2(v) =
h2∑

j=1

f2j(v)θ2j and g∗3(w) =
h3∑

j=1

f3j(w)θ3j (3.7)

respectively, where f1j(u) = sin(ju) for 1 ≤ j ≤ h1, f2j(v) = sin(jv) for 1 ≤ j ≤
h2, f3j(w) = cos(jw) for 1 ≤ j ≤ h3, and hj ∈ HjT = {[T 0.2], . . . , [2T 7/30]}.

Through computing the LS estimator defined by (2.2), the GCV function
GCV (h) and the estimator of the error variance (VAR) σ̂2(h) defined before, we
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obtain the following polynomial prediction

Ŷn+3 =
ĥ1G∑
j=1

sin(jYn+2)θ1j +
ĥ2G∑
j=1

sin(jYn+1)θ2j +
ĥ3G∑
j=1

cos(jYn)θ3j , (3.8)

where ĥ1G = 5, ĥ2G = ĥ3G = 6, and the coefficients are given in the following
Table 2.

Table 2. Coefficients for Equation (3.8)

θ1 = (θ11, . . . , θ15)τ θ2 = (θ21, . . . , θ26)τ θ3 = (θ31, . . . , θ36)τ

11.877 −2.9211 −6.8698
18.015 −5.4998 −7.8529
10.807 −4.9084 −7.1952
4.1541 −3.1189 −4.8019
0.7997 −1.2744 −2.0529

−0.2838 −0.4392
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Figure 1. (a1) Fitted values (solid lines) for model (3.6) and the data (dots).
(a2) Partial plot of the nonparametric estimator g∗1(Yn+2) versus Yn+2. (a3)
Partial plot of the nonparametric estimate g∗2(Yn+1) versus Yn+1. (a4) Partial
plot of the nonparametric estimate g∗3(Yn) versus Yn.

The estimator of the error variance was 0.0418. Some plots for Example 3.2
are given in Figure 1 above. Part (a1) provides fitted values (solid lines) for model
(3.6) and the data (dots). Partial plot of the nonparametric estimator g∗1(Yn+2)
versus Yn+2 is given in (a2). Part (a3) presents a partial plot of the nonparametric
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estimate g∗2(Yn+1) versus Yn+1. A partial plot of the nonparametric estimate
g∗3(Yn) versus Yn is given in (a4).

Remark 3.2. For the Canadian lynx data, Tong (1977) fitted an eleventh–
order linear Gaussian autoregressive model to the data, and the estimate of the
error variance was 0.0437. Equation (3.8) and Figure 1 show that when using
equation (3.6) to fit the data, the estimator of g1 is almost linear while the
estimators of both g2 and g3 appear to be nonlinear. This finding is the same as
the conclusion reached by Wong and Kohn (WK) (1996), who used a Bayesian
based iterative procedure to do the fit. Their estimator of the error variance was
0.0421, comparable to our variance estimator of 0.0418. Moreover, our estimation
procedure provides the explicit equation (3.8) and the CPU time for Example
3.2 took just about 2 minutes. By contrast, WK can only provide an iterative
estimation procedure for each gi since their approach depends heavily on the
Gibbs sampler.

Remark 3.3. Both Examples 3.1 and 3.2 demonstrate that the explicit estima-
tion procedure can provide some additional information for further diagnostics
and statistical inference, as well as produce models with better predictive power
than is available from linear models. For example, (3.8) is more appropriate
than a completely linear model for the lynx data as mentioned in Remark 3.2.
Moreover, (3.8) not only can be calculated at a new design point with the same
convenience as in linear models, but also provides the individual coefficients.
That can be used to measure the individual influence of each Yn+i for i = 0, 1, 2.

Remark 3.4. As mentioned before, some special cases of (1.1) have been dis-
cussed through using either the kernel estimation method or the orthogonal series
method. More recently, Gao and Yee (2000) have constructed a kernel-based es-
timation procedure for a partially linear model, conducted a small sample study
for (3.1) with Xt ≡ 0, and obtained similar large and small sample results.
Through comparing the small sample simulation results for the same model, we
have found that both the kernel method and the orthogonal series method work
well numerically, and there is little difference between the two different methods
for the same model. However, the kernel estimation method has not been applied
extensively to estimate (1.1). By contrast, the orthogonal series method has been
successfully applied to determine (1.1).
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Appendix

A.1. Technical lemmas

For simplicity, let C (C < ∞) denote a positive constant which may have
different values at each appearance throughout this section.

As the proof of Theorems 2.1–2.3 is extremely technical, only an outline
is given. Detailed proofs can be obtained from Gao, Tong and Wolff (2000),
available upon request.

Let c2max = max1≤i≤p max1≤j≤hi
c2
ij and c2

min = min1≤i≤p min1≤j≤hi
c2
ij .

Lemma A.1. Let δ(h) > 0 be a sequence satisfying infh∈HT
(δ(h)/M(h))

√
T > 0

and T τ ∑
h∈HT

δ(h) → 0 as T → ∞. Assume the conditions of Theorem 2.1 hold.
Then

c2
min + op(δ(h)) ≤ λmin

( 1
T

F τF
)
≤ λmax

( 1
T

F τF
)
≤ c2

max + op(δ(h))

and for all k = 1, . . . ,M(h),

λk

( 1
T

F τF − I(h)
)

= op(δ(h)).

Here M(h) =
∑p

i=1 hi, I(h) =diag(c2
11, . . . , c

2
1h1

; c2
21, . . . , c

2
2h2

; . . . , c2
p1, . . . , c

2
php

)
is a M(h) × M(h) order diagonal matrix, λmin(B) and λmax(B) denote the
smallest and largest eigenvalues of matrix B respectively, and {λk(D)} denotes
the kth eigenvalue of matrix D.

Proof. See Lemma A.2 of Gao, Tong and Wolff (2000).

Lemma A.2. Assumptions 2.1–2.4 hold. Let {j(1), · · · , j(r)} be r distinct posi-
tive integers, and define

φ(Xj(1), . . . ,Xj(r)) =
q∏

t=1

q∏
s=1, �=t

A(Xj(t),Xj(s))
lt,s

r∏
i=1

φj(i)(Xj(i)),

where Xt = (Xt1, . . . ,Xtp)τ , A(Xs,Xt) =
∑p

i=1

∑hi
j=1 c−2

ij fij(Xsi)fij(Xti), {φj(k) :
k ≥ 1} are real-valued functions such that |φj(k)(·)| ≤ Mk < ∞, {lt,s : t, s ≥ 1}
are nonnegative integers, and q ≤ r. Let A1, . . ., Av be a partition of {j(1), . . .,
j(r)}. Then there exists a finite positive constant c such that

∣∣∣
∫

φdP(Xj(1) ,...,Xj(r)) −
∫

φdP(Xt,t∈A1) · · · dP(Xt,t∈Av)

∣∣∣ ≤ C · M(h)lα̃(d),
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where d = inf{d(Ai, Aj) : i, j = 1, 2, · · · , v; i ≤ j}, d(Ai, Aj) = inf{|s − t|, s ∈
Ai, t ∈ Aj}, α̃(d) = supj≥d α(j), and l =

∑q
t=1

∑q
s=1, �=t lt,s.

Proof. The proof is similar to that of Theorem 6.2.1 of Györfi, Härdle, Sarda
and Vieu (1989). See Lemma A.3 of Gao, Tong and Wolff (2000) for more details.

Remark A.1. Lemma A.2 is useful in itself for dealing with the estimation of
strictly stationary and mixing processes. It is as important as Proposition 1 of
Hart and Vieu (1990) in the kernel estimation case.

A.2. Proofs of Theorems 2.1–2.3

A.2.1. Proof of Theorem 2.1

By (2.2) and (2.4), we have uniformly over h ∈ HT ,

D̂(h) =
1
T
{eτP (h)e + ∆τ∆ − ∆τP (h)∆}, (A.1)

D(h) = E[D̂(h)] =
1
T

{E[eτP (h)e] + E[∆τ∆] − E[∆τP (h)∆]} , (A.2)

where e = (e1, . . . , eT )τ , P (h) = F (F τF )+F τ , ∆ = Fθ − G =
∑p

i=1[Fiθi − Gi],
Fi = (Fi(X1i), . . . , Fi(XT i))τ , and Gi = (gi(X1i), . . . , gi(XT i))τ .

Applying Lemma A.1, one can prove, uniformly over h ∈ HT , ∆τP (h)∆ =
∆τF (F τF )+F τ∆ ≤ λmax((F τF )+)∆τFF τ∆ = op(T−τ∆τ∆) using the fact that
(1/T )λmax(FF τ ) = op(T−τ ).

Similarly, one can show that, as T → ∞,

E[∆τP∆]
E[∆τ∆]

= o(T−τ ). (A.3)

Let D̂1(h) = 1
T {eτP (h)e + ∆τ∆} and D1(h) = E[D̂1(h)] = 1

T {E[eτ P (h)e] +
E[∆τ∆]} = σ2

T

∑p
i=1 hi + 1

T E[∆τ∆].

If (2.6) holds, then we have

D1(h) = E[D̂1(h)] ≈ σ2

T

p∑
i=1

hi +
p∑

i=1

Cih
−2(mi+1)
i . (A.4)

Obviously, (A.1)–(A.4) imply

sup
h∈HT

|D̂(h) − D̂1(h)|
D̂1(h)

= op(T−τ ), (A.5)

sup
h∈HT

|D(h) − D1(h)|
D1(h)

= o(T−τ ). (A.6)
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It follows from (A.4) and (A.6) that the minimizer hD of D(h) over HT is
a vector of the minimizers {hiD : 1 ≤ i ≤ p}, in which hiD is proportional to[
T

1
2(mi+1)+1

]
∈ HiT . This suggests defining HiT in Assumption 2.2.

In view of (A.5) and (A.6), in order to prove

sup
h∈HT

|D̂(h) − D(h)|
D(h)

= op(T−τ ), (A.7)

it suffices to show that

sup
h∈HT

|D̂1(h) − D1(h)|
D1(h)

= op(T−τ ). (A.8)

First, we show that

sup
h∈HT

|eτP (h)e − ∑
1≤s,t≤T asteset|

M(h)
= op(T−τ ), (A.9)

where ast = 1
T

∑p
i=1

∑hi
j=1 c−2

ij fij(Xsi)fij(Xti) and M(h) =
∑p

i=1 hi. In order to
prove (A.9), it suffices to show that

sup
h∈HT

M(h)−1|eτ (P (h) − Q(h))e| = op(T−τ ), (A.10)

where Q(h) = {ast}1≤s,t≤T is a matrix of order T×T . The proof of (A.10) follows
from the Markov inequality and Assumption 2.3.

Second, one needs to show

sup
h∈HT

|∑1≤s,t≤T asteset − M(h)σ2|
d(h)

= op(T−τ ), (A.11)

where d(h) = M(h)σ2 + E[∆τ∆]. Applying Lemmas A.1 and A.2, one can prove
(A.11).

With the proof of (A.11), (A.7) holds. Thus the proof of Theorem 2.1 is
completed.

A.2.2. Proof of Theorem 2.2

As Theorem 2.2(ii) implies Theorem 2.2(i), we prove only Theorem 2.2(ii).
In order to prove (2.11), in view of (2.4) and (2.8), it suffices to show that

sup
h,h′∈HT

|D̂(h) − D̂(h′) − [GCV (h) − GCV (h′)]|
D̂(h)

= op(T−τ ). (A.12)

The proof of (A.12) is similar to that of (4.29) of Gao (1998), details are in Gao,
Tong and Wolff (2000). Thus, the proof of (2.11) is completed.
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We now finish the proof of (2.12). Observe that

D1(ĥG) − D1(ĥD)
D1(ĥD)

=
D1(ĥG)−D̂1(ĥG)

D1(ĥG)
D1(ĥG)
D1(ĥD)

+
D̂1(ĥG)−D̂1(ĥD)

D̂1(ĥD)
D̂1(ĥD)
D1(ĥD)

+
D̂1(ĥD)−D1(ĥD)

D1(ĥD)
.

To prove (2.12), in view of (A.8), it suffices to show that

[D̂1(ĥG) − D̂1(ĥD)]
D̂1(ĥD)

= op(T−τ ),

which follows from (2.11) and (A.5).

A.2.3. Proof of Theorem 2.3

The proof of Theorem 2.3 follows from the definition of σ̂2(h) and the proof
of Theorem 2.2.
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