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Abstract: We propose a penalized quantile regression and an independence screen-
ing procedure to identify important covariates and to exclude unimportant ones
for a general class of ultrahigh dimensional single index models, in which the con-
ditional distribution of the response depends on the covariates via a single index
structure. We observe that linear quantile regression yields a consistent estimator of
the direction of the index parameter in the single index model. Such an observation
dramatically reduces computational complexity in selecting important covariates in
the single index model. We establish an oracle property for the penalized quan-
tile regression estimator when the covariate dimension increases at an exponential
rate of the sample size. From a practical perspective, however, when the covariate
dimension is extremely large, the penalized quantile regression may suffer from at
least two drawbacks: computational expediency and algorithmic stability. To ad-
dress these issues, we propose an independence screening procedure which is robust
to model misspecification, and has reliable performance when the distribution of the
response variable is heavily tailed or response realizations contain extreme values.
The new independence screening procedure offers a useful complement to penalized
quantile regression since it helps to reduce the covariate dimension from ultrahigh
dimensionality to a moderate scale. Based on the reduced model, penalized lin-
ear quantile regression further refines selection of important covariates at different
quantile levels. We examine the finite sample performance of the newly proposed
procedure by Monte Carlo simulations and demonstrate the proposed methodology
by an empirical analysis of a data set.

Key words and phrases: Distance correlation, penalized quantile regression, single
index models, sure screening property, ultrahigh dimensionality.

1. Introduction

Single index regression models are widely assumed to avoid the “curse of

dimensionality”. Let Y be a response variable and x be the associated covariate

vector. The traditional single index regression model is

Y = m(xTβ0) + ε, (1.1)

where m(·) is an unknown regression function, β0 consists of unknown index

parameters, and ε is a random error with E(ε | x) = 0 and var(ε | x) = σ2. This
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model has been well studied in the literature, for example, Powell, Stock, and

Stoker (1989) and Härdle, Hall, and Ichimura (1993). Zhu, Huang, and Li (2012)

studied the heteroscedastic single index regression model

Y = m(xTβ0) + σ(xTβ0)ε, (1.2)

for unknown functions m(·) and σ(·), where ε has mean zero and is assumed

independent of x. Zhu, Huang, and Li (2012) developed an estimation procedure

for β0 and m(·) under a quantile loss function when the dimension of x is finite.

In this paper, we focus on the ultrahigh dimensional situation, denote by

pn the dimension of x to emphasize the dependence of pn on the sample size n.

Denote by F (y | x) the conditional distribution of Y given x. We study a general

class of single index models that includes models (1.1) and (1.2) as special cases.

Specifically, we assume that there exists β0 ∈ Rpn such that

F (y | x) = F (y | xTβ0), for all y ∈ R. (1.3)

Here, the “curse of dimensionality” issue is avoided and model interpretability is

maintained via a single index structure. Because the conditional distributional

function F (· | ·) is unknown, the index parameter β0 is not identifiable. The

direction of β0, instead of its true value, is our primary interest. We refer to

(1.3) as a conditional distribution-based single index model (CDSIM for short)

in order to distinguish it from (1.1) and (1.2).

When the covariate dimension is high, it is natural to assume that some

covariates are irrelevant. The presence of irrelevant covariates may substantially

deteriorate the precision of parameter estimation and the accuracy of response

prediction (Altham (1984)). In the context of linear regression or generalized

linear regression, many regularization methods, such as the LASSO (Tibshirani

(1996)), the SCAD (Fan and Li (2001); Zou and Li (2008)), the adaptive LASSO

(Zou (2006)), the MCP (Zhang (2010)), the hard thresholding penalty (Zheng,

Fan, and Lv (2014)) and general penalty functions (Fan and Lv (2013)) have

been proposed to remove irrelevant covariates and simultaneously estimate the

nonzero coefficients. Naik and Tsai (2001), Kong and Xia (2007), Zhu, Qian,

and Lin (2011) and Liang et al. (2010) developed some regularization methods

for single index regression. Recently, Wang, Wu, and Li (2012) investigated non-

convex penalized quantile regression for analyzing heterogeneity in the ultrahigh-

dimensional setting. Fan, Fan, and Barut (2014) proposed a two-step adaptive

robust LASSO based on weighted L1-penalized quantile regression to deal with

heavy-tailed high-dimensional data.

We consider variable selection and feature screening for (1.3) when the co-

variate dimension pn is ultrahigh. We further assume β0 is sparse. Denote by A
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the active index set, βA the nonzero entries of β0, and xA the collection of all

active covariates. When β0 is sparse, (1.3) reduces to

F (y | x) = F (y | xT

AβA), for all y ∈ R. (1.4)

Our goal is to identify A and if possible, to estimate βA. To the best of our

knowledge, there are few variable selection methods designed for models (1.3) or

(1.4) with ultrahigh-dimensional covariates.

We introduce two approaches to accomplish our goal: a penalized linear

quantile regression and an independence screening procedure. When (1.3) is

true, the quantile functions of (Y | x) vary with the realizations of (xTβ0). As

the quantile function admits a single index structure, we implement a penalized

quantile regression to exclude irrelevant covariates and simultaneously estimate

the direction of β0. The advantage of using quantile regression is that the quantile

function characterizes F at (1.3) and is resilient to outliers and extreme values

in the response. We show that, although the true quantile functions of (Y | x)
are possibly nonlinear, the estimator obtained from penalized linear quantile

regression remains consistent up to a proportionality constant. This strategy

helps to reduce the computational complexity substantially in estimating (1.3) in

that the linear quantile regression procedure avoids estimating nonlinear quantile

functions; This is appealing for ultrahigh dimensional data analysis. We show

that the penalized linear quantile regression estimate has the oracle property

under mild regularity conditions, even when pn tends to ∞ in an exponential

rate in n.

From a practical perspective, when the covariate dimension is extremely

large, penalized linear quantile regression has the drawbacks of computational

inexpediency and algorithmic instability (Fan, Samworth, and Wu (2009)). To

further reduce the computational complexity in selecting important covariates

from ultrahigh dimensional candidates, we further introduce an independence

screening procedure which ranks the importance of each covariate through its

distance correlation with the marginal distribution F of the response at model

(1.3) and the implicit model (1.4). Since F is bounded and monotone, we can

reasonably expect that the procedure still works in the presence of outliers or

extreme values in the response variable. It is computationally efficient and hence

offers a useful complement, rather an alterative, to the penalized quantile re-

gression approach since the proposed independence screening can precede the

penalized quantile regression when the latter fails to produce a reliable solution

within a tolerable time. Based on the reduced model, the penalized quantile re-

gression may further refine selection of important covariates at different quantile

levels. We show that this new independence screening procedure has the sure

screening property even when pn is ultrahigh.
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The paper is organized as follows. In Section 2, we propose penalized linear

quantile regression and study the consistency and the oracle property of the

resulting estimator. We propose a robust independence screening procedure and

establish its sure screening property in Section 3. We compare the finite sample

performance of our proposals with several competitors in Section 4. Proofs are

given in the Appendix.

2. Penalized Linear Quantile Regression

In this section, we construct an estimate for the direction of β0 at (1.3) via

penalized linear quantile regression.

2.1. The methodology

Model (1.3) and its sparse structure (1.4) indicate that the quantile functions

of (Y | x) at different quantile levels are all functions of (xTβ0) and (xT

AβA) if

the sparsity principle applies. This motivates us to estimate β0 through quantile

functions at different levels. Similar to Zhu, Huang, and Li (2012), we first show

that linear quantile regression can be used to estimate the direction of β0 at

(1.3). To be specific, let ρτ (r) = τr − rI(r < 0), the check loss function at the

τth quantile, for τ ∈ (0, 1). Let b = (b1, . . . , bpn)
T ∈ Rpn and put

Lτ (u,b) = E{ρτ (Y − u− xTb)} and (uτ ,βτ ) = argmin
u,b

{Lτ (u,b)}. (2.1)

Lemma 1. If E{x − E(x) | xTβ0} = var(x)β0 {βT

0var(x)β0}
−1 βT

0{x − E(x)},
then βτ is proportional to β0 at (1.3).

This linearity condition is satisfied when x follows an elliptically contour

distribution (Li (1991)). Hall and Li (1993) demonstrated that, regardless of the

covariate distribution, the linearity condition always offers an ideal approxima-

tion to reality as long as pn is sufficient large, and it is typically regarded as mild

in an ultrahigh-dimensional setting. Lemma 1 implies that the indices of zero

entries in β0 and βτ coincide. Estimating the direction of β0 at (1.3) amounts

to estimating βτ at (2.1). This lemma can be proved using similar arguments as

in Zhu, Huang, and Li (2012). We omit the proof.

When the covariate dimension is large, it is desirable to exclude irrelevant

covariates and simultaneously estimate βτ at (2.1). Here βτ is identifiable be-

cause the linear quantile loss function Lτ (u,b) is convex. Suppose that {(xi, Yi),

i = 1, 2, . . . , n} is a random sample from (1.3). We consider a penalized linear

quantile regression to produce a sparse estimator of βτ :

Q(u,b) = n−1
n∑

i=1

ρτ (Yi − u− xT

i b) +

pn∑
j=1

pλ(|bj |), (2.2)
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where pλ(·) is a penalty function with a regularization parameter λ. We use the

SCAD penalty (Fan and Li (2001)) and the MCP penalty (Zhang (2010)). The

MCP function is defined as

pλ(b) = λ

(
|b| − b2

2aλ

)
I(0 ≤ |b| < aλ) +

aλ2

2
I(|b| ≥ aλ),

where a > 1. The SCAD penalty is

pλ(b) = λ|b|I(0 ≤ |b| < λ) +
aλ|b| − (b2 + λ2)/2

a− 1
I(λ ≤ |b| ≤ aλ)

+
(a+ 1)λ2

2
I(|b| > aλ),

where a = 3.7 is suggested by Fan and Li (2001). By minimizing the objective

function Q(u,b), we obtain the estimators (ûτ , β̂τ ) at the τ -th quantile, where

(ûτ , β̂τ ) = argmin
u,b

{Q(u,b)}. (2.3)

2.2. The Oracle property

We study the oracle property of the estimators obtained from the penalized

linear quantile regression. Without loss of generality, assume the first qn com-

ponents of x are active and the rest are inactive, where qn(≪ pn) is a positive

integer, so A = {1, 2, . . . , qn}. We define the oracle estimator at the population

level by

Lτ (u,b1) = E{ρτ (Y − u− xT

Ab1)} and (uoτ ,β
o
τ1) = argmin

u,b1

{Lτ (u,b1)}, (2.4)

where b1 = (b1, . . . , bqn)
T ∈ Rqn . We further write βo

τ = (βoT
τ1,0

T)T, where βo
τ1

represents a qn-dimensional vector of nonzero components associated with the

active covariates and 0 denotes a (pn − qn)-dimensional vector of zeros. Accord-

ingly, we define the oracle estimator β̂
o

τ = (β̂
oT

τ1,0
T)T at the sample level by

Lτn(u,b1) = n−1
n∑

i=1

{ρτ (Yi − u− xT

i,Ab1)} and

(ûoτ , β̂
o

τ1) = argmin
u,b1

{Lτn(u,b1)}. (2.5)

We assume some regularity conditions.

(C1) There exist positive constants t0 and C such that

max
1≤k≤pn

E {exp(t|Xk|)} ≤ C < ∞, for 0 < t ≤ t0. (2.6)
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(C2) There exist positive constants 0 < C1 ≤ C2 < ∞, such that

C1 ≤ λmin{E(xAx
T

A)} ≤ λmax{E(xAx
T

A)} ≤ C2,

where λmin and λmax represent the smallest and largest eigenvalues, respec-

tively, where {(xi,A, Yi), i = 1, . . . , n} are in general position (Koenker

(2005, Sec. 2.2)).

(C3) The probability density function of (Y − xTβτ ) conditional on x, denoted

by f(· | x), is uniformly bounded away from 0 and ∞ in a neighborhood of

uoτ .

(C4) The true model size qn satisfies qn = O(nc1) for 0 ≤ c1 < 1/2.

(C5) For βo
τ1 = (βo

τ,1, β
o
τ,2, . . . , β

o
τ,qn)

T, there exist positive constants c2 and C

such that 2c1 < c2 ≤ 1 and min
1≤j≤qn

|βo
τ,j | ≥ Cn−(1−c2)/2.

Condition (C1) is concerned with the moments of the covariates; it holds when

the covariates are bounded, or when x has a multivariate normal distribution.

This condition is widely assumed in high dimensional inference. See, for instance,

Bickel and Levina (2008). Condition (C2) requires that the design matrix of the

true model at the population level be well behaved. Condition (C3) is a common

assumption on the conditional distribution function of (Y − xTβτ ) conditional

on x. Condition (C4) allows the sparsity size qn can diverge as the sample size n

goes to the infinity. Condition (C5) requires that the smallest true signal decay

to zero at a slow rate.

Lemma 2. Under (C1)−(C4), the oracle estimators ûoτ and β̂
o

τ1 satisfy

∥β̂
o

τ1 − βo
τ1∥ = Op

(√qn
n

)
and ∥ûoτ − uoτ∥ = Op

(√qn
n

)
. (2.7)

Theorem 1 (The Oracle Property). Suppose (C1)−(C5) hold, and log pn =

o(nmin{c2−2θ,θ}) with 0 < θ < (c2 − c1)/2 and λ = o
{
n−(1−c2)/2

}
. Let Bn(λ) be

the set of local minima β̂τ of the objective function Q(u,b) defined at (2.2) with

the SCAD or the MCP penalty and the tuning parameter λ. Then

Pr
{
β̂
o

τ ∈ Bn(λ)
}
→ 1, as n → ∞.

Theorem 1 has the oracle estimator β̂
o

τ as a local minimizer of the objective

function (2.2) with probability approaching one as n → ∞. This result extends

Theorem 2.4 of Wang, Wu, and Li (2012) from the linear quantile regression

model to model (1.3). The results in Lemmas 1 and 2 and Theorem 1 imply

that β̂τ from the penalized linear quantile regression is a consistent estimator



VARIABLE SELECTION FOR SINGLE INDEX MODELS 75

of the direction of β0 at model (1.3). It can detect the non-zero components

of β0 and simultaneously estimate its direction. From a technical perspective,

Wang, Wu, and Li (2012) assumed all covariates uniformly bounded while in (C1)

we only require that distributions of the covariates have sub-exponential tails.

In practice, the linear quantile regression estimator obtained with the LASSO

penalty can serve as an initial value in our algorithm to minimize the objective

function Q(u,b).

3. Robust SIS based on Distance Correlation

We propose a robust feature screening procedure for model (1.3) using dis-

tance correlation.

3.1. The methodology

We first review the definition of distance correlation (Szekely, Rizzo, and

Bakirov (2007)). The distance covariance between random variables X and Y is

dcov2(X,Y ) = S1 + S2 − 2S3, (3.1)

where S1 = E
(
|X−X̃||Y −Ỹ |

)
, S2 = E

(
|X−X̃|

)
E
(
|Y −Ỹ |

)
, S3 = E

{
E
(
|X−X̃| |

X
)
E
(
|Y − Ỹ | | Y

)}
, and (X̃, Ỹ ) is an independent copy of (X,Y ). The distance

correlation between X and Y is

dcorr(X,Y ) =
dcov(X,Y )√

dcov(X,Y )dcov(Y, Y )
. (3.2)

Szekely, Rizzo, and Bakirov (2007) pointed out that dcorr(X,Y ) = 0 if and

only if X and Y are independent and dcorr(X,Y ) is strictly increasing in the

absolute value of the Pearson correlation between X and Y . Motivated by these

properties, Li, Zhong, and Zhu (2012) proposed a sure independence screening to

rank all predictors using their distance correlations with the response variable,

termed DC-SIS, and proved its sure screening property for ultrahigh-dimensional

data.

We denote by Xk the kth predictor with k = 1, . . . , pn and propose to quan-

tify the importance of Xk through its distance correlation with the marginal

distribution function of Y , denoted by F (Y ). That is,

ωk = dcorr{Xk, F (Y )}, (3.3)

where F (y) = E {1(Y ≤ y)} and 1(·) denotes an indicator function. This is a

modification of the marginal utility in Li, Zhong, and Zhu (2012) in that here we

use F (Y ) instead of Y .
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The marginal utility at (3.3) has several advantages compared with existing

measurements: dcorr{Xk, F (Y )} = 0 if and only if Xk and Y are independent,

and following Li, Zhong, and Zhu (2012), we can see that the screening procedure

based on (3.3) is model-free and hence is applicable at (1.3) and (1.4); since F (Y )

is a bounded function for all types of Y , we can expect that the procedure using

(3.3) has a reliable performance when the response is the heavy-tailed and when

extreme values are present in the response values; If one suspects that the covari-

ates also contain some extreme values, then one can use dcorr{Fk(Xk), F (Y )} to

rank the importance of the Xk, where Fk(x) = E {1(Xk ≤ x)}.
We now show how to implement the marginal utility (3.3) in the screening

procedure. Let {(xi, Yi), i = 1, · · · , n} be a random sample from the population

(x, Y ). We first estimate the distance covariance between Xk and F (Y ) through

the moment estimation method,

d̂cov
2
{Xk, F (Y )} = Ŝk,1 + Ŝk,2 − 2Ŝk,3, (3.4)

where

Ŝk,1 =
1

n2

n∑
i=1

n∑
j=1

|Xik −Xjk| |Fn(Yi)− Fn(Yj)| ,

Ŝk,2 =
1

n2

n∑
i=1

n∑
j=1

|Xik −Xjk|
1

n2

n∑
i=1

n∑
j=1

|Fn(Yi)− Fn(Yj)| , and

Ŝk,3 =
1

n3

n∑
i=1

n∑
j=1

n∑
l=1

|Xik −Xlk| |Fn(Yj)− Fn(Yl)|

are the corresponding estimators of Sk,1, Sk,2, Sk,3, and Fn(y) = n−1
∑n

i=1 1(Yi ≤
y). We estimate ωk with

ω̂k = d̂corr{Xk, F (Y )} =
d̂cov(Xk, F (Y ))√

d̂cov(Xk, Xk)d̂cov(F (Y ), F (Y ))

. (3.5)

Our independence screening procedure retains the covariates with the ω̂k values

larger than a user-specified threshold. Let Â =
{
k : ω̂k ≥ cn−κ, for 1 ≤ k ≤ pn

}
for some pre-specified thresholds c > 0 and 0 ≤ κ < 1/2. The constants c and

κ control the signal strength and will be defined at (C6) below. We refer to

this approach as the distance correlation based robust independence screening

procedure (DC-RoSIS).

3.2. Sure screening property

We first state the consistency of ω̂k, which paves the road to proving the sure

screening property of the DC-RoSIS procedure.
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Theorem 2. Under (C1), for any 0 < γ < 1/2−κ, there exist positive constants

c1 and c2 such that

Pr
(

max
1≤k≤p

|ω̂k − ωk| ≥ cn−κ
)

≤ O

(
p
[
exp

{
−c1n

1−2(κ+γ)
}
+ n exp (−c2n

γ)
])

. (3.6)

We remark here that to derive the consistency of the estimated marginal

utility, we do not need any moment condition on the response. To prove the sure

screening property, we make of further assumption

(C6) The marginal utility at (3.3) satisfies min
k∈A

ωk ≥ 2cn−κ, for some constants

c > 0 and 0 ≤ κ < 1/2.

Condition (C6) allows the minimal signal of the active covariates to converge to

zero as the sample size diverges, while it requires the minimum signal of active

covariates be not too small.

Theorem 3 (Sure Screening Property). Under (C6) and the conditions in The-

orem 2, it follows that

Pr
(
A ⊆ Â

)
≥ 1−O

(
sn

[
exp

{
−c1n

1−2(κ+γ)
}
+ n exp (−c2n

γ)
])

, (3.7)

where sn is the cardinality of A. Thus, Pr
(
A ⊆ Â

)
→ 1 as n → ∞.

4. Numerical Studies

We have conducted simulations to demonstrate the finite sample performance

of our proposals. We further illustrate the proposed methodology through an

empirical analysis of a real data example.

4.1. Simulations

In Example 1 we compare the performance of several independence screen-

ing procedures, and in Example 2 we assess the performance of penalized linear

quantile regressions with different penalties and at different quantiles. Through-

out the simulations we generated x = (X1, X2, · · · , Xp)
T from N (0,Σ), where

Σ = (σij)p×p with σij = 0.5|i−j|. We took p = 1, 000 and n = 200.

Example 1. We compared the finite sample performance of DC-RoSIS with

the existing procedures including SIS (Fan and Lv (2008)), SIRS (Zhu et al.

(2011)), RRCS (Li et al. (2012)) and DC-SIS (Li, Zhong, and Zhu (2012)). We

repeated each experiment 500 times and evaluated the performance with the the

criteria S, Psj , and Pa. Here, S is the minimum model size to include all active
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covariates. We summarize the median of S with its associated robust estimate

of the standard deviation (RSD = IQR/1.34). A smaller S value indicates a

better performance. Psj is the empirical probability that the active covariate Xj

is selected for a given model size d. We set d = 2[n/ log n] throughout. Pa is the

empirical probability that all active covariates are selected for the given model

size d = 2[n/ logn]. If the sure screening property holds true, both Psj and Pa

values are close to one when the estimated model size d is reasonably large.

We considered the models.

(1): H(Y ) = xTβ + ε,

(2): Y = exp(2− xTβ/2) + (2− xTβ/2)2 + exp(xTβ/2)ε,

(3): Y = {1 + exp (−3xTβ)}−1 ε,

(4): Y = β1X1 + β2X2 + β7X
2
7 + ε,

where β = (3, 1.5, 0, 0, 0, 0, 2, 0, . . . , 0)T. In each model, only X1, X2 and X7 are

truly important. The random error ε was independently generated from either

the standard normal or the standard Cauchy. In (1), H(Y ) = {|Y |λsgn(Y )−1}/λ
is the Box-Cox transformation. These models were used in Li et al. (2012). We

set λ = 1 and λ = 0.25. The single index (xTβ) contributes both the conditional

mean and variance of the response in (2), and are totally irrelevant to the mean

regression function in model (3). The active covariate X7 in (4) is quadratically

related to the response. Though it is not a special case of model (1.3) or (1.4), we

use it here to show that our procedure works quite well for a variety of regressions

even when the model assumptions are violated.

The results are summarized in Table 1. It can be seen that SIS does not

perform well when ε is Cauchy. Even when ε is normal, SIS still fails to behave

well in the nonlinear models (3) and (4). SIRS performs very well for all single

index models, but fails to identify X7 as an important covariate in (4) because

it is not capable of detecting symmetric patterns. The performance of RRCS

is generally favorable for (1) and (2), but it hardly detects the active covariates

that are only relevant to the conditional variance of the response in model (3)

or that X7 exhibits symmetric patterns with Y in (4). DC-RoSIS and DC-SIS

have similar performances when ε is normal, and when ε is Cauchy, DC-RoSIS

significantly improves DC-SIS. For example, in (1) with λ = 0.25, DC-SIS fails

to detect the true relationship between two random variables when very extreme

values are present.

Example 2. In this example, we examined the finite sample performance of the

penalized linear quantile regression with different penalties, including LASSO

(Tibshirani (1996)), SCAD (Fan and Li (2001)) and MCP (Zhang (2010)). We
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Table 1. Performance comparison among different independence screening
methods for four regression models with two different random errors.

ε ∼ N (0, 1) ε ∼ Cauchy Distribution
Method S Ps1 Ps2 Ps7 Pa Size Ps1 Ps2 Ps7 Pa

SIS 3.0(0.0) 1.00 1.00 1.00 1.00 220.0(483.4) 0.67 0.62 0.49 0.39
DC-SIS 3.0(0.0) 1.00 1.00 1.00 1.00 3.0(0.7) 0.98 0.98 0.95 0.95

Model (1) SIRS 3.0(0.0) 1.00 1.00 1.00 1.00 3.0(0.0) 1.00 1.00 1.00 1.00
(λ = 1) RRCS 3.0(0.0) 1.00 1.00 1.00 1.00 3.0(0.0) 1.00 1.00 1.00 1.00

DC-RoSIS 3.0(0.0) 1.00 1.00 1.00 1.00 3.0(0.0) 1.00 1.00 1.00 1.00
SIS 3.0(0.7) 1.00 1.00 0.99 0.99 794.5(210.5) 0.10 0.07 0.09 0.00

DC-SIS 3.0(0.0) 1.00 1.00 1.00 1.00 702.5(246.6) 0.17 0.14 0.13 0.05
Model (1) SIRS 3.0(0.0) 1.00 1.00 1.00 1.00 3.0(0.0) 1.00 1.00 1.00 1.00
(λ = 0.25) RRCS 3.0(0.0) 1.00 1.00 1.00 1.00 3.0(0.0) 1.00 1.00 1.00 1.00

DC-RoSIS 3.0(0.0) 1.00 1.00 1.00 1.00 3.0(0.0) 1.00 1.00 1.00 1.00
SIS 5.0(14.2) 0.99 0.99 0.90 0.90 29.0(122.4) 0.89 0.83 0.69 0.63

DC-SIS 3.0(0.7) 1.00 1.00 0.99 0.99 3.0(2.9) 0.99 0.99 0.94 0.94
Model (2) SIRS 3.0(0.0) 1.00 1.00 1.00 1.00 3.0(0.7) 1.00 1.00 1.00 1.00

RRCS 3.0(0.0) 1.00 1.00 1.00 1.00 3.0(0.7) 1.00 1.00 1.00 1.00
DC-RoSIS 3.0(0.0) 1.00 1.00 1.00 1.00 3.0(0.7) 1.00 1.00 1.00 1.00

SIS 786.5(217.5) 0.08 0.06 0.07 0.00 791.0(213.2) 0.06 0.07 0.07 0.00
DC-SIS 4.0(4.5) 1.00 1.00 0.97 0.97 70.0(130.8) 0.92 0.83 0.57 0.52

Model (3) SIRS 7.0(8.2) 1.00 1.00 0.99 0.99 8.0(8.9) 1.00 1.00 0.98 0.98
RRCS 796.0(222.8) 0.10 0.10 0.09 0.00 782.0(253.3) 0.12 0.09 0.06 0.00

DC-RoSIS 8.0(9.7) 1.00 1.00 0.96 0.96 9.0(11.9) 1.00 1.00 0.96 0.96
SIS 270.5(400.6) 1.00 1.00 0.25 0.25 594.0(358.0) 0.72 0.62 0.07 0.05

DC-SIS 4.0(0.7) 1.00 1.00 1.00 1.00 8.0(18.7) 0.99 0.98 0.86 0.86
Model (4) SIRS 427.0(419.6) 1.00 1.00 0.11 0.11 493.5(387.7) 1.00 1.00 0.09 0.09

RRCS 434.0(391.1) 1.00 1.00 0.13 0.13 477.5(394.0) 1.00 1.00 0.10 0.10
DC-RoSIS 4.0(1.5) 1.00 1.00 1.00 1.00 6.0(5.2) 1.00 1.00 0.99 0.99

first utilized our procedure to select d = 2[n/ log(n)] top ranked covariates and

then applied penalized linear quantile regression to estimate the direction of

β. For conditional quantile regression, we considered three different quantiles

τ = 0.25, 0.50 and 0.75. Following Wang, Wu, and Li (2012), an additional

independent data set of size 10n was generated to select the tuning parameter

λ by minimizing the estimated prediction error based on the quantile check loss

function.

We denoted the final estimator by β̂τ = (β̂1, β̂2, . . . , β̂p)
T. The coefficients of

covariates removed by the screening procedure were directly set to be zero in the

final estimator. Based on 100 repetitions, we evaluate the performance in terms

of the following: Size: The average number of non-zero estimated regression

coefficients β̂j ̸= 0 for 1 ≤ j ≤ p; C: The average number of truly non-zero coeffi-

cients correctly estimated to be non-zero; IC: The average number of truly zero
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Table 2. Simulation Results for Penalized Linear Quantile Regression at
difference quantile levels (25%, 50% and 75%) and with difference penalties
(LASSO, SCAD, MCP).

ε ∼ N (0, 1)
Method Size C IC AE

LASSO(τ = 0.25) 18.16(6.28) 3.00(0.00) 15.16(6.28) 0.47(0.22)
LASSO(τ = 0.50) 18.14(6.33) 3.00(0.00) 15.14(6.33) 0.93(0.36)
LASSO(τ = 0.75) 13.97(6.16) 2.96(0.20) 11.01(6.15) 1.33(0.57)
SCAD(τ = 0.25) 3.46(0.86) 3.00(0.00) 0.46(0.86) 0.11(0.07)
SCAD(τ = 0.50) 3.68(1.58) 2.96(0.20) 0.72(1.56) 0.28(0.23)
SCAD(τ = 0.75) 3.47(1.58) 2.68(0.55) 0.79(1.52) 0.62(0.36)
MCP(τ = 0.25) 3.36(0.73) 3.00(0.00) 0.36(0.73) 0.11(0.07)
MCP(τ = 0.50) 3.53(1.23) 2.96(0.20) 0.57(1.21) 0.28(0.20)
MCP(τ = 0.75) 3.50(1.68) 2.68(0.55) 0.82(1.62) 0.63(0.36)

ε ∼ Cauchy Distribution
Method Size C IC AE

LASSO(τ = 0.25) 23.75(6.63) 3.00(0.00) 20.75(6.63) 0.66(0.25)
LASSO(τ = 0.50) 19.29(7.66) 3.00(0.00) 16.29(7.66) 0.97(0.42)
LASSO(τ = 0.75) 14.01(6.89) 2.88(0.33) 11.13(6.82) 1.34(0.63)
SCAD(τ = 0.25) 3.56(1.19) 3.00(0.00) 0.56(1.19) 0.12(0.08)
SCAD(τ = 0.50) 3.66(1.36) 2.94(0.24) 0.72(1.36) 0.27(0.22)
SCAD(τ = 0.75) 3.33(1.91) 2.60(0.61) 0.73(1.84) 0.63(0.38)
MCP(τ = 0.25) 3.43(0.83) 3.00(0.00) 0.43(0.83) 0.11(0.07)
MCP(τ = 0.50) 3.70(1.67) 2.94(0.24) 0.76(1.66) 0.28(0.24)
MCP(τ = 0.75) 3.57(2.23) 2.64(0.53) 0.93(2.18) 0.65(0.42)

coefficients incorrectly estimated to be non-zero; AE: The average of absolute es-

timation error of β̂τ , defined by
∑p

j=1

∣∣∣β̂jsign(β̂j,1)/∥β̂τ∥ − β0jsign(β0j,1)/∥β0∥
∣∣∣ .

We only report the results for model (2) in Example 1, which is a het-

eroscedastic single index model, as the results for other models lead to similar

conclusion. The simulation results are charted in Table 2. In each column, the

value represents the mean of 100 replicates with its sample standard deviation

in the parentheses. For two random errors and different quantiles, the first three

columns show that the LASSO is relatively conservative and tends to select larger

models, while the SCAD and the MCP consistently select the true model. The

relatively small values in the column labeled “AE” shows that our procedure

can produce consistent estimators. The satisfactory simulation results suggest

that the proposed robust two-stage procedure is indeed robust to the presence of

heteroscedasticity and extreme values in the response.

4.2. An application

We conducted an empirical study of the Cardiomyopathy microarray dataset.
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Figure 1. Exploratory data analysis: histogram and boxplot of Ro1.

This dataset was analyzed by Segal, Dahlquist, and Conklin (2003) , Hall and

Miller (2009), and Li, Zhong, and Zhu (2012). The response variable is the genetic
overexpression level of a G protein-coupled receptor (Ro1) in mice, which can

sense molecules outside the cell and activate inside signal transduction pathways

and cellular responses. The covariates are 6, 319 genetic expression levels. Only
30 specimens are observed. The main goal of the analysis is to determine the

most influential genes for the response.
We display the boxplot and the histogram of Y in Figure 1. Both indicate

that the response distribution may be heavy-tailed and the data contain outliers.
We first implemented independence screening procedures to reduce the covariate

dimension to the size of 2[n/ log n] = 16. The performances of SIS and DC-
SIS are similar to that of DC-RoSIS in this data analysis. We only present

results of DC-RoSIS for regularized quantile regression with different penalties

in this example. The DC-RoSIS ranks the genes, Msa.2877.0 and Msa.2134.0,
in the top, which are same as the DC-SIS (Li, Zhong, and Zhu (2012)). The

gene Msa.1166.0, identified by generalized correlation ranking (Hall and Miller
(2009)), is also ranked in the top 10 by our screening procedure.

We further applied our procedure to the reduced model to estimate the
direction of the index parameter and to simultaneously select important variables

at different quantiles of the response. We chose the quantile levels τ = 0.25, 0.50
and 0.75, and three different penalties, LASSO, SCAD and MCP. We used BIC to

select the tuning parameters for each method. With the estimated single index,

denoted (xTβ̂τ ), we applied cubic splines to estimate the quantile functions q̂τ (·)
of model (1.3) or, equivalently, model (1.4). Figure 2 depicts the estimated curves

of q̂τ (x
Tβ̂τ ) at different quantiles and for different penalties, which demonstrate

the computational effectiveness of our proposals.

To compare the finite sample performances of different methods with dif-
ferent quantiles, we report the number of nonzero coefficients selected by each
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Figure 2. The estimated curves of q̂τ (x
Tβ̂τ ) (the vertical axis) versus (x

Tβ̂τ )
(the horizontal axis) at different quantiles for different penalties. From left
to right, τ = 0.25, 0.50 and 075; From up to down, LASSO, SCAD and
MCP.

method, denoted by “Size” in Table 3. In addition, to evaluate the goodness of

fit for each model, as with R2 for the linear model, we take the quantile-adjusted

R2 (“Q-R2”) as

Q-R2 =

[
1−

∑n
i=1 ρ

2
τ{Yi − q̂τ (X

T

i β̂τ )}∑n
i=1 ρ

2
τ (Yi − Ŷτ )

]
× 100%, (4.1)

where ρτ (·) is the τth quantile check loss function, q̂τ (·) is the cubic-spline esti-
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Table 3. Empirical analysis of Cardiomyopathy microarray dataset.

All Data Partitioned Data
Method Size Q-R2 Ave Size Ave Q-R2 PE

SCREEN(τ = 0.25) 16 97.6 16.00(0.00) 94.41(3.66) 0.48(0.21)

SCREEN(τ = 0.50) 16 93.1 16.00(0.00) 92.96(2.67) 0.67(0.27)

SCREEN(τ = 0.75) 16 94.4 16.00(0.00) 94.99(1.31) 0.59(0.33)

LASSO(τ = 0.25) 12 87.8 8.56(1.55) 78.59(10.75) 0.44(0.20)

LASSO(τ = 0.50) 8 89.1 7.21(1.54) 90.71(3.49) 0.55(0.17)

LASSO(τ = 0.75) 5 91.2 5.64(1.25) 94.54(1.71) 0.44(0.22)

SCAD(τ = 0.25) 10 96.9 8.29(2.81) 90.88(6.46) 0.44(0.18)

SCAD(τ = 0.50) 6 92.3 6.52(3.13) 92.33(3.24) 0.58(0.20)

SCAD(τ = 0.75) 3 93.0 3.82(1.46) 94.04(1.45) 0.50(0.25)

MCP(τ = 0.25) 10 96.9 8.69(2.64) 91.71(5.92) 0.43(0.14)

MCP(τ = 0.50) 5 89.3 6.91(2.81) 92.58(3.09) 0.55(0.26)

MCP(τ = 0.75) 4 92.8 4.13(1.64) 94.15(1.46) 0.51(0.28)

mate of qτ (·), q̂τ (XT

i β̂τ ) is the τ -th quantile function of Yi, and Ŷτ is the sample

τth quantile of Y . The larger Q-R2 is, the better the model fit. For example,

for τ = 0.75, SCAD selected three covariates, which can explain 93.0% variance

of the response in terms of the defined Q-R2. As a benchmark, we also report

the model with all 16 selected genes by our screening procedure, denoted by

SCREEN in Table 3. In addition, we conducted 100 random partitions to ex-

amine prediction performance. For each partition, we randomly selected 90% of

the data (27 observations) as the training set and the rest 10% (3 observations)

as the test set. The average of the model sizes selected by each method, with

its standard error across 100 partitions in the parenthesis, are reported in the

third column (“Ave Size”) of Table 3. In this table, we also report the average

of quantile-adjusted R2 for each method on the training set and its associated

standard error, denoted by “Ave Q-R2”. The column labeled by “PE” denotes

the median of prediction errors based on the quantile check loss function with

the interquartile range/1.34 in the parentheses. We conclude that the penalized

linear quantile regression improves both the model interpretability in terms of

the model size and the model predictability in terms of the prediction errors.

5. Discussions

Our proposed method has reliable performance when the distribution of the

response variable is heavily tailed or response realizations contain extreme values.

A referee raised the question of the performance of the procedure in the presence
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of heavy-tail predictors or extreme outliers contained in the predictors. In this

case, Condition (C1) is violated and the proposed method may fail. However, we

can use Fk(Xk), the distribution function of Xk, in place of Xk in the screening

procedure. This replacement helps us remove (C1) and achieve the robustness

feature in the x-direction; see Appendix A in the Supplement for more details.

However, implementing penalized linear quantile regression when x contains out-

liers is not straightforward. How to remove condition (C1) in penalized linear

quantile regression is an interesting topic for future research.

For statistical inference, one may be interested in the asymptotical distribu-

tion of the regularized quantile estimator and here we can adapt the idea of Theo-

rem 2 in Wu and Liu (2009). They proved that the SCAD and adaptive-LASSO

penalized linear quantile estimator is asymptotically normal if the number of

important covariates is a fixed number. If the number of important covariates

diverges to infinity, it is much more challenging to derive the asymptotic normal-

ity. This is an interesting research direction.

Supplementary Material

The supplementary material consists of three sections. In Section S1, we

propose to quantify the importance of Xk through its distance correlation be-

tween the respective marginal distribution functions of Xk and Y . In Section S2

and S3, we provide more simulations.
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Appendix: Proof of Theorems

Appendix A. Proof of Lemma 2

Lemma A.1. The oracle estimator uoτ of u is the τ th quantile of Y − xT

Aβ
o
τ1

conditional on xA, i.e. E {I(Y − xT

Aβ
o
τ1 ≤ uoτ ) | xA} = τ .

Proof of Lemma A.1. Let ξτ be the τth quantile of Y −xT

Aβ
o
τ1 conditional on

xA. By definition, we have E {I(Y − xT

Aβ
o
τ1 ≤ ξτ ) | xA} = τ . It suffices to show

Lτ (ξτ ,β
o
τ1) ≤ Lτ (u,β

o
τ1) holds for any u. We have

Lτ (u,β
o
τ1)− Lτ (ξτ ,β

o
τ1) = E{ρτ (Y − u− xT

Aβ
o
τ1)} − E{ρτ (Y − ξτ − xT

Aβ
o
τ1)}

= E [(u− ξτ ){I(Y − ξτ − xT

Aβ
o
τ1 ≤ 0)− τ}]

+E

[∫ u−ξτ

0
{I(Y − ξτ − xT

Aβ
o
τ1 ≤ t)− I(Y − ξτ − xT

Aβ
o
τ1 ≤ 0)} dt

]
≥ 0,

where the second equality follows from Knight (1998). Of the final two terms,

the first is zero and the second is nonnegative. Thus ξτ = uoτ and the desired

conclusion follows.

Proof of Lemma 2. To prove Lemma 2, we borrow from He and Shao (2000)

on M-estimation. It suffices to show that for any fixed η > 0, there exists two

constants ∆1 and ∆2 such that for all sufficiently large n,

Pr

{
inf

∥γ∥=∆1
|u|=∆2

Lτn(u
o
τ + n−1/2q1/2n u,βo

τ1 + n−1/2q1/2n γ) > Lτn(u
o
τ ,β

o
τ1)

}
≥ 1− η.

Here,

Gn(u,γ) =: nq−1
n

{
Lτn(u

o
τ + n−1/2q1/2n u,βo

τ1 + n−1/2q1/2n γ)− Lτn(u
o
τ ,β

o
τ1)

}
= q−1

n

n∑
i=1

n−1/2q1/2n (u+ xT

i,Aγ)
{
I(Yi − xT

i,Aβ
o
τ1 ≤ uoτ )− τ

}
+q−1

n

n∑
i=1

∫ n−1/2q
1/2
n (u+xT

i,Aγ)

0

{
I(Yi − xT

i,Aβ
o
τ1≤uoτ + s)−I(Yi−xT

i,Aβ
o
τ1≤uoτ )

}
ds

=: In1 + In2,

where the second equality follows from Knight (1998)’s identity.

E {I(Y − xT

Aβ
o
τ1 ≤ uoτ ) | xA} = τ by Lemma A.1, so E(In1) = 0. Then,

var(In1) = E{var(In1 | xA)}+ var{E(In1 | xA)}

= τ(1− τ)q−1
n E

{
n−1

n∑
i=1

(u+ xT

i,Aγ)
2
}
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≤ 2τ(1− τ)q−1
n [u2 + λmax {E(xAx

T

A)} ∥γ∥2] ≤ Cq−1
n (∆2

1 +∆2
2),

where the last inequality follows by (C2). Thus, In1 = Op

(
q
−1/2
n

) (
∆2

1 +∆2
2

)1/2
.

We evaluate In2. Denote by F (· | xA) and f(· | xA) the conditional distri-

bution and density of (Y − xT

Aβ
o
τ1) given xA, respectively

E (In2) = q−1
n E

[
n∑

i=1

∫ n−1/2q
1/2
n (u+xT

i,Aγ)

0
{F (uoτ + s | xi,A)− F (uoτ | xi,A)} ds

]

= q−1
n E

[
n∑

i=1

∫ n−1/2q
1/2
n (u+xT

i,Aγ)

0
f(uoτ + s′ | xi,A)sds

]

≥ Cq−1
n E

[
n∑

i=1

{
n−1/2q1/2n (u+ xT

i,Aγ)
}2

]
= CE(u+ xT

Aγ)
2 ≥ C [1 + λmin {E(xAx

T

A)}] (u2 + ∥γ∥2) ≥ C(∆2
1 +∆2

2),

where the first inequality follows by (C3) and the last inequality follows by (C2).

Therefore, E (In2) = O(1)(∆2
1 +∆2

2). Next we consider the variance of In2,

var (In2)

≤ nq−2
n E

[∫ n−1/2q
1/2
n (u+xT

Aγ)

0
{I(Y −xT

Aβ
o
τ1≤uoτ+s)−I(Y −xT

Aβ
o
τ1 ≤ uoτ )} ds

]2

≤ nq−2
n E{n−1/2q1/2n (u+ xT

Aγ)}2 ≤ q−1
n [1 + λmin {E(xAx

T

A)}] (u2 + ∥γ∥2)
≤ O(q−1

n )(∆2
1 +∆2

2),

which converges to zero as n → ∞ because qn = O(nc1). This indicates that

|In2−E(In2)| = op(1) by Chebyshev’s inequality. Since In2 is always nonnegative,

In2 = E(In2) + op(1) ≥ C(∆2
1 +∆2

2) + op(1).

For sufficiently large ∆1 and ∆2, In2 dominates In1 asymptotically as n → ∞.

Therefore, for any fixed η > 0, there exists two constants ∆1 and ∆2 such that

for all sufficiently large n, we have Gn(u,γ) > 0 with probability at least 1− η.

Appendix B. Proof of Theorem 1

We follow the idea of the proof of Theorem 2.4 in Wang, Wu, and Li (2012).

Their moment conditions on x are different. With a slight notational abuse, we

write xA = (1,xA)
T, βo

τ = (uoτ ,β
oT
τ )T as at (2.4), β̂τ = (ûτ , β̂

T

τ )
T, and β̂

o

τ =

(ûoτ , β̂
oT

τ )T, where β̂τ denotes the penalized linear quantile estimator at (2.3)

and β̂
o

τ = (β̂
oT

τ1,0
T)T is the oracle estimator at (2.5). Accordingly, we write

βo
τ1 = (uoτ ,β

oT
τ1)

T and β̂
o

τ1 = (ûoτ , β̂
oT

τ1)
T.
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We first write the objective function (2.2) of the penalized linear quan-

tile regression as the difference of two convex functions in β. Here, we only

consider the proof for the SCAD penalty, the proof for the MCP penalty can

be achieved by the similar arguments. We have Q(β) = g(β) − h(β), where

g(β) = n−1
∑n

i=1 ρτ (Yi − xT

i β) + λ
∑pn

j=1 |βj |, and h(β) =
∑pn

j=1Hλ(βj), with

Hλ(βj) =


0, 0 ≤ |βj | < λ;

(β2
j−2λ|βj |+λ2)

2(a−1) , λ ≤ |βj | ≤ aλ;

λ|βj | − (a+1)λ2

2 , |βj | > aλ.

Thus, the subdifferential of h(β) at any β is

∂h(β) =

{
µ = (µ0, µ1, . . . , µpn)

T∈Rpn+1 : µ0 = 0, µj =
∂h(β)

∂βj
, j=1, . . . , pn

}
.

The subdifferential of g(β) at any β is

∂g(β) =
{
ξ = (ξ0, ξ1, . . . , ξpn)

T ∈ Rpn+1 : ξj = (1−τ)n−1
n∑

i=1

XijI(Yi−xT

i β < 0)

−τn−1
n∑

i=1

XijI(Yi − xT

i β > 0)− n−1
n∑

i=1

Xijvi + λlj

}
,

where vi = 0 if Yi − xT

i β ̸= 0 and vi ∈ [τ − 1, τ ] otherwise; l0 = 0; lj = sgn(βj) if

βj ̸= 0 and lj ∈ [−1, 1] otherwise, for 1 ≤ j ≤ pn.

Let s(β̂) =
{
s0(β̂), s1(β̂), . . . , spn(β̂)

}
T
be the set of the subgradient func-

tions for the unpenalized quantile regression, where

sj(β) = (1− τ)n−1
n∑

i=1

XijI(Yi − xT

i β < 0)− τn−1
n∑

i=1

XijI(Yi − xT

i β > 0)

−n−1
n∑

i=1

Xijvi,

where vi = 0 if Yi − xT

i β̂ ̸= 0 and vi ∈ [τ − 1, τ ] otherwise.

Lemmas B.1, B.2 and B.3 facilitate the proof of Theorem 1. Tao and An

(1997) proposed the numerical algorithm based on the convex difference repre-

sentation of Lemma B.1. Lemmas B.2 and B.3 characterize the properties of the

oracle estimator β̂
o

τ and the associated subgradient functions s(β̂
o

τ ) respectively.

Lemma B.1 (Difference Convex Program). g(x) and h(x) are two convex func-

tions. Let x∗ be a point that admits a neighborhood U such that ∂h(x)∩∂g(x∗) ̸=
∅, ∀x ∈ U ∩ dom(g). Then x∗ is a local minimizer of g(x)− h(x).
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Lemma B.2. Suppose (C4)−(C5) holds and λ = o(n−(1−c2)/2). For the oracle

estimator β̂
o

τ , there exist v∗i with v∗i = 0 if Yi − xT

i β̂
o

τ ̸= 0 and v∗i ∈ [τ − 1, τ ]

otherwise, such that, with probability approaching one, we have

sj(β̂
o

τ ) = 0, j = 0, 1, . . . , qn, and |β̂j
o
| ≥ (a+

1

2
)λ, j = 1, . . . , qn.

Proof of Lemma B.2. The unpenalized quantile loss objective function is

convex. By convex optimization theory, 0 ∈ ∂
∑n

i=1 ρτ (Yi − xT

i β̂
o

τ ). Therefore,

there exists v∗i such that sj(β̂
o

τ ) = 0 with vi = v∗i for j = 0, 1, . . . , qn. On the

other hand,

min
1≤j≤qn

|β̂j
o
| ≥ min

1≤j≤qn
|βo

τ,j | − max
1≤j≤qn

|β̂j
o
− βo

τ,j |.

Condition (C5) requires that min
1≤j≤qn

|βo
τ,j | ≥ Cn−(1−c2)/2. In addition, max

1≤j≤qn
|β̂j

o
−

βo
τ,j | ≤ ∥β̂

o

τ −βo
τ1∥ = Op(

√
qn/n) = Op(n

−(1−c1)/2) = op(n
−(1−c2)/2). Therefore,

min
1≤j≤qn

|β̂j
o
| ≥ Cn−(1−c2)/2 − op(n

−(1−c2)/2), where c1 and c2 are defined at (C4)

and (C5), respectively. For λ = o{n−(1−c2)/2}, we have that, with probability

approaching one, |β̂j
o
| ≥ (a+ 1/2)λ, j = 1, . . . , qn, which completes the proof.

Lemma B.3. Suppose (C1)−(C5) hold, λ = o(n−(1−c2)/2), and log pn =

o(nmin{c2−2θ,θ}) with some constant 0 < θ < (c2−c1)/2. For the oracle estimator

β̂
o

τ and the sj(β̂
o

τ ), with probability approaching one, we have

|sj(β̂
o

τ )| ≤ λ, and |β̂j
o
| = 0, j = qn + 1, . . . , pn.

Proof of Lemma B.3. Since β̂
o

τ is the oracle estimator, |β̂j
o
| = 0, j = qn +

1, . . . , pn. It remains to show that

Pr
(
|sj(β̂

o

τ )| > λ, for some j = qn + 1, . . . , pn

)
→ 0, as n → ∞.

Let D = {i : Yi−xT

i β̂
o

τ = 0} = {i : Yi−xT

i,Aβ̂
o

τ1 = 0}, then for j = qn+1, . . . , pn,

sj(β̂
o

τ ) = (1− τ)n−1
n∑

i=1

XijI(Yi − xT

i β̂
o

τ < 0)

−τn−1
n∑

i=1

XijI(Yi − xT

i β̂
o

τ > 0)− n−1
n∑

i=1

Xijvi,

= n−1
n∑

i=1

Xij

{
I(Yi − xT

i β̂
o

τ ≤ 0)− τ
}

−n−1
n∑

i=1

Xij

{
vi + (1− τ)I(Yi − xT

i β̂
o

τ = 0)
}
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= n−1
n∑

i=1

Xij

{
I(Yi − xT

i,Aβ̂
o

τ1 ≤ 0)− τ
}
− n−1

∑
i∈D

Xij [v
∗
i + (1− τ)],

where v∗i ∈ [τ−1, τ ] with i ∈ D satisfies sj(β̂
o

τ ) = 0 with vi = v∗i , for j = 1, . . . , qn,

by Lemma B.2.

Pr(|sj(β̂
o

τ )| > 2λ, for some j = qn + 1, . . . , pn)

≤ Pr
(∣∣∣n−1

n∑
i=1

Xij

{
I(Yi − xT

i,Aβ̂
o

τ1 ≤ 0)−τ
}∣∣∣ > λ, for some j = qn+1, . . . , pn

)
+ Pr

(∣∣∣n−1
∑
i∈D

Xij{v∗i + (1− τ)}
∣∣∣ > λ, for some j = qn + 1, . . . , pn

)
=: Tn1 + Tn2.

First, we deal with Tn2. Let M = O(nθ) with some constant 0 < θ <

(c2 − c1)/2. We have

Tn2 ≤ Pr
(

max
j=qn+1,...,pn

∣∣∣n−1
∑
i∈D

Xij1{|Xij | ≤ M}{v∗i + (1− τ)}
∣∣∣ > λ

2

)
+Pr

(
max

j=qn+1,...,pn

∣∣∣n−1
∑
i∈D

Xij1{|Xij | > M}[v∗i + (1− τ)]
∣∣∣ > λ

2

)
=: Tn21 + Tn22.

Since (xi,A, Yi) are in general positions Koenker (2005, Sec. 2.2), with probability

tending to one there exists exactly qn + 1 elements in D. Thus, with probability

tending to one,

max
qn+1,...,pn

∣∣∣n−1
∑
i∈D

Xij1{|Xij | ≤ M}{v∗i + (1− τ)}
∣∣∣

≤ M(qn + 1)n−1 = O(nθ+c1−1) = o(λ),

where the last equality holds for λ = o(n−(1−c2)/2) and 0 < θ < (c2 − c1)/2.

Therefore, Tn21 → 0 as n → ∞. For Tn22, the events satisfy{∣∣∣n−1
∑
i∈D

Xij1{|Xij | > M}[v∗i + (1− τ)]
∣∣∣ > λ

2

}
⊆ {|Xij | > M, for some i ∈ D},

because if |Xij | ≤ M for all i ∈ D, then n−1
∑

i∈D Xij1{|Xij | > M} = 0.

Therefore,

Tn22 ≤ pn max
j=qn+1,...,pn

Pr
(∣∣∣n−1

∑
i∈D

Xij1{|Xij | > M}[v∗i + (1− τ)]
∣∣∣ > λ

2

)
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≤ pn(qn + 1) max
i∈D,qn+1≤j≤pn

Pr (|Xij | > M)

≤ pn(qn + 1) exp(−tM)E{exp(t|Xij |)}
≤ Cpn(qn + 1) exp(−tM) = CpnO(nc1) exp(−tnθ) → 0,

as n → ∞, where log pn = o(nmin{c2−2θ,θ}) with some constant 0 < θ < (c2 −
c1)/2, 0 < t ≤ t0. The third inequality here holds from Markov’s inequality and

the fourth follows from (C1). Therefore, Tn2 = Tn21 + Tn22 → 0, as n → ∞.

It remains to show that

Pr
(∣∣∣n−1

n∑
i=1

Xij{I(Yi−xT

i β̂
o

τ < 0)− τ}
∣∣∣ > λ, for some j = qn+1, . . . , pn

)
→ 0,

as n → ∞. We consider

Tn1 ≤ Pr
(

max
j=qn+1,...,pn

∣∣∣n−1
n∑

i=1

Xij{I(Yi − xT

i,Aβ
o
τ1 ≤ 0)− τ}

∣∣∣ > λ

2

)
+Pr

(
max

j=qn+1,...,pn
sup

∥β1−β
o

τ1∥≤∆
√

qn/n

∣∣∣n−1
n∑

i=1

Xij

[
I(Yi − xT

i,Aβ1 ≤ 0)

−I(Yi−xT

i,Aβ
o
τ1≤0)−

{
Pr(Yi−xT

i,Aβ1≤0)−Pr(Yi − xT

i,Aβ
o
τ1≤0)

} ]∣∣∣> λ

4

)
+Pr

(
max

j=qn+1,...,pn
sup

∥β1−β
o

τ1∥≤∆
√

qn/n

∣∣∣n−1
n∑

i=1

Xij

{
Pr(Yi − xT

i,Aβ1 ≤ 0)− Pr(Yi − xT

i,Aβ
o
τ1 ≤ 0)

}∣∣∣ > λ

4

)
=: Jn1 + Jn2 + Jn3.

For Jn1, let M = O(nθ) with 0 < θ < (c2 − c1)/2, then

Jn1 ≤ Pr
(

max
j=qn+1,...,pn

∣∣∣n−1
n∑

i=1

Xij1{|Xij |≤M}{I(Yi − xT

i,Aβ
o
τ1 < 0)− τ}

∣∣∣> λ

4

)
+ Pr

(
max

j=qn+1,...,pn

∣∣∣n−1
n∑

i=1

Xij1{|Xij |>M}{I(Yi − xT

i,Aβ
o
τ1 ≤ 0)− τ}

∣∣∣> λ

4

)
=: Jn11 + Jn12.

By Hoeffding’s inequality,

Pr
(∣∣∣n−1

n∑
i=1

Xij1(|Xij | ≤ M){I(Yi − xT

i,Aβ
o
τ1 ≤ 0)− τ}

∣∣∣ > λ

4

)
≤ 2 exp

(
− nλ2

8M2

)
.
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Thus, Jn11 ≤ 2pn exp{−nλ2/(8M2)} = 2pn exp(−n1−2θλ2/8) → 0, as n → ∞,

because log pn = o(nmin{c2−2θ,θ}) with some constant 0 < θ < (c2 − c1)/2 and

λ = o{n−(1−c2)/2}. On the other hand, we can similarly follow the arguments

that deal with Tn22 and have that

Jn12 ≤ pn max
j=qn+1,...,pn

Pr
(∣∣∣n−1

n∑
i=1

Xij1{|Xij | > M}
∣∣∣ > λ

4

)
≤ pnn max

1≤i≤n,j=qn+1,...,pn
Pr (|Xij | > M) = O(pnn) exp(−tnθ) → 0,

as n → ∞, because log pn = o(nmin{c2−2θ,θ}) . Therefore, Jn1 = Jn11 + Jn12 =

o(1).

Following arguments for proving Lemma 4.3 of Wang, Wu, and Li (2012)

and the arguments that deal with Tn22 and Jn12, we can show that Jn2 = o(1).

It remains to deal with Jn3. For a fixed M = O(nθ) with 0 < θ < (c2 − c1)/2,

Jn3 ≤ Pr
(

max
j=qn+1,...,pn

sup
∥β1−β

o

τ1∥≤∆
√

qn/n

∣∣∣n−1
n∑

i=1

Xij1{|Xij | ≤ M}

{
Pr(Yi − xT

i,Aβ1 ≤ 0)− Pr(Yi − xT

i,Aβ
o
τ1 ≤ 0)

}∣∣∣ > λ

8

)
+Pr

(
max

j=qn+1,...,pn
sup

∥β1−β
o

τ1∥≤∆
√

qn/n

∣∣∣n−1
n∑

i=1

Xij1{|Xij | > M}

{
Pr(Yi − xT

i,Aβ1 ≤ 0)− Pr(Yi − xT

i,Aβ
o
τ1 ≤ 0)

}∣∣∣ > λ

8

)
=: Jn31 + Jn32.

To handle Jn31, we observe that

max
j=qn+1,...,pn

sup
∥β1−β

o

τ1∥≤∆
√

qn/n

∣∣∣n−1
n∑

i=1

Xij1{|Xij | > M}

{
Pr(Yi − xT

i,Aβ1 ≤ 0)− Pr(Yi − xT

i,Aβ
o
τ1 ≤ 0)

}∣∣∣
≤M sup

∥β1−β
o

τ1∥≤∆
√

qn/n

∣∣∣E{
f(ζ|xA)x

T

A(β1 − βo
τ1)

}∣∣∣
≤M sup

∥β1−β
o

τ1∥≤∆
√

qn/n

λ1/2
max {E(xAx

T

A)} ∥β1 − βo
τ1∥

≤ O
{
nθ (qn/n)

1/2 } = O{n−(1−c1−2θ)/2},

where f(· | xA) is defined in (C3) where ζ is between uoτ +xT

A(β1 −βo
τ1) and uoτ ,

and thus the second inequality follows (C3) and Cauchy-Schwartz inequality, and
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the third inequality follows (C2). Consequently, together with λ = o{n−(1−c2)/2},
we have that Jn31 ≤ Pr{O(n−(1−c1−2θ)/2) > λ/8} = o(1) if 0 < θ < (c2 − c1)/2.

We can also follow similar arguments as with Jn12 and obtain that Jn32 = o(1).

Therefore, Jn3 = Jn31 + Jn32 = o(1). Consequently,

Pr
{

max
qn+1,...,pn

∣∣∣n−1
n∑

i=1

Xij{I(Yi − xT

i,Aβ̂
o

τ1 < 0)− τ}
∣∣∣ > λ

}
≤ Jn1 + Jn2 + Jn3 = o(1),

which implies that Pr
{
|sj(β̂

o

τ )| > λ, for some j = qn + 1, . . . , pn

}
→ 0. This

completes the proof of Lemma B.3.

With Lemmas B.2 and B.3 for random x with sub-exponential tail probabil-

ity, (C1), we can follow the proof of Theorem 2.4 of Wang, Wu, and Li (2012) to

obtain the oracle property and complete the proof.

Appendix C. Proof of Theorem 2.

We use c1 and c2 to denote two different generic positive constants. First we

assume F (y) is known. Then, d̂cov
∗2
{Xk, F (Y )} = Ŝ∗

k1 + Ŝ∗
k2 − 2Ŝ∗

k3, where

Ŝ∗
k,1 =

1

n2

n∑
i=1

n∑
j=1

|Xik −Xjk| |F (Yi)− F (Yj)| ,

Ŝ∗
k,2 =

1

n2

n∑
i=1

n∑
j=1

|Xik −Xjk|
1

n2

n∑
i=1

n∑
j=1

|F (Yi)− F (Yj)| , and

Ŝ∗
k,3 =

1

n3

n∑
i=1

n∑
j=1

n∑
l=1

|Xik −Xlk| |F (Yj)− F (Yl)| .

Similarly we take ω̂∗
k = d̂corr

∗2
{Xk, F (Y )}. Theorem 1 of Li, Zhong, and Zhu

(2012) stated that, for any 0 < γ < 1/2−κ, there exist positive constants c1 > 0

and c2 > 0 such that

Pr

(
max
1≤k≤p

|ω̂∗
k − ωk| ≥ cn−κ

)
≤ O

(
p
[
exp

{
−c1n

1−2(κ+γ)
}
+ n exp (−c2n

γ)
])

. (C.1)

To prove Theorem 2, it thus suffices to show the difference between ω̂∗
k and ω̂k

at (3.5) is ignorable when n is large enough, which amounts to studying the

differences between Ŝ∗
km and Ŝkm for m = 1, 2, 3. We sketch the proof for the

case m = 1 only because the proof of the other two cases is, in spirit, the
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same. We recall that Ŝ∗
k1 = (1/n2)

∑n
i=1

∑n
j=1 |Xik − Xjk||F (Yi) − F (Yj)| and

Ŝk1 = (1/n2)
∑n

i=1

∑n
j=1 |Xik −Xjk||Fn(Yi)− Fn(Yj)|. Then,

Pr

(
max

1≤k≤pn
|Ŝ∗

k1 − Ŝk1| ≥ ε

)
= Pr

(
max

1≤k≤pn
n−2

n∑
i=1

n∑
j=1

|Xik−Xjk|
∣∣∣|F (Yi)−F (Yj)|−|Fn(Yi)−Fn(Yj)|

∣∣∣≥ε
)

≤ Pr

(
max

1≤k≤pn
(AnBn)

1/2 ≥ ε

)
≤ Pr

(
max

1≤k≤pn
(AnBn)

1/2≥ε, |Xk|≤M

)
+Pr

(
max

1≤k≤pn
(AnBn)

1/2≥ε, |Xk|>M

)
=: T1 + T2,

where M is a positive constant to be specified later, An = n−2
∑n

i=1

∑n
j=1(Xik−

Xjk)
2, and Bn = n−2

∑n
i=1

∑n
j=1 {|F (Yi)− F (Yj)| − |Fn(Yi)− Fn(Yj)|}2.

Using
∣∣|x| − |y|

∣∣ ≤ |x− y| ≤ |x|+ |y|, we obtain that∣∣ |Fn(Yi)− Fn(Yj)| − |F (Yi)− F (Yj)|
∣∣ ≤ |Fn(Yi)− F (Yi)|+ |Fn(Yj)− F (Yj)|
≤ 2 max

1≤i≤n
|Fn(Yi)− F (Yi)| .

Also because max
1≤k≤pn

An ≤ max
1≤k≤pn

n−2
∑n

i=1

∑n
j=1 2(X

2
ik +X2

jk) ≤ 4M2, we have

T1 ≤ Pr

[
max

1≤k≤pn
2Mn−1

{ n∑
i=1

n∑
j=1

(|F (Yi)−F (Yj)|−|Fn(Yi)−Fn(Yj)|)2
}1/2

≥ε

]

≤ Pr

{
4M max

1≤i≤n
|Fn(Yi)− F (Yi)| ≥ ε

}
≤ Pr

{
max
y∈R

|Fn(y)− F (y)| ≥ ε

4M

}
≤ 2 exp

{
−2n(

ε

4M
)2
}
= 2 exp(− nε2

8M2
), (C.2)

where the last inequality follows by the Dvoretzky-Kiefer-Wolfowitz inequality.

For the second term, for all 0 < s ≤ 2s0, where s0 is defined in (C.1),

T2 ≤ Pr

(
max

1≤k≤pn
|Xk| > M

)
= Pr

{
max

1≤k≤pn
exp(s|Xk|) > exp(sM)

}
≤ max

1≤k≤pn
E {exp(s|Xk|)} exp(−sM) ≤ C exp(−sM), (C.3)

where C is a positive constant, the second inequality follows from Markov’s

inequality, and the last inequality is applied under (C.1).

Then, by choosing M = O(nγ) for 0 < γ < 1/2−κ, (C.2) and (C.3) together

imply that, for some positive constants c1 and c2,
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Pr

(
max

1≤k≤pn
|Ŝ∗

k1 − Ŝk1| ≥ ε

)
≤ 2 exp(− nε2

8M2
) + C exp(−sM)

≤ 2 exp(−c1ε
2n1−2γ) + C exp(−c2n

γ). (C.4)

Thus, it is not difficult to show that

Pr

(
max
1≤k≤p

|ω̂∗
k − ω̂k| ≥ cn−κ

)
≤ O

(
exp

{
−c1n

1−2(κ+γ)
}
+ exp (−c2n

γ)
)
.

(C.5)

Then (C.1) and (C.5) together complete the proof of Theorem 2.

References

Altham, P. M. E. (1984). Improving the precision of estimation by fitting a generalized linear

model and quasi-likelihood. J. Roy. Statist. Soc. Ser. B 46, 118-119.

Bickel, P. and Levina E. (2008). Regularized estimation of large covariance matrices. Ann.

Statist. 36, 199-227.

Fan, Y., Fan, J. and Barut, E. (2014). Adaptive robust variable selection. Ann. Statist. 42,

324-351.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and it oracle

properties. J. Amer. Statist. Assoc. 96, 1348-1360.

Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space

(with discussion). J. Roy. Statist. Soc. Ser. B 70, 849-911.

Fan, Y. and Lv, J. (2013). Asymptotic equivalence of regularization methods in thresholded

parameter space. J. Amer. Statist. Assoc. 108, 1044-1061.

Fan, J., Samworth, R. and Wu, Y. (2009). Ultrahigh dimensional feature selection: beyond the

linear model. J. Machine Learn. Res. 10, 1829-1853.

Hall, P. and Li, K. C. (1993). On almost linearity of low dimensional projection from high

dimensional data. Ann. Statist. 21, 867-889.

Hall, P. and Miller, H. (2009). Using generalized correlation to effect variable selection in very

high dimensional problems. J. Comput. Graph. Statist. 18, 533-550.
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