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1. Introduction

Suppose that we are given n samples from a function f observed with noise:

Yi = f(ti) + ei, i = 1, . . . , n, (1)

with ti = (i−1)/n and ei drawn from a stationary Gaussian noise process. John-
stone and Silverman (1997) (JS below) discussed a number of wavelet threshold-
ing prescriptions appropriate to estimation of f in the presence of such correlated
noise e.

In particular, they described and illustrated a method for estimating thresh-
olds from the data based on an unbiased risk estimate. In addition they intro-
duced a family of asymptotic models encompassing both short and long range
dependence and argued that the good asymptotic properties (near adaptive min-
imaxity) of wavelet threshold estimators are unaffected by the presence of corre-
lations of these types.

One purpose of this paper is to describe the proof of this adaptive minimaxity
result (Theorem 5 of JS) for the unbiased risk based thresholding estimates. Even
in the i.i.d. error case, the proof given here simplifies and corrects that given in
Donoho and Johnstone (1995), for example the technical device of random half
samples used there is now avoided.
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As an asymptotic model encompassing situations of both short and long
range dependence, we adopt the setting used in JS. We provide some details
on the decorrelating effect of the wavelet transform – for example long range
dependent errors are converted in the wavelet domain into ρ− mixing sequences in
our model. We then show how the large deviation inequalities of Bosq (1993) for
α− mixing sequences may be exploited to show MSE consistency of the empirical
threshold choices.

It turns out that certain linear inverse problems possess a structure (captured
in the wavelet vaguelette decomposition of Donoho (1995)) that allows many of
the methods and ideas to be carried over from the regression with correlated
noise setting. We describe this in brief fashion in the concluding section.

This paper is entirely concerned with stationary Gaussian errors. Of course,
it would be of considerable interest to extend the results of this paper to station-
ary non-Gaussian errors and even to non-stationary situations. There is a recent
and growing literature based on Gaussian approximations of empirical wavelet
coefficients in a variety of situations. In addition to the numerous references
cited at the end of Section 8 of JS, we wish to mention Neumann and von Sachs
(1995).

1.1. Basic definitions and notation

We first establish some notation and recall the definition of SURE threshold-
ing for observed data. Let W be a periodic discrete wavelet transform operator
(in practice implemented with a fast cascade algorithm), and let Y be the n-
vector of observations Y1, . . . , Yn. We suppose that n = 2J for some J . Write

wjk = (WY )jk j = 0, 1, . . . , J − 1, k = 1, . . . , 2j (2)

with the remaining element labelled w−1. Let θ = Wf be the corresponding
wavelet transform of the signal f = (f(ti))ni=1, and z = We be the transform of
the noise.

To construct the estimator, let ηS be the soft threshold function

ηS(w, λ) = sgn(w) (|w| − λ)+ . (3)

If the noise process e is stationary, then so are the processes k → zjk in the
wavelet domain, and so we denote their standard deviations by σj. Let λj be a
sequence of thresholds to be applied to the coefficients at level j, and define θ̂ to
be the estimator

θ̂jk = η(wjk, σjλj).
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Here η might be soft or hard thresholding, or some compromise between the
two, though in this paper we focus on soft thresholding. We write θ̂ for the
corresponding estimator of θ, and set

f̂ = WT θ̂.

Under this formulation, allowing signal at low levels (j ≤ L, say) through without
thresholding corresponds to setting λj = 0 for the relevant j. At higher levels,
where there is a considerable number of coefficients at each level and the signal
θjk can be assumed to be sparse, the noise variance σ2

j at each level can be
estimated from the data. One possibility is to use a robust estimator such as

σ̂2
j = MAD{wjk, k = 1, . . . , 2j}/.6745, (4)

where MAD denotes median absolute deviation from zero and the factor .6745
is chosen for calibration with the Gaussian distribution. Other estimates are of
course possible, for example mean absolute deviation. We do not dwell on the
estimation of the variance; we assume for the rest of this paper that it has been
carried out, and treat σ2

j as known.
We measure error in the L2 sense, and define the risk measure of an estimator

by R(θ̂, θ) = E‖θ̂ − θ‖2, where the norm is the usual Euclidean norm. Since the
discrete wavelet transform is orthogonal, the risk of an estimator will be the
same as that of its discrete wavelet transform and so risk results obtained in the
wavelet domain carry over directly to the original “time” domain.

As shown in Johnstone and Silverman (1997), the co-ordinatewise nature of
thresholding implies that the Stein unbiased risk estimate investigated in the i.i.d.
Gaussian error setting by Donoho and Johnstone (1995) remains unbiased, even
in the presence of correlation. To be specific, we consider a general multivariate
normal model in which X ∼ Nd(θ, V ). For this paragraph, the covariance matrix
V is unrestricted. Stein’s method shows that the mean squared error of an
estimator θ̂ = X + g(X) may be written

E‖X + g(X) − θ‖2 = E{tr V + ‖g(X)‖2 + 2tr [V Dg(X)]}
= E{U(t;X)}, (5)

say, where Dg(X) denotes the d× d matrix with entries ∂gi/∂xj(X). In the case
of soft thresholding at t, the kth component of g is

gk(x) =


−t xk > t

−xk |xk| ≤ t

+t xk < −t
.

The key point is that thresholding operates co-ordinatewise, so that gk is a func-
tion of xk alone, and the matrix Dg in (5) is therefore diagonal.
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If the covariance matrix V is homoscedastic, vkk ≡ σ2. If σ2 is unknown, it
can be estimated by σ̂2 as defined in equation (4). We will treat σ as known, and
via rescaling (x = X/σ) we may assume that σ2 = 1. The unbiased risk criterion
is then obtained by substituting the properties of g:

U(t) = d+
∑
k

(x2
k ∧ t2) − 2I{|xk| ≤ t}, (6)

which is identical to that used in the i.i.d. case. We therefore propose taking

t̂(x) = argmin
0≤t≤

√
2 log d

Û(t). (7)

As explained in Donoho and Johnstone (1995) this minimization can easily be
accomplished in O(d log d) time.

For ‘small’ sparse signals, the noise coordinates can swamp the signal co-
ordinates in their contribution to the SURE criterion. The behaviour of t̂ can
be erratic, so one alternative is to retreat to the use of higher, ‘fixed’ thresh-
olds tF =

√
2 log d. For further details, see Donoho and Johnstone (1995). The

pretest compares an unbiased estimate of ‖θ‖2, namely s2d = d−1 ∑d
1 x

2
k − 1, to a

threshold γd:

t̃(x) =

{√
2 log d s2d ≤ γd

t̂(x) s2d > γd
. (8)

Thus the unbiased risk choice t̂ of (7) is chosen only when the pretest rejects.
Returning to the wavelet thresholding setting, we apply this prescription

separately on each level to the coefficients wj = {wjk, k = 1, . . . 2j}. The station-
arity assumption implies the homoscedasticity condition needed in the derivation
of (6). We then set

λj = σj t̃(wj/σj), L ≤ j ≤ J − 1.

We recall that this estimator, and relatives with different threshold choices
are all easily implemented with O(n log n) algorithms in software (for exam-
ple in releases .800 and later of the library WaveLab of MATLAB-based rou-
tines for wavelet and related time frequency-timescale analyses available from
http://stat.stanford.edu on the World Wide Web) and illustrations on var-
ious kinds of simulated and physiological data were given in Section 3 of JS.

1.2. Asymptotic model

In Johnstone and Silverman (1997), it was suggested that a useful class of
asymptotic caricatures of the finite sample model (1) is given by

Y (t) = F (t) + εαBH(t), t ∈ [0, 1]. (9)
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Here, our target function for estimation is f = F ′ and BH(t) is fractional Brown-
ian motion, namely the zero mean Gaussian process on R with covariance func-
tion r(s, t) given by

r(s, t) =
VH
2

(|s|2H + |t|2H − |t− s|2H), s, t ∈ R, H ∈ [1/2, 1).

The parameter α = 2(1 −H) ∈ (0, 1], and the scale parameter ε is thought of as
proportional to n−1/2.

Let ψjk(t) = 2j/2ψ(2jt − k) be a wavelet basis on R derived from a suit-
able wavelet ψ of compact support with corresponding scaling function φ. Here
the index λ runs over a set Λ defined by pairs (j, k), j ≥ L, k = 1, . . . , 2j for
the wavelet functions and (L − 1, k), k = 1, . . . , 2L for the scaling functions.
Form the inner products yλ =

∫
ψλdY, θλ =

∫
ψλf, and γjzλ =

∫
ψλdBH where

γ2
j = Var {∫ ψλdBH} = τ22−j(1−α). Note that for j = L − 1, the inner products

are taken with φλ. To avoid annoying but inconsequential end effects, we ar-
gue as in Johnstone and Silverman (1997) that a model nearly equivalent to (9)
(i.e. involving an approximation of the variance structure valid up to absolute
multiplicative constants) may be obtained as

yλ = θλ + εαγjzλ, λ ∈ Λ. (10)

The noise variables zλ, which all have variance 1, are correlated, but can be
shown to have relatively weak dependence, in a sense articulated explicitly in
Section 2.

We can think of the initial segments {yjk : j < J = log2 n, k = 1, . . . , 2j} in
model (10) with ε = τ1/αn−1/2 as being analogous to the empirical coefficients wjk
in (2). While this is not literally correct, of course, one can use this identification
to transfer intuition from the asymptotic models to empirical data.

It is, however, simpler to do rates of convergence calculations in the approx-
imating model (10). By some general decision theoretic and wavelet theoretic
machinery (Donoho and Johnstone (1999)) we expect that these results can be
carried over to the original regression model (1) : some discussion of the issues
involved is given in the Appendix.

It will be assumed that the parameters α and τ are known—since the latter
is a simple scale parameter, we will set τ = 1 without further loss of generality.
(Some discussion of estimation of α, τ appears in Section 7.3 of JS.) We will
therefore have ε = n−1/2, γ2

j = 2−j(1−α) and σ2
j = ε2αγ2

j . This model encompasses
both the long-range dependence approximation (10) and, by setting α = 1, the
short-range dependence approximation.

We shall consider results for a broad range of function classes for the regres-
sion function f , corresponding to sequence space models for its coefficients θλ. A
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flexible scale of functional classes is given by the Besov family, which is specified
in sequence space form as follows. Set ‖θj‖pp =

∑2j

k=1 |θjk|p and

bσp,q(C) = {(θjk) :
∞∑
j=0

2jsq‖θj‖qp ≤ Cq}, s = σ + 1/2 − 1/p.

For a fuller discussion of these spaces and the important roles of the indices
(σ, p, q) see Frazier, Jawerth and Weiss(1991) and Donoho and Johnstone(1998b).
Here we note simply that σ is a smoothness parameter, corresponding to the
number of derivatives that the function f possesses in Lp. The case p = q = ∞
corresponds to Hölder smoothness, defined by the uniform condition |Dmf(x)−
Dmf(y)| ≤ C0|x− y|δ, where σ = m+ δ with δ ∈ (0, 1].

To state the main result, we consider the sequence model (10), and soft
threshold estimators of the form

θ̂∗λ = ηS(yλ, σjλj) (11)

λj =

{
0 j ≤ L

t̃(yj/σj) j ≥ L,

where t̃ is the pretest threshold given in (8).
If the parameters (σ, p, q, C, α) were all known, then the best possible estima-

tion error of any threshold choice over the class bσp,q(C) is given by the minimax
threshold risk

R∗
T,α(ε; b

σ
p,q(C)) = inf

(tj)
sup

θ∈bσp,q(C)
E‖θ̂(tj ) − θ‖2,

where θ̂(tj) stands for the estimator (η(yj,k, tj))jk and ‖θ‖2 =
∑
λ∈Λ ‖θλ‖2 is the

�2(Λ) sequence norm. From results of Wang (1996), it is known that this minimax
threshold risk in model (10) is of the same order in ε as the minimax risk over
all estimators: i.e. there is no great loss of efficiency, even in the presence of
long-range dependence, due to co-ordinatewise thresholding, and

RT,α(n−1/2, bσp,q(C)) � n−r(σ,α), r(σ, α) = 2σα/(2σ + α).

Against this background, we have the following result for the estimator θ̂∗

of (11) using the unbiased risk based choice of thresholds:

Theorem 1. Set the pretest threshold in (8) at γd = 2−
√

log2 d and let ∆ =
(1/p − 1/2)+. Suppose that 1 ≤ p, q ≤ ∞, 0 < C < ∞, and σ > max(α∆,∆ −
α/2, 2α∆ − α/2). Then, as n = ε−1/2 → ∞,

sup
θ∈bσp,q(C)

E‖θ̂∗ − θ‖2 ≤ R∗
T,α(n

−1/2; bσp,q(C))(1 + o(1)).
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This theorem says that the unbiased risk choice “gets the thresholds right”
asymptotically: without needing to know (σ, p, q, C), and over a wide range of
α, the estimator does as well as if these parameters were known and used to
explicitly set optimal thresholds. Note especially that the extra logarithmic term
present in Theorem 3 of Johnstone and Silverman (1997) has been removed, due
to the lower thresholds chosen by the data-based rule.

In our result we do assume that the dependence parameter α and overall
scale τ are known, and so we do not incorporate estimation of scale through
estimator (4). In Johnstone and Silverman (1997) it was shown how to incorpo-
rate estimation of α in model (10) for a different choice of threshold – we expect
that a similar extension here would also be valid, at the cost of further technical
complications to the proof. The same comment could also be made regarding
estimation of τ .

Outline of paper. Section 2 develops some correlation properties of wavelet
noise coefficients in model (10). In Section 3, some asymptotic oracle inequalities
are established for the SURE/pretest threshold selector (8). These inequalities
are to be used in later sections on the wavelet coefficients derived from a single
resolution level - they are stated under a set of dependence assumptions (Model
“S”) that is general enough to include both the fractional Brownian motion
setting of Section 2 and the extensions to linear inverse problems outlined in
Section 5. Section 4 gives the principal parts of the proof of Theorem 1, with
the details being postponed to the Appendix. In particular, the role of large
deviation properties for α− mixing seqences is indicated. Section 5 indicates
how these results might be carried over to a class of linear inverse problems
where the observed representer coefficients in the WVD model satisfy on each
level the dependence assumptions of Model “S”. The analog of Theorem 1 is
given as Theorem 6. Finally, in addition to proof details, the Appendix contains
some remarks on the possible extension of these results to the sampling model
(1).

2. Properties of the fBM Sequence Model

Rewriting (10), we consider the model

yjk = θjk + εαwjk (12)

wjk =
∫
ψjkdBH . (13)

In this section, we draw conclusions about the reduced dependence structure of
the wavelet coefficients wjk which will form the basis for the proof of Theorem 1.
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Following for example Barton and Poor (1988), the stochastic integrals defining
wjk have mean zero and covariances given by

E

∫
fdBH

∫
gdBH = (1/2π)

∫
f̂(ξ)ĝ(ξ)|ξ|−(1−α)dξ. (14)

In this section, we deduce some properties of the error process j → {wjk}
that will be used in the proof of Theorem 2. First, we use scaling properties of
µ(dξ) = |ξ|−(1−α)dξ in (14), along with ψ̂jk(ξ) = 2−j/2eik2−jξψ̂(2−jξ), to conclude
that

rj(k)
∆= Ewjkwj0 = 2−j(1−α)r0(k). (15)

In what follows, chiefly for convenience, we use the Meyer wavelet ψ (com-
pare, for example Daubechies (1992), Chapter 4). We recall, in particular, the
properties
(i) supp ψ̂ ⊂ [−8π/3,−2π/3] ∪ [2π/3, 8π/3],
(ii) On [−2π,−π] ∪ [π, 2π], |ψ̂| ≥ c0.
1◦. Decay of autocorrelations r0(k). Using (14),

r0(k) = (1/2π)
∫
eikξ|ψ̂(ξ)|2|ξ|−(1−α)dξ (16)

= (k−α/2π)
∫
eiω|ψ̂(ω/k)|2|ω|−(1−α)dω. (17)

From property Meyer (i), we can assume |ψ̂(ω)| ≤ cM0 |ω|M0I{|ω| ≤ 3π}. This
implies

|r0(k)| ≤ (c2M0
/π)k−α−2M0

∫ 3π
0 |ω|2M0+α−1dω

≤ cαMk
−α−2M0 . (18)

Here and throughout, cαM denotes a constant depending on α and M0, not
necessarily the same at each appearance.

2◦. Spectral density of k → w0k : Decompose (−∞,∞) into union of intervals of
length 2π centered at 2πZ and apply to (16) to get

r0(k) = (1/2π)
∫ π
−π e

ikξ ∑
j∈Z |ψ̂(ξ + 2πj)|2|ξ + 2πj|−(1−α)dξ

= (1/2π)
∫ π
−π e

ikξfψ(ξ)dξ. (19)

Because of the support properties of the Meyer wavelet, we conclude that fψ is
bounded away from 0 and ∞:

0 < fmin ≤ fψ(ξ) ≤ fmax <∞ for all |ω| ≤ π. (20)
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From this follows a bound on eigenvalues: For any (aj) ∈ �2(Z):

fmin ≤
∑
jk ajr0(j − k)āk∑

j |aj|2
≤ fmax. (21)

Indeed using (19), we have∑
jk

ajr(j − k)āk = (1/2π)
∫ π

−π
|
∑
j

aje
ijξ|2fψ(ξ)dξ,

and using (20) together with orthogonality of exponentials gives (21).

3◦. The sequence k → wjk is ρ− mixing: We recall from (e.g. Ibragimov and
Rozanov (1978)) that for stationary Gaussian sequences (Xn, n ∈ Z), we may
define

ρ(n) = sup
(aj),(bk)

|Corr (
∑
j≤0

ajXj ,
∑
k≥n

bkXk)|. (22)

Using correlation bound (18) on k → w0k and setting β = α+ 2M0,

Cov (
∑
j≤0

ajw0j ,
∑
k≥n

bkw0k) ≤ cαM
∑
j

∑
k

|aj ||j − k|−β|bk|

≤ cαM
∑
j≤0

|aj | · ‖b‖(
∑
k≥0

(n+ |j| + k)−2β)1/2

≤ cαM‖a‖‖b‖[
∑
j≥0

(n+ j − 1)1−2β ]1/2

≤ cαM‖a‖‖b‖(n − 2)−(β−1),

since
∑∞
k=0 |r0 + 1 + k|−2β ≤ r1−2β

0 /(2β − 1) for β > 1/2.
From the eigenvalue bound (21) on the spectral density,∑

a2
j ≤ f−1

min · Var (
∑
j

ajw0j).

This yields a ρ− mixing rate for k → w0k:

ρ(n) ≤ cαMf
−1
minn

−α−2M0+1. (23)

Remark. The chief advantage of the Meyer wavelet for this paper is that it
possesses infinitely many vanishing moments - this implies, as in step 1◦ above,
that the autocorrelations r0(k) and hence the ρ−mixing rate ρ(n) have decay
faster than any polynomial. This makes it trivial to find values of M0 such that
inequalities (69) and (75) below are satisfied. The same conclusions could be
achieved with other wavelets (e.g. having compact support in the time domain,
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such as the various Daubechies families) that have a sufficiently large number
M0 of vanishing moments. We have not carried out this analysis in detail, since
it is not clear that the large deviation inequalities which lead to the conditions
(69) and (75) are in fact optimal for this application.

3. Asymptotic Oracle Inequalities for Hybrid-SURE

The goal of this section is to formulate and prove Theorem 2, showing that
the hybrid-SURE prescription is asymptotically consistent, in the sense that it
essentially achieves the best mean squared error possible among threshold esti-
mators. The result is ‘local’ in the sense that it applies for each signal µ, and
not just to worst case behavior over a set of signals.

We assume that the data (xi)di=1 is a subset (increasing as d increases) of
a stationary Gaussian sequence satisfying a set of conditions that we denote
“Model S”:
Model S. xi = µi + zi i = 1, . . . , d where (zi)i∈Z is a mean zero, unit
variance stationary Gaussian sequence such that

(i) rz(k) =
∫ ∞

−∞
eikξ|ψ̂(ξ)|2g(ξ) dξ; where ψ is the Meyer wavelet,

(ii) g(ξ) is continuous and positive for |ξ| ∈ [π2 , 3π],
(iii) there exist constants c1 > 0, c2 ∈ R such that |g(ξ)| ≤ c1|ξ|c2 as |ξ| → 0.

Although model S appears to impose rather special structure on the noise
process (zi), it is precisely the situation that applies to wavelet coefficients {wjk}
from model (12) when the level j is held fixed. Compare (15) and (16). It also
is designed to apply to the noise processes arising in the linear inverse problem
settings described in Section 5.

Let us note some consequences of Model S which will be used in the proof
of Theorem 2. These properties reflect the fact that Model S forces the sequence
(zi) to be “close to i.i.d.”, and were established in the previous section for the
case of the noise processes k → wjk in model (12).

(i) The spectral density fz(ξ) satisfies

0 < fmin ≤ fz(ξ) ≤ fmax <∞ for |ξ| ≤ π;

(ii) correlation decay: Given M0 ∈ N, ∃ c3 = c3(M0, g) s.t.

|rz(k)| ≤ c3k
−c2−1−2M0 ;

(iii) ρ -mixing:

ρz(n) ≤ (c3/fmin)n−c2−2M0 . (24)



WAVELET SHRINKAGE FOR CORRELATED DATA 61

To state the theorem, we define the ideal threshold risk:

R(µ) = inf
t
d−1

d∑
i=1

r(t, µi),

where r(t, µi) = E[ηS(xi, t) − µi]2 (compare (3)) and the fixed threshold risk:

RF (µ) = d−1
d∑
1

r(tFd , µi).

As in Section 1.1, we define our hybrid-SURE thresholding estimator in
Model S by setting x = (xi)di=1, s

2
d = d−1 ∑d

1(x
2
i − 1), and

µ̂∗(x)i =

{
η(xi, tFd ) if s2d ≤ γd

η(xi, t̂) if s2d > γd
, (25)

where
t̂ = argmin0≤t≤tF

d
SURE(t, (xi)), tFd =

√
2 log d.

Thus, when τ2 = τ2(µ) = d−1 ∑d
1 µ

2
i is small, the hybrid estimator will

usually default to the fixed threshold choice. When µ ≡ 0, this is guaranteed
by the following large deviations inequality for s2d, established in the Appendix.
Suppose that {zi, i = 1, . . . , d} is drawn from a Gaussian stationary sequence
of mean zero, variance one and bounded spectral density f(ω) on [0, π]: f∞ =
sup{f(ω) : 0 ≤ ω ≤ π}.Then

P{|s2d| > t} ≤ 2 exp{− dt

8f∞
· min(t/f∞, 1)}. (26)

Theorem 2. Assume stochastic model S, and that

1 ≥ γd >>
√
d−1 log d.

(a) For each η ∈ (0, 1/2), uniformly in µ ∈ R
d

d−1E ‖ µ̂∗ − µ ‖2≤ R(µ) +RF (µ)I{τ2 ≤ 3γd} +O(dη−
1
2 ), d→ ∞. (27)

(b) There exists a positive constant c∗ such that uniformly in µ for which τ2(µ) ≤
1
3γd,

d−1E ‖ µ̂∗ − µ ‖2≤ RF (µ) +O(log d e−c∗dγ
2
d ), d→ ∞. (28)
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Notation. We begin the outline of the proof of Theorem 2 with some defini-
tions. Let Fd denote the empirical c.d.f. of {µ1, . . . , µd}. The empirical loss of
thresholding estimator (ηS(xi, t))

d
i=1 is

L̂(t, Fd) = d−1
d∑
1

[η(xi, t) − µi]2,

and its corresponding risk

r(t, Fd) = EL̂(t, Fd) = d−1
d∑
1

r(t, µi).

The unbiased estimate of the risk of (ηS(xi, t)) is given by

Ud(t) = d−1
d∑
1

1 − 2{x2
i ≤ t2} + x2

i ∧ t2,

and it satisfies EUd(t) = r(t, Fd).

We use a pretest decomposition based on the event Ad = {s2d > γd}, which
tests for the presence of significant signal. Thus,

Rd(µ) = d−1E‖ µ̂∗ − µ ‖2 = R1d(µ) +R2d(µ) (29)

and to establish Theorem 2 we show that

R1d(µ) ∆= d−1E{‖ µ̂∗ − µ ‖2, Ad} ≤ R(µ) + cdη−
1
2 ,

R2d(µ) ∆= d−1E{‖ µ̂∗ − µ ‖2, Acd} ≤ RF (µ)I{τ2 ≤ 3γd} + o(d−1/2).

Strategy for “signal” term R1d. On Ad, we use SURE threshold t̂, so that

R1d(µ) ≤ d−1
∑

[η(xi, t̂ ) − µi]
2 = EL̂(t̂, Fd).

We first address an issue that was overlooked in Donoho and Johnstone
(1995). The minimization yielding t̂ is performed only over the interval [0, tFd ],
so that a priori one might expect only that R1d(µ) approximates

R̃(µ) = inf
0≤t≤tF

d

d−1
∑

r(t, µi) ≥ R(µ).

In fact there is little to be gained by searching over larger thresholds. In the
Appendix we prove

Lemma 3. If d ≥ 8 and δ > 0, then for all µ ∈ Rd,

R̃(µ) −R(µ) ≤ 2d−1e
√

2 log d = O(dδ−1).
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Consequently, in the proof below, we may replace R(µ) by R̃(µ) with no
harm to the uniform O(dη−1/2) term.

L̂(t, Fd) and Û(t) are both unbiased for EL(t, Fd), so we have the bound and
the basic decomposition

R1d(µ) − R̃(µ) ≤ E∆d,

∆d = L̂(t̂, Fd) − r(t̂, Fd) + r(t̂, Fd) − Ud(t̂ ) + Ud(t̂ ) − inf
t≤tF

d

r(t, Fd).

We bound ∆d via maximal deviations of empirical process type:

|∆d| ≤ ‖ L̂(·, Fd) − r(·, Fd) ‖∞ +2 ‖Ud(·) − r(·, Fd) ‖∞,
where ‖g‖∞ = sup{|g(t)| , 0 ≤ t ≤ tFd }.

For R1d, the task is thus to show a uniform bound on the expected maximal
risk deviation

sup
µ∈Rd

Eµ ‖ L̂(·, Fd) − r(·, Fd) ‖∞≤ cdη−1/2,

and a similar bound for the unbiased risk deviation. For this purpose, let

Wd(t) = L̂(t, Fd) − r(t, Fd),

Zd(t) = Ud(t) − r(t, Fd).

For expectations of V = ‖Wd‖∞ or ‖Zd‖∞, we use the simple bound

EV ≤ c+ (EV 2)1/2P (V > c)1/2, (30)

where c = cd will be of the desired order O(dη−1/2).
To estimate sup norms, we use a simple discretization: let tj = jδ, and J

denote the set of indices j for which tj ∈ [0, tFd ]. Clearly,

‖f‖∞ ≤ sup
J

|f(tj)| + sup
J

∆f(tj, δ), (31)

where
∆f(tj, δ) = sup{|f(t) − f(tj)| : tj ≤ t ≤ tj + δ}.

Analysis of Wd We now describe how we reduce the analysis of Wd and Zd to
the application of appropriate exponential inequalities for dependent sequences.
Write

Wd(t) = d−1
d∑
i=1

[η(xi, t) − µi]2 − r(t, µi)

def= d−1
d∑
i=1

Yi(t), (32)
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from which it is seen that t → Wd(t) is continuous and piecewise differentiable.
From the formula for r(t, µ) in Donoho and Johnstone (1994) and direct calcu-
lation,

0 ≤ ∂r(t, µ)/∂t ≤ 2t, and (33)
(∂/∂t) [η(xi, t) − µi]2 = −2sgn xi[zi − (sgn xi)t], (34)

from which
‖W ′

d‖∞ ≤ 2 ave |zi| + 4td. (35)

Let

Ad = ∩j∈J{|Wd(tj)| ≤ dη−1/2},
Bd = {‖W ′

d‖∞ ≤ 6td}.
Then, so long as δ satisfies 6tdδ ≤ dη−1/2, we have, from (31)

Ad ∩Bd ⇒ ‖Wd‖∞ ≤ 2dη−1/2. (36)

In view of (30), (36) and the corresponding bound (76) for ‖Zd‖∞ described
in the Appendix, the chief remaining task in the bound for the signal term R1d is
to obtain good tail bounds for the probabilities of Acd, B

c
d, C

c
d and Dc

d. When the
errors zi are i.i.d., this was accomplished in Donoho and Johnstone (1995) using
the well-known Hoeffding exponential inequalities for large deviations. When
the errors zi are dependent, but strongly mixing, Bosq (1993) has provided some
explicit large deviations inequalities of Bernstein type which we restate here for
the convenience of the reader.

Bosq’s inequalities. Let (Xi, i ∈ Z) be a zero-mean stochastic process, and
let F i−∞ and F∞

i+p be the sigma-fields generated respectively by {Xs, s ≤ i}, and
{Xs, s ≥ i+ p}. The α− strong mixing coefficients are defined by

α(p) = sup
i

sup
A,B

{|P (A ∩B) − P (A)P (B)|, A ∈ F i
−∞, B ∈ F∞

i+p}.

The first Bosq inequality is oriented towards bounded Xi and is given in the
Appendix. The second inequality imposes the ‘Cramer conditions’:

Proposition 4. Assume that there exist constants m ≤M such that

(a) 0 < m ≤ EX2
i ≤M, i ∈ Z (37)

(b) E|Xi|γ ≤Mγ−2γ!EX2
i ; γ ≥ 3, i ∈ Z.

If Sn = X1 + · · ·+Xn, and 1 ≤ pn ≤ n
2 , then for every ε > 0 and γ ≥ 2, we have

P (|Sn| > nε) ≤ (2pn + 1 +M−1) exp(− 1
10M

ε2

5 + ε

n

pn
) (38)

+dγ(1 + ε−1)βγnα(pn)2βγ , (39)
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where βγ = γ/(2γ + 1) and

dγ = 11[M (γ−1)/γ (γ!)1/γ
5
2
(1 +

4
5
√
m

)]βγ .

We illustrate the use of Proposition 4 to bound P (Ad). We show that the
Cramér conditions apply to Xi = Yi(t) + εi, where Yi(t) is defined in (32) and
εi

i.i.d.∼ N(0, 1) are introduced simply to ensure that EX2
i ≥ Eε2i = 1, so that

m = 1 in (37). Since εi have a distribution symmetric about zero, one can verify
that, with Sd =

∑d
1 Xi,

P{|Wd(t)| > c} ≤ 2P{d−1|Sd| > c}. (40)

Analysis of soft thresholding shows that

[η(xi, t) − µi]2 ≤ 2(z2
i + t2), and (41)

r(t, µ) ≤ 1 + t2. (42)

Using the bounds E|U + V |γ ≤ 2γ−1{E|U |γ +E|V |γ} and EZ2k ≤ 2kk! for Z ∼
N(0, 1), and after some analysis, one verifies that (37) holds with the conservative
choice M = Md = 163(1 + t2d)

3.

Bound (24) provides control on the ρ− mixing rate ρZ(p) for the underlying
stationary Gaussian noise sequence {Zi}. We call upon some standard results
relating mixing coefficients to derive bounds on αX(p), the α− mixing rate needed
to apply the Bosq bounds. Indeed

4αX(p) ≤ ρX(p) (43)

≤ ρY (p) (44)

≤ ρZ(p). (45)

It should be noted here that

ρX(p) ∆= sup
i

sup{|Corr (U, V )| : U ∈ L2(F i
−∞), V ∈ L2(F∞

i+p)},

which reduces to the earlier expression (22) only in the stationary Gaussian case.
Inequality (43) is standard (Bradley (1986), p. 166), while (44) follows, e.g. from
the Csaki-Fischer theorem (Bradley (1986), p. 173), and (45) follows because
Yi(t) is a function of zi. We conclude, for the Meyer wavelet, that for any M0,

αX(p) ≤ cαMf
−1
minp

−α−2M0 . (46)

To apply Proposition 4, set c = dη−1/2 in (40), and pd = dη . We may write
bound (46) in the form α(p) ≤ ap−b where a and b depend on (α,M0). Using



66 IAIN M. JOHNSTONE

c1 to denote a constant depending on γ alone, we obtain from (38), after some
bounding,

P{|Wd(t)| ≥ dη−1/2} ≤ ε1d, (47)

ε1d = 2dη exp(−dη/60Md) + c1M
1/2
d d1−(2bη+η−1/2)βγ . (48)

This bound, with appropriate choice of M allows control of P (Ad). The
completion of the bound for E‖Wd‖∞, the corresponding bound for E‖Zd‖∞,
and the treatment of the ‘noise’ term R2d, and the proof of part (b) of Theorem
2 are deferred to the Appendix.

A modified oracle inequality for fixed thresholds. Before concluding
this section we state a slightly improved version of the oracle inequality of Donoho
and Johnstone (1994) and Johnstone and Silverman (1997). From Lemma 1 of
Donoho and Johnstone (1994), the risk of univariate soft thresholding satisfies
the following two inequalities for all t > 0, µ ∈ R:

r(t, µ) ≤ r(t, 0) + µ2,

r(t, µ) ≤ t2 + 1.

Combining these yields

r(t, µ) ≤ r(t, 0) + (t2 + 1)(µ2 ∧ 1).

This yields immediately:

Proposition 5. If Xi has marginal distribution N(µi, 1), i = 1, . . . d, and µ̂t
denotes co-ordinatewise soft thresholding at t, then

E‖µ̂t − µ‖2 ≤ dr(t, 0) + (t2 + 1)
d∑
1

µ2
i ∧ 1. (49)

We recall from (A2.6) of Donoho and Johnstone (1994) that for t ≥ 3/2,

r(t, 0) ≤ 8t−3φ(t).

In particular, if td =
√

2 log d, then r(
√

2 log d, 0) ≤ 2d−1(log d)−3/2 and

E‖µ̂td − µ‖2 ≤ 2(log d)−3/2 + (2 log d+ 1)
d∑
1

µ2
i ∧ 1.

Finally, if now yi has marginal distribution N(θi, σ2), i = 1, . . . , d, if θ̂F denotes
soft thresholding at tdσ, and if d = 2j , then

E‖θ̂F − θ‖2 ≤ c(j−3/2σ2 + j
∑

θ2
i ∧ σ2). (50)
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The significance of (50) vis-a-vis previous versions of the oracle inequality is that
the first term j−3/2σ2 is now a summable sequence in j. We note also that the
bound (A.24) in Donoho and Johnstone (1995) is incorrect – consider Ξ ≡ 0 –
but that systematic use of (50) below corrects the error.

4. Proof of SURE Minimaxity

In this section we describe the main steps in the proof of Theorem 1. We
assume model (12) and note that it implies

Var yjk = σ2
jk = ε2α2−j(1−α). (51)

We rescale to use variance one oracle inequalities by level:

xj = (yjk/σj)
µj = (θjk/σj)

θ̂∗jk(y) =

{
yj j < L

σjµ̂
∗(xj) j ≥ L,

where L is fixed. Then

E ‖ θ̂∗ − θ ‖2 =
∑
jk

E(θ̂∗jk − θjk)2

=
∑
j<L

2jσ2
j + (

∑
L≤j≤j0

+
∑
j>j0

) σ2
jE‖µ̂∗(xj) − µj‖2

≤ O(ε2α) + S1ε + S2ε.

Our approach is to decompose E‖θ̂∗−θ‖2 into low, mid and high levels.
• Low levels (j ≤ L): trivial, since L is fixed.
• Mid levels (L ≤ j ≤ j0): use global oracle inequality (27).
• High levels(j > j0) : use ‘small signal’ oracle inequality (28).

Hence, using the global oracle inequality (27) for mid levels:

S1ε ≤
∑
j≤j0 2jσ2

j {R̃(µj) +RF (µj)I{τ2
j ≤ 3γj} + c2jη−j/2}

= S11ε + S12ε + S13ε, (52)

and using the small-signal inequality (28) and the bound d log d · e−c∗dγ2
d =

O((log d)−3/2) for high levels:

S2ε ≤
∑
j>j0

2jσ2
jRF (µj) + cσ2

j j
−3/2

= S21ε + S22ε.

Focus first on the main term, S11ε:

S11ε ≤
∑
j≤j0

inf
tj
E‖ θ̂j,(tj) − θj ‖2

.
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Hence, by maximising over Θ = bσp,q(C),

sup
Θ
S11ε ≤ inf

(tj )
sup
Θ
E‖ θ̂(tj ) − θ ‖2

= R∗
T (ε,Θ) � ε2r.

The proof is completed by showing that we may choose j0 so that all other
terms are o(ε2r). We start with S12ε : let c2jε = 3γj2jσ2

j with γj = 2−
√
j. Then if

θ̂Fj denotes soft thresholding at σj
√

2 log 2j ,

S12ε ≤
∑
j≤j0

E‖θ̂Fj − θj‖2I{‖θj‖2 ≤ c2jε}

≤ c
∑
j≤j0

{j−3/2σ2
j + j

∑
k

σ2
j ∧ θ2

jk}I{‖θj‖2 ≤ c2jε},

where we have used the modified oracle inequality (50). To further bound S12ε,
we borrow a definition from Theorem 3 of Johnstone and Silverman (1997):

Wp(δ, C;n) = sup
‖x‖p≤C

n∑
1

δ2 ∧ x2
k

≤
{

min(nδ2, Cpδ2−p) 0 ≤ p ≤ 2
min(nδ2, C2n1−2/p) 2 ≤ p ≤ ∞ ,

where, in both cases, the minimum is obtained at nδ2 if and only if δ ≤ Cn−1/p.

Defining also the Besov ‘rings’

Θ(j) = Θ ∩ {θ : θj′k = 0,∀j′ �= j,∀k},

one checks easily that Θ(j) is essentially isomorphic with the �p ball {θj : ‖θj‖p ≤
C2−sj}. Hence

sup
Θ
S12ε ≤ c

∑
j≤j0

j−3/2σ2
j + c

∑
j≤j0

jmin{Wp(σj , C2−sj; 2j),W2(σj , cjε; 2j)}.

Write Wpj(ε),W2j(ε) as abbreviations for the preceding terms. We first analyse
Wpj(ε). In the case p ≤ 2,

Wp(σj , C2−sj; 2j) ≤
{

2jσ2
j if σj ≤ C2−sj−j/p

Cp2−sjpσ2−p
j if σj > C2−sj−j/p.

(53)

The function j → 2jσ2
j = ε2α2jα grows exponentially in j while j → Cp2−sjpσ2−p

j

= (Cε−α)pε2α2−jp[σ+α(1/2−1/p)] decreases exponentially in j. The functions cross
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at the switching value j∗ ∈ R given by the solution to the equation σj =
C2−(s+1/p)j, namely

2j∗(σ+α/2) = Cε−α. (54)

The value at the crossing point j∗ (which yields the maximum of j →Wpj(ε)) is
then

2j∗σ2
j∗ = ε2α2j∗α = Cr/σε2r

(recalling that r = 2σα/(2σ + α)).
For the case p > 2, the situation is the same as in (53) except that the second

term is now C22−2sj2j(1−2/p) = C22−2jσ. Note, however, that the switching
value j∗ is still given by (54). In summary, we conclude that j → Wpj(ε) decays
geometrically from a maximum j∗:

Wpj(ε) ≤ Cr/σε2r · 2−η1|j−j∗|, η1 > 0, (55)

so long as
σ > α(1/p − 1/2)+. (56)

For small j, however, the small signal constraint contained in W2j(ε) leads
to the better bound. Indeed, since W2(δ, C;n) = nδ2 ∧ C2, it follows that

W2j(ε) = 2jσ2
j ∧ c2jε = c2jε ≤ 32−

√
j2jαε2α.

Recalling that r = 2σα/(2σ + α), α − r = α2/(2σ + α) and (54), we obtain

ε−2rW2j(ε) ≤ 3C2α/(2σ+α)2−
√
j+(j−j∗)α. (57)

Combining (55) and (57), and letting ci = ci(α, σ,C), we get

ε−2r sup
Θ
S12ε ≤ o(1) + c

∑
j≤j1

jε−2rW2j(ε) + c
j0∑
j1

jε−2rWpj(ε)

≤ o(1) + c1
∑
j<j1

j2−
√
j+(j−j∗)α + c2

∑
j≥j1

j2−η1(j−j∗) = o(1)

if we choose, for example, j1 = j∗ + (log2 j∗)2.
Turning now to S13ε we have

ε−2rS13ε = cε2(α−r)
∑
j≤j0

2j(α+η−1/2).

Since (α− r) = α2/(2σ + α), this term is automatically o(1) if α+ η − 1/2 < 0.
On the other hand, if α+ η − 1/2 > 0, then

ε−2rS13ε ≤ cε2(α−r)2j0(α+η−1/2).
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Writing j0 = bj∗ and recalling (54), we find that the exponent of ε is positive
when

b < α/(α + η − 1/2). (58)

The analysis of terms in S2ε is straightforward (and deferred to the Ap-
pendix) except for the constraint on j0 imposed by the ‘small-signal’ require-
ment of Theorem 2, namely that the inequality τ2 ≤ (1/3)γj be valid for all
µj = θj/ε and θj ∈ Θ(j) for j ≥ j0. Since Θ(j) is essentially equivalent to the �p
ball {θj : ‖θj‖p ≤ C2−sj}, the requirement is that

sup{‖θj‖2
2 : ‖θj‖p ≤ C2−sj} ≤ (1/3)γj2jσ2

j

for all j ≥ j0. Noting that sup{‖θ‖2
2,n : ‖θ‖p,n ≤ r} = n(1−2/p)+r2, and recalling

that 2jσ2
j = 2jαε2α, the condition is that for all j ≥ j0,

C22−2sj+(1−2/p)+j ≤ (1/3)γj2αjε2α. (59)

Let σ̄ = s− (1/2− 1/p)+ = σ−∆, since σ̄ equals σ if p ≥ 2 and s if p < 2. Since
γj = 2−

√
j, condition (59) becomes

3C22
√
j−(α+2σ̄)j ≤ ε2α.

If α+ 2σ̄ > 0, the function j → j(α + 2σ̄) −√
j is increasing for j ≥ j+(α, σ̄) =

[2(α+2σ̄)]−2. Since j0 = j0(ε) ↑ as ε→ 0, we get for sufficiently small ε that (59)
will hold for all j ≥ j0 so long as

α+ 2σ̄ > 0 (60)

3C22
√
j0−j0(α+2σ̄) ≤ ε2α. (61)

Writing j0 = bj∗ where 2j∗ was defined at (54), it follows by comparing
exponents of ε that (61) is met for all small ε so long as

b > (α+ 2σ)/(α + 2σ − 2∆). (62)

In summary, all terms other than S11ε are o(ε2r) so long as (56) and (60)
hold and j0 = bj∗ can be chosen so that b satisfies both (58) and (62). Some
algebra shows that these latter conditions amount to

σ > α∆, σ > ∆ − α/2, and σ > 2α∆ − α/2,

and this completes the proof of Theorem 1.

Remark. Without the pretest, the error term 2jη−j/2 resulting from the global
oracle inequality (compare (52)) would have to be summed over all resolution
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levels, instead of simply up to level j0. From the treatment of error term S13ε

above, it is apparent that if α ≥ 1/2 (for example), this sum diverges and so
conclusions can be drawn using only the global oracle bound.

5. Extensions to a Class of Linear Inverse Problems

The purpose of this section is to sketch how the preceding results for thresh-
old selection in correlated noise might be carried over to a class of linear inverse
problems. The discussion will be informal and mostly by example. We imagine
data observed indirectly in a model

y = Kf + z, (63)

where K is a bounded linear operator of L2, and Cov(z) = I. Specific examples
that we have in mind include
1. Integration

Kf(u) =
∫ u

−∞
f(t)dt.

2. Fractional Integration

Kf(u) =
∫ ∞

−∞
f(t)Ω(t− u)
|t− u|1−α dt, 0 < α < 1.

(Here Ω is a homogeneous function of degree 0, and for example, α = 1/2
corresponds to the Abel Transform)

3. Certain Convolutions:

Kf(u) =
∫ ∞

−∞
k(u− t)f(t)dt, where

k̂(ω) ∼ |ω|−α as |ω| → ∞.

Examples include

k(x) = e−|x|I{x < 0} (⇒ α = 1)
or 1

2e
−|x| (⇒ α = 2).

The heuristic connection between correlated noise and linear inverse prob-
lems can be expressed almost trivially. Consider a correlated regression model
y = f + e where e has covariance operator Σ, and suppose that Σ has invertible
non-negative square root L, so that Σ = LL∗ and e

D= Lz. Formally writing
L−1y = L−1f + z, we may then identify K in (63) with Σ−1/2.

To exploit this connection, we use the notion of a wavelet-vaguelette de-

composition (WVD) of K due to Donoho (1995). This is a modification of the
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singular value decomposition which aims to simultaneously almost diagonalize K
and achieve sparse representations of functions f likely to be of interest.

We review some elements of the WVD here. Suppose that the function f

we wish to recover has wavelet representation f =
∑〈f, ψjk〉ψjk. However, the

observed data is (a noisy version of) Kf , so we suppose in addition that it is
possible to construct representers γjk such that

[Kf, γjk] = 〈f, ψjk〉.
Then for observed data yjk = [y, γjk], we have

Eyjk = [Kf, γjk] = 〈f, ψjk〉,
which motivates use of a thresholding based reconstruction rule

f̂ =
∑
jk

η(yjk, t̂jk)ψjk.

The proposal here, of course, is to use a version of the unbiased risk estimate
(SURE) to estimate t̂j from the data y.

Two conditions will be necessary for asymptotic results on the validity of
this thresholding proposal. First, the WVD structure itself requires fine scale
homogeneity:

‖γjk‖2 ∼ 2jγ , j → ∞ (64)

uniformly in k. Secondly, we impose the conclusion

if f = 0, k → yjk is a stationary sequence. (65)

The proposed estimator essentially applies existing software to the data
({yjk}):
1. Data:

wjk = [Y, γjk].

2. Robust scale estimates: Fix L and

for j ≥ L, ŝj = MAD(yjk, k = 1, . . . , 2j)/.6745

3. Hybrid-SURE thresholding:

ŵ∗
j =

{
ŝjµ̂

∗(wj/ŝj) L ≤ j < J

wj j < L.

4. Reconstruction:
f̂ =

∑
λ

ŵl
∗ψλ.
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By Parseval’s inequality

E‖f̂ − f‖2 =
∑
j

E|ŵj − wj |2,

where ŵj = {ŵjk, k = 1, . . . , 2j}.
To formulate an asymptotic result, consider a Gaussian white noise model

for our linear inverse problem:

Y (du) = Kf(u)du+ εW (du), u ∈ [0, 1], (66)

and convert it to sequence space form by integration against the collection of
representers γλ:

[γλ, Y ] = [γλ,Kf ] + ε[γλ,W ], λ ∈ Λ,

so that, using an obvious notation,

yλ = θλ + εwλ, λ ∈ Λ. (67)

We proceed by analogy with the fractional Brownian motion model (10), but
with a different noise normalization. Indeed, the observed noise components
have covariance structure

Ewλwλ′ =
∫
γλγλ′ =

∫
γ̂λγ̂λ′ ,

and in view of (64) and (65), we have at level j, σ2
j = Var (wλ) ∼ 22jγε2. As

an example, in the case of fractional integration, where γ̂λ(ω) = |ω|α
Ω̂(ω)

· ψ̂λ(ω), we

find

Ewλwλ′ =
∫
ψ̂λ ψ̂λ′

|ω|2α
|Ω̂(ω)|2 dω.

The covariance structure of k → {wjk} is thus analogous to that of the
wavelet coefficients of fractional Brownian motion (compare (12)). In particular,
in the examples listed earlier, Model S will apply, so long as one starts with a
Meyer wavelet or other wavelet with sufficiently many vanishing moments (for
example, for fractional integration, g(ξ) ∝ |ξ|2α/|Ω̂(ξ)|2|). Note however that
the noise level here is parametrized by ε (and not εα), and that the levelwise
variances σ2

j ∼ 22jγε2 will, for the typical case in which γ > 0, grow with j (in
contrast to the fractional Brownian motion case in (51)). In the construction of
the hybrid estimator (25), it is necessary to use higher thresholds in the small
signal case when s2d < γd: here we replace

√
2 log d by

tFd =
√

2β log d, (68)
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where β = 1 + 2γ+, and γ+ = max(γ, 0). This phenomenon was originally
noted by Abramovich and Silverman (1998). With this modification, Theorem 2
remains true at each resolution level j.

It is now possible to mimick the proof of Theorem 1 to obtain an asymptotic
adaptive minimaxity result for the hybrid SURE estimator, simultaneously over
a broad scale of Besov constraints.

Theorem 6. Suppose that operator K in model (66) possesses a WVD satisfying
(64). Suppose that the sequence data (67) satisfies (65). Let θ̂∗ be the SURE
pretest estimator specified in (11) with σ2

j = ε222γj and tFd =
√

2β log d in (25)
for β = 2γ+1. Set α = 2γ+1 and ∆ = (1/p−1/2)+. Then for 1 ≤ p, q ≤ ∞, 0 <
C <∞, and σ > max{α∆,∆ − α/2, 2α∆ − α/2},

sup
θ∈bσp,q(C)

E‖θ̂∗ − θ‖2 ≤ R∗
T,γ(n

−1/2; bσp,q(C))(1 + o(1)),

and, as shown by Donoho (1995),

RT,γ;bσp,q(C)(n
−1/2) � n−r(γ,σ), r(γ, σ) = 2σ/(2σ + 1 + 2γ).

Notice that the range of validity of this result is constrained to functions of
greater smoothness as γ increases (in the sparse case, ∆ > 0.) This phenomenon
is discussed further in Mallat (1998) who also shows how appropriate wavelet
packet bases can be used to address the problem.
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Appendix

Proof of (26). Using the spectral representation of the process {zi}, we can find
i.i.d. N(0, 1) variates ζi and eigenvalues λi,d ≤ f∞ so that

∑d
1 z

2
i =

∑d
1 λi,dζ

2
i .

Setting αi = d−1λi,d, we have

s2d =
d∑
1

αi(ζ2
i − 1).

Using the elementary identity

P{|
∑

αi(ζ2
i − 1)| > t} ≤ 2e2u

2
∑

α2
i −|u|t
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for |u| ≤ 1/4(max |αi|), and optimizing over u, we obtain (26).

Proof of Lemma 3

Graphs of the risk rS(t, µ) of soft thresholding as a function of threshold t are
essentially constant (at µ2) for large t: the proof is essentially a (long-winded)
formal verification.

1◦. Risk as a function of threshold. Differentiation of the formula for the risk of
soft thresholding (e.g. Donoho and Johnstone (1994), Formula (A2.1)) gives

rt(t, µ) = (∂/∂t)r(t, µ) = 2t[Φ̃(t− µ) + Φ(−t− µ)] − 2[φ(t− µ) + φ(t+ µ)].

2◦. Monotonicity. For µ ≥ 1 and t ≥ 2, r(t, µ) is an increasing function of t.
Indeed, one checks that ∂rt/∂µ = µ[φ(t−µ)+φ(t+µ)] ≥ 0, so that it will suffice
to verify that h(t) = (1/2)rt(t, 1) ≥ 0 for all t ≥ 2. Further calculus shows that

h′(t) = Φ̃(t− 1) − φ(t− 1) + Φ̃(t+ 1) − φ(t+ 1) ≤ 0 for t ≥ 2.

Since h(2) > 0 and h(t) → 0 as t→ ∞, the claim follows.

3◦. We now verify that if t ≥ t1 and µ ≥ 0, then

r(t1, µ) − r(t, µ) ≤ 2Φ̃(t1 − µ) + 2tφ(t). (69)

The left side equals the expectation of

[ηS(x, t1) − µ]2 − [ηS(x, t) − µ]2 ≤


(x− t1)2 x > t1
0 |x| ≤ t1
(x+ t1 − µ)2 −t < x < −t1
2(x− µ)(t1 − t) x < −t,

as follows by checking cases. Changing variables to z = x−µ and integrating by
parts gives∫ ∞

t1
(x−t1)2φ(x−µ)dx = Φ̃(t1−µ)−(t1−µ)2

∫ ∞

t1−µ
z−2φ(z)dz ≤ Φ̃(t1−µ). (70)

On the range −t < x < −t1, setting u = −(x− µ) yields∫ −t1

−t
(x+ t1 − µ)2φ(x− µ)dx =

∫ t+µ

t1+µ
(u− t1)2φ(u)du ≤ Φ̃(t1), (71)

exploiting µ > 0 and (70). Finally, on the range x < −t,

2(t1 − t)
∫ −t

−∞
(x− µ)φ(x− µ)dx = 2(t− t1)φ(t+ µ) ≤ 2tφ(t). (72)
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Combining the last three displays and noting that Φ̃(t1) ≤ Φ̃(t1 − µ) for µ ≥ 0
yields (69).

4◦. We proceed to the proof of Lemma 3. Suppose that r(t, Fd) attains its mini-
mum on [0,∞] at t0. Then

R(µ) = inf
t
r(t, Fd) = r(t1, Fd) + r(t0, Fd) − r(t1, Fd)

≥ inf
t≤t1

r(t1, Fd) + d−1
∑

[r(t0, µi) − r(t1, µi)]I{t0 > t1}.

Step 2◦ implies that when µi ≥ 1, r(t0, µi) ≥ r(t1, µi). Hence, on rearranging the
previous display and then substituting (69) and setting t1 =

√
2 log d, we get

R̃(µ) −R(µ) ≤ d−1
∑

[r(t1, µi) − r(t0, µi)]I{µi ≤ 1, t0 > t1}
≤ 2[φ(t1 − 1) + t1φ(t1)] ≤ 2φ(t1)(et1 + t1)

≤ 4φ(0)e−t
2
1/2+t1 ≤ 2d−1e

√
2 log d.

Proof of Theorem 2

Bound for P (Bd). It follows from (35) that {avei|zi| ≤ td} implies Bd. On the
other hand (ave|zi|)2 ≤ s2d + 1, so

P (Bc
d) ≤ P{s2d > t2d − 1}

≤ e−d(t
2
d
−1)/8f∞ = ε2d,

where we have used the tail bound (26) for s2d. Clearly ε2d << ε1d, so we will
ignore this term below.
Completion of bound for E‖Wd‖. Bound (30) calls for a crude bound for
E‖Wd‖2∞. Using

‖Wd‖∞ ≤Wd(0) + td‖W ′
d‖∞

≤Wd(0) + 4t2d + 2tdave |zi|,

together with the observation that Wd(0)
D= d−1(χ2

(d)−d) and (ave |zi|)2 ≤ s2d+1,
leads, after some calculation, to

E‖Wd‖2
∞ ≤ (8t2d)

2.

Substituting this and (47) into (30) (with c = 2dη−1/2) and letting Nd =
td/δ � 6t2dd

1/2−η denote the number of discretization points, we have

E‖Wd‖∞ ≤ 2dη−1/2 + 8t2d
√
Ndε1d,
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uniformly in µ ∈ R. The dominant term in
√
Ndε1d is√

Ndε1d ≈M1/4tdd
(1/2)[3/2−η−(2bη+η−1/2)βγ ],

so some algebra shows that E‖Wd‖∞ = O(dη−1/2) so long as

b = α+ 2M0 > [5/2 − 3η + (1/2 − η)βγ ]/(2ηβγ). (73)

Analysis of Zd. By definition,

Zd(t) = d−1
d∑
i=1

1 − 2I{x2
i ≤ t2} + x2

i ∧ t2 − r(t, µi)

def
= d−1

∑
i

Yi(t). (74)

The functions t → Yi(t) are discontinuous, so we need to give a stochastic
estimate of ∆Zd in (31). If t < t′, we have, using (33), and (t′)2− t2 ≤ 2td(t′− t),

|Y (t′) − Y (t)| ≤ 2I{t < |x| ≤ t′} + 4td(t′ − t). (75)

Let Nd(t, t′) = #{i : t < |xi| ≤ t′}. From (75),

∆Zd(tj , δ) ≤ 2d−1Nd(tj , tj + δ) + 4δtd.

Clearly, Ed−1Nd(tj, tj+δ) ≤ 2φ(0)δ where φ(x) is the standard Gaussian density.
Let

∂Nd(tj , δ) = d−1{Nd(tj, tj + δ) − ENd(tj ,j +δ)}, and

Cd = ∩j∈J{|Zd(ti)| ≤ dη−1/2}
Dd = ∩j∈J{∂Nd(tj , δ)| ≤ (1/3)dη−1/2}.

It follows from the above analysis and (31) that if we take δ = d−1/2/td, then
for sufficiently large d,

Cd ∩Dd ⇒ ‖Zd‖∞ ≤ 2dη−1/2. (76)

Bound for E‖Z‖∞. We first state the inequality from Bosq (1993) appropriate
for bounded random variables.

Proposition 7. Assume that there exist constants m ≤M such that

0 < mp ≤ esssup|Xi+1 + · · · +Xi+p| ≤Mp, i ∈ Z, p ≥ 1. (77)

If Sn = X1 + · · · +Xn, and 1 ≤ pn ≤ n/2, then for every ε > 0,

P (|Sn| > nε) ≤ 8 exp(− ε2

25M2

n

pn
) + 18

M√
mε

n

pn
α(pn). (78)
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We follow the approach for E‖W‖∞, using now (78) to estimate P (Ccd) and
P (Dc

d). Consider first Ccd, and note that (77) hold for Xi = Yi(t) (defined in
(74) ) with m = 1 and M = 2 + t2d. As before, we have the α-mixing bound
αX(p) ≤ ap−b with b = α + 2M0. We apply Proposition 7 with parameters
ε = dη−1/2, pd = dη, and find, after simplification, that

P{|Zd(t)| ≥ dη−1/2} ≤ ε3d,

ε3d = c3 exp{−dη/25(2 + t2d)
2} + c4d

5/4−(b+3/2)η .

Turning to Dc
d, we note that (77) holds for Xi = I{tj < xi < tj+δ}−P{tj <

xi < tj + δ} with m = 1/4 and M = 1. Again using Proposition 7, now with
ε = dη−1/2/3 and pd = dη, we eventually obtain

P{|∂Nd(tj, δ)| ≥ (1/3)dη−1/2} ≤ ε4d,

ε4d = c5 exp{−c6dη} + c7d
5/4−(b+3/2)η .

The dominant term in both ε3d and ε4d is O(d5/4−(b+3/2)η ). Noting that δ−1td =
t2dd

1/2+ε and assembling pieces, we find that

P{‖Z‖∞ > 2dη−1/2} ≤ c8t
2
dd

7/4+ε−(b+3/2)η .

Since ‖Zd‖∞ ≤ 2 + t2d, (30) yields

E‖Zd‖∞ ≤ 2dη−1/2 + (2 + t2d) · P (‖Zd‖∞ > 2dη−1/2)1/2.

Combining these last two displays, some algebra shows thatE‖Zd‖∞ = O(dη−1/2)
so long as

b = α+ 2M0 > (3/4 + η/2 + ε)/η. (79)

Combining the conclusions reached from (73) and (79), we obtain for M0 chosen
sufficiently large, the ‘signal term’ bound

R1d − R̃(µ) ≤ cdη−1/2.

Bound for ‘noise’ term R2d. On the event Acd, fixed thresholding is used:

R2d = d−1E[
∑
i

(η(xi, tFd ) − µi)2, Acd] ≤ RF (µ). (80)

It remains to show that τ2 ≥ 3γd forces P (Acd) to be small enough that R2d =
o(d−1/2). On event Acd

d−1
∑
i

η(xi, tFd )2 ≤ d−1
∑
i

x2
i ≤ 1 + γd,
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and so
R2d ≤ 2(1 + γd + τ2)P (Acd). (81)

When τ2 ≥ 3γd, we may write

Acd = {d−1
∑

(z2
i − 1) + d−1

∑
2µizi ≤ −(τ2 − γd)} (82)

⊂ {s2d ≤ −τ2/3} ∪ {Vd ∆= d−1
∑

2µizi ≤ −τ2/3} (83)
∆= Bτd ∪ Cτd. (84)

For event Bτd, use the large deviation inequality (26) to write

(1 + τ2)P (Bτd) ≤ 2(1 + τ2) exp{− dτ2

72f2∞
min(τ2, 3f∞)}

= o(d−1/2) (85)

since dγ2
d >> log d.

For event Cτd, V1d =
∑
µizi is Gaussian with mean 0 and variance bounded

by f∞
∑
µ2
i = f∞τ2d. Consequently,

(1 + τ2)P (Cτd) ≤ (1 + τ2)P{(2/d)τ√
f∞d N(0, 1) > τ2/3} (86)

= o(d−1/2) (87)

for τ2 ≥ 3γd. Combining (85) and (86) with (81) shows that R2d = o(d−1/2)
uniformly when τ2 ≥ 3γd.

Proof of Theorem 2(b). We use the decomposition (29) as before, as well as
the bound R2d ≤ RF (µ) from (80). By Cauchy-Schwarz, we have

dR1d ≤ P (Ad)1/2
∑

(E[η(xi, t̂S) − µi]4)1/2. (88)

Using (41),
E[η(xi, t̂S) − µi]4 ≤ 4E[z2

i + t2d]
2 ≤ 16t4d. (89)

We use a decomposition of Ad similar to (82), along with the bound τ2 ≤ γd/3,
to write

Ad ⊂ {s2d > γd/3} ∪ {Vd > γd/3} ∆= Bd ∪Cd.
Arguing as before, we obtain

max{P (Bd), P (Cd)} ≤ 2e−c8dγ
2
d

from which we conclude, in conjunction with (88) and (89), that dR1d = O(d log d·
e−c8dγ

2
d ) = O(e−c9dγ

2
d ).
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Completion of proof of Theorem 1

We now bound the terms in S2ε. First

S22ε ≤ c
∑
j>j0

σ2
j j

−3/2

= cε2α
∑
j>j0

j−3/22−j(1−α)

≤ c′ε2α.

Thus
ε−2rS22ε ≤ c′ε2(α−r) = o(1)

since α− r = α2/(2σ + α) > 0.
Using the oracle inequality (50) and p− maximal ideal risk bound Wpj(ε)

defined above (53),

S21ε ≤ c
∑
j>j0

E‖θ̂Fj − θj‖2

≤ c
∑
j>j0

j−3/2σ2
j + j

∑
k

σ2
j ∧ θ2

jk)

≤ c
∑
j>j0

j−3/2σ2
j + c

∑
j>j0

jWpj(ε)

= S′
21ε + S

′′
21ε.

The first term is bounded exactly as for S22ε, while (55) shows that

ε−2rS
′′
21ε ≤ c

∑
j>j0

jCr/σ2−η1(j−j∗)

≤ cj02−η1(j0−j∗) = cj02−η1(b−1)j∗ = o(1),

since (62) forces b > 1.

Remarks on extension to the sampling model

The first version of this paper projected that further research would show
that results given here for the white noise model would carry over to the sampled
data model (1). Since the referees have asked for details of this unattempted
project, we describe here some conjectures as to how the argument might proceed.
These conjectures are based on the results of Donoho and Johnstone (1999)
(hereafter DJ-I) and a modified approach using orthogonal wavelets (such as
Coiflets) described in Donoho and Johnstone (1998a) (DJ-II).

Suppose then that we have observations from model (1), with stationary
Gaussian errors ei with correlation function rk ∼ Ak−α as k → ∞ and 0 < α ≤ 1.
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Write y = (yi), f = (f(ti)) and e = (ei). Take a (boundary corrected) discrete
wavelet transform ỹ = Wy using filter coefficients corresponding to the Meyer
wavelet (after appropriate truncation because of non-compact support), or using
a filter of compact support with a sufficient number of vanishing moments for
both scaling function and wavelet - the Coiflet family is a key example. Apply
the estimator θ̂∗ of (12) to ỹ. An estimator f̂∗(ti) is then obtained by applying
the inverse discrete wavelet transform.

Let φ and ψ be the scaling function and wavelet corresponding to the discrete
transform. Given wavelet coefficients θI , let f = f [θ] =

∑
θIψI be the associ-

ated function on [0, 1] (with the same convention re scaling coefficients as in the
introduction) and given f, let θ[f ] denote the corresponding wavelet coefficients.
Define the function space Fσ

p,q(C) as {f [θ] : θ ∈ bσp,q(C)}, the definition being
justified by the characterization of norms of Besov function spaces in terms of
wavelet coefficients (cf. Meyer (1990)).

We conjecture that the result of Theorem 1 extends to the sampling model
(1) and that

sup
f∈Fσ

p,q(C)
R(f̂∗, f) ≤ R∗

T,α(n
−1/2; bσp,q(C))(1 + o(1)), (90)

where R(f̂∗, f) denotes either ‖f [θ̂∗] − f‖L2[0,1] or n−1 ∑
[f̂∗(ti) − f(ti)]2. We

confine further discussion to the former, but the latter might be treated, for
example using remarks in DJ-II. We emphasise that these estimators are obtained
by treating sampled data (1) in a manner that is a) implementable in computer
code, and b) directly analogous to the estimator for which Theorem 1 is proved.

There are two issues in extending the results of DJ-I,II to the current situ-
ation: firstly, modification of the results for a given bσp,q(C) from the Brownian
noise to the fractional Brownian noise setting, and secondly the incorporation of
adaptation over the parameters (σ, p, q, C) of Θ.

We describe how the approach of DJ-I,II is used to deal with the first issue.
We employ the Parseval inequality and a decomposition

‖f̂∗(ỹ) − f‖ = ‖θ̂∗(ỹ) − θ‖ ≤ ‖θ̂∗(ỹ) − θ̃‖ + ‖θ̃ − θ‖. (91)

Here θ̃ = W f = θ̃(θ), where the latter form emphasises the dependence on the
wavelet coefficients θ[f ]. Temporarily, suppose that ỹ and θ̃ are considered only
for levels j ≤ j0 = γ log2 n, where γ = γ(α, p, σ) < 1 is chosen so that the full
difficulty of estimation over bσp,q(C) occurs at levels up to j0. Then analogs of two
key lemmas of DJ-I can be employed:

sup
θ∈bσp,q(C)

‖θ̃ − θ‖2
2 = o(n−r), r = 2σα/(2σ + α), (92)

sup
θ∈bσp,q(C)

‖θ̃(θ)‖bσp,q(C) ≤ (1 + ∆n)C, ∆n → 0. (93)
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These lemmas crucially require the vanishing moments assumption on the scaling
function.

Now (92) is used to show that the second term in (91) is negligible with
respect to n−r. For the first term, one uses (93) to write, setting Cn = (1+∆n)C,

sup
θ∈bσp,q(C)

E‖θ̂∗(ỹ) − θ̃(θ)‖2 ≤ sup
θ∈bσp,q(Cn)

E‖θ̂∗(y) − θ‖2(1 + ∆2n)

∼ R∗
T,α(n

−1/2; bσp,q(C)).

Here y denotes data from model (10), and the factor 1+∆2n is a bound to allow
for the fact that the covariance matrix Cov(ỹ) = Cov(We) is asymptotically of
the form of the covariance of the noise in (10), at least for levels j ≤ γ log2 n.

Finally, to handle the adaptation across (σ, p, q, C), it seems possible that
one could proceed as in the proof of Theorem 1, using the value j0(n) constructed
there to apply the bounds derived from (92) and (93).
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