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Abstract: Functional linear regression is a useful extension of simple linear re-

gression and has been investigated by many researchers. However, the functional

variable selection problem when multiple functional observations exist, which is the

counterpart in the functional context of multiple linear regression, is seldom stud-

ied. Here we propose a method using a group smoothly clipped absolute deviation

penalty (gSCAD) which can perform regression estimation and variable selection

simultaneously. We show the method can identify the true model consistently, and

discuss construction of pointwise confidence intervals for the estimated functional

coefficients. Our methodology and theory is verified by simulation studies as well

as some applications to data.

Key words and phrases: Estimation consistency, functional linear regression, group

SCAD, principal component analysis, selection consistency.

1. Introduction

In several applications, functional data appear as the basic unit of obser-

vations. Classical regression models may be inadequate for such cases because

of the high correlations of the discretized data. Compared with discrete mul-

tivariate analysis, functional analysis takes into account the smoothness of the

high dimensional covariates, and often suggests new approaches to the problems

that have not been discovered before. Some recent developments in functional

regression include Yao, Müller, and Wang (2005); Cai and Hall (2006); Crambes,

Kneip, and Sarda (2009); Yuan and Cai (2010).

The literature contains an impressive range of functional analysis tools for

various problems. The traditional approach, carefully documented in the mono-

graph Ramsay and Silverman (2005), starts by representing functional data by an

expansion with respect to a certain basis, and subsequent inferences are carried

out on the coefficients. A line of work by the French school, taking a nonparamet-

ric point of view, extends traditional nonparametric techniques, most notably the

kernel estimate, to the functional case (Ferraty and Vieu (2006)). Other meth-

ods, such as putting functional regression in the reproducing kernel Hilbert space

framework, have been developed (Preda (2007); Lian (2007)).

http://dx.doi.org/10.5705/ss.2011.160
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In this paper, we are concerned with an extension of the simple functional

linear regression model to the case where multiple functional observations are

made on each unit. Formally, the model we consider is

Yi = a+

p∑
j=1

∫ 1

0
βj(t)Xij(t) dt+ ϵi, 1 ≤ i ≤ n, (1.1)

where Xij are random functions, a is the intercept, ϵi are random scalar errors

and the functional coefficients βj , 1 ≤ j ≤ p, are the objects of interest in the

model.

Because functional coefficients are more complicated objects than the scalar

coefficients in classical multiple linear regression, it is generally desirable to iden-

tify the significant variables in predicting the responses, even if p is small. For

example, Zhu, Vannucci, and Cox (2010) investigated fluorescence spectroscopy

for cervical precancer diagnosis, using a Bayesian model to select from multiple

fluorescence spectra for classification of subjects.

In a non-Bayesian context, traditional methods for variable selection in clas-

sical linear models include constructing hypothesis tests or using information

criteria. More recently, regularization methods have received much attention.

For standard linear regression, the Lasso (Tibshirani (1996)) is probably the

most popular method, using an L1 penalty to force some of the coefficients to

zero. Several subsequent works (Meinshausen and Buhlmann (2006); Zhao and

Yu (2006)) have shown that Lasso is in general not consistent for model selection

unless some nontrivial conditions on the covariates are satisfied. To address such

shortcomings, Fan and Li (2001) proposed the smoothly clipped absolute devia-

tion (SCAD) penalty and Zou (2006) proposed the adaptive lasso in the fixed p

case using a weighted L1 penalty with weights determined by an initial estimator.

There are many other extensions of the regularization framework for variable se-

lection (Yuan and Lin (2006); Wang and Leng (2007); Huang, Horowitz, and Ma

(2008)).

In this article we use functional principal component analysis (PCA)-based

estimation method (Cardot, Ferraty, and Sarda (1999); Hall and Horowitz (2007))

combined with group SCAD (this terminology seems to have first appeared in

Wang, Chen, and Li (2007) for varying coefficients variable selection) which rep-

resents a new application of the SCAD penalty. The regularization method for

variable selection in nonparametric settings has been developed in the context of

smoothing spline ANOVA for nonparametric regression smoother (Lin and Zhang

(2006)) and support vector machines (Zhang (2006)). For varying-coefficient

models, we are aware of the work (Wang, Li, and Huang (2008)) where the au-

thors used the basis expansion approach for estimation combined with the group
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SCAD penalty on coefficients, and the work (Wang and Xia (2009)) where the
group Lasso penalty was applied directly to smooth functions evaluated at sam-
pled points.

The rest of the article is organized as follows. We describe the functional
PCA and shrinkage estimation procedure in Section 2.1, and present estimation
consistency and selection consistency results in Section 2.2. We discuss esti-
mation and inference algorithms and tuning parameter selection in Sections 2.3
and 2.4, respectively. In Section 3, we present some simulation experiments and
illustrate the proposed method using a spectrometrics example and a weather
example. The technical details are in the Appendix.

2. Methodology and Theoretical Properties

2.1. Estimation of multiple functional regression

Suppose we have independent and identically distributed (i.i.d.) observations
(Xi1, . . . , Xip, Yi), 1 ≤ i ≤ n, where Xij is a square integrable random function
on the interval [0, 1] with mean µj . The response variables Yi are generated as
(1.1), with i.i.d. errors ϵi having finite second moments. We take the errors
to be independent of the predictors. We use (X1, . . . , Xp, Y ) to denote generic
random variables with distribution the same as (Xi1, . . . , Xip, Yi). Let Sj(s, t) =
Cov{Xj(s), Xj(t)}, so by Mercer’s Theorem we have the spectral expansion

Sj(s, t) =

∞∑
k=1

λjkϕjk(s)ϕjk(t),

where λj1 > λj2 > · · · > 0 are the eigenvalues of the linear operator associated
with Sj(s, t) with corresponding eigenfunctions ϕjk. We assume the eigenvalues
have multiplicity one so that the eigenvectors are all identified. With Ŝj(s, t) =
(1/n)

∑n
i=1(Xij(s)− X̄j(s))(Xij(t)− X̄j(t)), where X̄j =

∑
iXij/n, we have the

empirical counterpart of this expansion as

Ŝj(s, t) =

∞∑
k=1

λ̂jkϕ̂jk(s)ϕ̂jk(t),

where λ̂j1 ≥ λ̂j2 ≥ · · · ≥ 0. To get rid of uncertainty of signs, we assume∫
ϕ̂jϕj ≥ 0. For the empirical operator Ŝj , at most n eigenvalues are strictly

positive.
In general, different functional predictors are not independent of each other.

The Karhunen-Loève expansion of the random function Xij in terms of the or-
thonormal basis ϕjk(t) is

Xij − µj =

∞∑
k=1

ξijkϕjk, (2.1)
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where the ξijk are principal component scores satisfying Eξijk = 0, Eξ2ijk = λjk

and Eξijkξijk′ = 0, k ̸= k′. Thus from (2.1) we have the covariance operator
expansion

Cov{Xj1(s), Xj2(t)} =
∞∑

k1,k2=1

λj1,j2
k1,k2

ϕj1k1(s)ϕj2k2(t),

where λj1,j2
k1,k2

= Eξj1k1ξj2k2 determines the dependency structure between different

predictors. Note that with our notation, when j1 = j2 = j, λj,j
k1,k2

= 0 if k1 ̸= k2

and λj,j
k1,k2

= λjk if k1 = k2 = k. An illustration of how this dependency could
arise is given in the next subsection.

The model (1.1) can be equivalently written as

Yi − µ =

p∑
j=1

∫
βj(Xij − µj) + ϵi, (2.2)

where µ = E[Y |X1, . . . , Xp] = a +
∑

j

∫
βjµj . After βj is estimated by β̂j , say,

the intercept a can be estimated by â = Ȳ −
∑

j

∫
β̂jX̄j , where Ȳ =

∑
i Yi/n.

Now we consider the problem of estimating βj . Using the orthonormal basis
{ϕjk}, (2.2) can be equivalently written as

Yi − µ =

p∑
j=1

∞∑
k=1

ξijkbjk + ϵi,

making use of the expansion βj =
∑

k bjkϕjk. This suggests the estimator

{b̂jk} = argmin
n∑

i=1

(Yi − Ȳ −
p∑

j=1

Kj∑
k=1

ξ̂ijkbjk)
2,

and then β̂j =
∑Kj

k=1 b̂jkϕ̂jk where, in the above displayed equation, ξ̂ijk =∫
(Xij − X̄j)ϕ̂jk is the principal component score estimated from data. Here

the truncation point Kj is a smoothing parameter. To further select functional
predictors simultaneously, we minimize the criterion function

J(b) =

n∑
i=1

(Yi − Ȳ −
p∑

j=1

Kj∑
k=1

ξ̂ijkbjk)
2 + n

p∑
j=1

pλj
(||bj ||), (2.3)

where ||bj || is the l2 norm of bj = (bj1, . . . , bjKj )
T . Among many ways to specify

the penalty function pλ, we choose the SCAD penalty function of Fan and Li
(2001),

p′λ(θ) = λ

{
I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I(θ > λ)

}
, pλ(0) = 0,
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for a = 3.7 and θ > 0, where I(·) is the indicator function. The choice of a = 3.7 is
suggested by Fan and Li (2001) and adopted in almost all publications involving
the SCAD penalty. The SCAD penalty possesses some desirable properties, such
as that it results in a sparse model due to the singularity at zero, that it results in
an estimator that is continuous in the observations, and that it is almost unbiased
for large parameters since the derivative of the penalty is zero when θ is large.
One simple property that we use in the proof is that |pλ(a) − pλ(b)| ≤ λ|a − b|
for a, b > 0. Other penalty functions such as the adaptive Lasso can also be used
here and lead to similar consistency results as found below.

We choose to penalize ∥bj∥, which is probably the simplest one to use.
However, as suggested by a reviewer, there are alternatives such as penalizing
(
∑Kj

k=1 λjkb
2
jk)

1/2, the standard deviation of
∫
βj(Xj − µj), and this seems quite

natural in the functional context. Theoretically, we expect similar consistency
can be obtained. Although we did not investigate this alternative, we expect the
finite sample results to be similar to those found since the SCAD penalty results
in almost unbiased estimation.

2.2. Consistency properties

Large sample properties of shrinkage estimation with the SCAD penalty
have been established in the literature (Fan and Li (2001); Fan and Peng (2004);
Wang, Li, and Huang (2008)). We show that, in our context, the estimation
procedure can consistently estimate the functional coefficients as well as consis-
tently identify the true model. However, extending these theoretical results to
multiple functional regression is not trivial. Note that in criterion (2.3) two types
of approximations are involved, one is the truncation of βj to approximate the
functional coefficients, the other is the unknown covariate ξijk estimated by ξ̂ijk.
While the former approximation is typical in nonparametric problems such as
Wang, Li, and Huang (2008), the latter is unique to the functional regression
problem. It also resembles the measurement error model in form where the co-
variates are not observed directly (Liang and Li (2009); Carroll, Delaigle, and
Hall (2009)).

Without loss of generality, we denote the true regression coefficients by β =
((β(1))T , (β(2))T )T , with β(1) = (β1, . . . , βs)

T , s ≤ p, containing all nonvanishing
components of β and βs+1 = · · · = βp ≡ 0. Let Λ be the (

∑
j Kj) × (

∑
j Kj)

matrix  Λ1,1 · · · Λ1,p

...
...

...

Λp,1 · · · Λp,p

 , (2.4)

where Λj1,j2 is the Kj1 ×Kj2 matrix with entries λj1,j2
k1,k2

, 1 ≤ k1 ≤ Kj1 , 1 ≤ k2 ≤
Kj2 . In our results, the following regularity conditions are needed.
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(c1)
∫
E(X4

ij) < ∞ and Eϵ4i < ∞.

(c2) All eigenvalues of Sj have multiplicity one; λjk−λj k+1 ≥ C−1k−αj−1, bjk ≤
Ck−βj , αj > 1, βj > αj + 1/2.

(c3) K̄4ᾱ+4/n → 0, λj = o(K̄−ᾱ), K̄3ᾱ+3/n = o(λ2
j ), and K̄ᾱK−α−2β+1 = o(λ2

j ),

where K̄ = maxj{Kj}, K = minj{Kj}, and ᾱ, α, β̄, β are similarly defined.

(c4) The minimum eigenvalue of Λ, ρmin(Λ), is of order Ω(K̄−ᾱ) where an =

Ω(bn) means bn = O(an).

Remark 1. We implicitly assume that it is possible to choose {Kj} and {λj} so

that (c3) is satisfied. If all αj ≡ α, βj ≡ β, with β > α + 1/2, then it is easily

checked that we can do so.

Remark 2. When all αj ≡ α and βj ≡ β, β > α + 1/2 requires that βj be

sufficiently smooth relative to Sj . As β increases and α decreases, the condition

(c3) becomes easier to satisfy.

Remark 3. Although we use different λj for each predictor in theory, in practice

we fix λj to be the same. We use different Kj , since we find this leads to slightly

better results; allowing all λj to be estimated from data using our method does

not improve our simulation results.

Theorem 1. Under (c1)−(c4), we have

(a) (Estimation consistency) ||β̂j − βj || = op(1), 1 ≤ j ≤ p.

(b) (Selection consistency) β̂s+1 = . . . = β̂p ≡ 0 with probability converging to 1.

Remark 4. The proof of Theorem 1 in the Appendix actually shows that ||β̂j −
βj || = Op(K̄

3ᾱ+3/n+ K̄ᾱK−α−2β+1). We do not believe this rate to be optimal,

that some more complicated arguments could get better rates.

An illustration. Let p = 2. Suppose the eigenvalues of S1 and S2 satisfy

λjk = Ck−α, j = 1, 2. If X1 and X2 are independent, then the matrix Λ at (2.4)

is diagonal and its minimum eigenvalue is of order Ω(K−α). In general, Λ can

be written as a block matrix

Λ =

(
E F

F T G

)
,

where E and G are K × K diagonal matrices containing the eigenvalues of S1

and S2 respectively. It is easy to see that the minimum eigenvalue of Λ is no

bigger than CK−α, since Λ is similar to

Λ̃ =

(
E 0

0 G− F TE−1F

)
,
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and the eigenvalues of G−F TE−1F are dominated by those of G. In assumption

(c4), we assume that the minimum eigenvalue of Λ is still of order K−α as in the

independent case. This assumption thus can be thought of as a constraint on

the dependence of different predictors. However, we show in the following setup

this assumption is quite natural. Suppose the random functions X1 and X2 are

specified by

X1 =

l∑
j=1

a1jWj , X2 =

l∑
j=1

a2jWj , (2.5)

where Wj , 1 ≤ j ≤ l are independent mean zero random functions with Karhunen

-Loève expansion given by Wj =
∑

k ωjkϕk (note that we assume the eigenfunc-

tions are common to all Wj) with Eω2
jk = κjk > 0. We can give a sufficient

condition under which ρmin(Λ) = Ω(K−α).

Proposition 1. Suppose ck−α ≤ κjk ≤ Ck−α, j = 1, . . . , l, for some constants

C ≥ c > 0. If {a1j}, {a2j} are two non-proportional sequences, then ρmin(Λ) =

Ω(K−α).

2.3. Computation and inferences

One can express the criterion function J(b) in vector and matrix form. With

Ẑj =


ξ̂1j1 . . . ξ̂1jKj

...
...

...

ξ̂ij1 . . . ξ̂ijKj

...
...

...

ξ̂nj1 . . . ξ̂njKj

 ,

Ẑ = (Ẑ1, . . . , Ẑp), b = (b11, . . . , b1K1 , b21, . . . , bpKp)
T , and Y = (Y1, . . . , Yn)

T ,

(2.3) can be written as

J(b) =
n∑

i=1

(Y − Ȳ 1− Zb)T (Y − Ȳ 1− Zb) + n

p∑
j=1

pλj
(||bj ||), (2.6)

where 1 is the n-dimensional vector with all components one.

We use the local quadratic approximation idea (Fan and Li (2001)) to op-

timize the criterion. Specifically, if b̂(m) is the estimate obtained in the m-th

iteration, then (2.6) can be locally approximated by

n∑
i=1

(Y − Ȳ 1− Ẑb)T (Y − Ȳ 1− Ẑb) +
n

2
bTR(b̂(m))b, (2.7)
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where R(b̂(m)) = diag{(p′λ1
(||b̂(m)

1 ||)/||b̂(m)
1 ||)IK1 , . . . , (p

′
λp
(||b̂(m)

p ||)/||b̂(m)
p ||)IKp}

and IKj is the Kj ×Kj identity matrix. The minimizer of (2.7) is then

b̂(m+1) = (ẐT Ẑ + nR(b̂(m)))−1ẐT (Y − Ȳ 1).

We iterate these steps until convergence and obtain the final estimate b̂. During

the iterations, if some ||bj || is smaller than a threshold (10−5 in our implementa-

tion), we set bj = 0 and ignore the corresponding predictor in future iterations.

Now we consider the construction of pointwise confidence intervals for βj .

Following Fan and Li (2001), the sandwich formula can be used as an estimator

for the variance of the nonzero components of b̂, denoted b̂(1) henceforth. The

estimator of asymptotic variance is

Ĉov(b̂(1)) = ((Ẑ(1))T Ẑ(1) + nR(1))−1(Ẑ(1))T Ĉov(Y )Ẑ(1)((Ẑ(1))T Ẑ(1) + nR(1))−1,

where Ẑ(1) denotes the selected columns of Ẑ corresponding to nonvanishing ||bj ||,
R(1) denotes the selected rows and columns of R(b̂) in a similar way, and Ĉov(Y )

is the n × n diagonal matrix with estimated squared residuals on the diagonal.

The diagonal blocks of Ĉov(b̂(1)) gives the asymptotic variance for nonvanishing

b̂j .

Since β̂j(t) = b̂Tj ϕ̂j(t), ϕ̂j(t) = (ϕ̂j1(t), . . . , ϕ̂jKj (t))
T . We have a natural

estimator for the asymptotic variance of βj(t),

Ĉov(βj(t)) = ϕ̂j(t)
T Ĉov(b̂j)ϕ̂j(t).

Note that here we ignored the uncertainty of ϕ̂j which is also estimated from

observations. However, we think this is a reasonable first approximation. Our

simulation experiments illustrate the performance of the asymptotic variance for-

mula. Estimates of the asymptotic variance can be used to construct pointwise

confidence intervals for βj(t) for nonzero components of the functional coeffi-

cients. Strictly speaking, the constructed intervals are for the truncated βj(t)

at cutoff Kj in the expansion. Thus the constructed intervals have lower than

targeted coverage rate for the variability in ϕ̂jk is ignored, and the interval is

only for truncated functional coefficients. The bias caused will be seen from our

numerical results.

2.4. Tuning parameter selection

For implementation of our method, we need to choose the truncation points

{Kj} and the regularization parameters {λj} for group SCAD penalty.

We use generalized cross-validation (GCV) to select both Kj and λj . GCV

can be thought of as a short-cut for leave-one-out cross-validation, and also comes
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with advantageous properties (Wahba (1990)). The criterion is defined by

GCV ({Kj}, {λj}) =
1

n

||Y − Ȳ 1− Ŷ||2

(1− tr(H({Kj}, {λj}))/n)2
,

where Ŷ=H({Kj}, {λj})(Y−Ȳ 1) is the fitted response values andH({Kj}, {λj})
= Ẑ(ẐT Ẑ + nR(b̂))−1ẐT is the hat matrix.

Simultaneously choosing all parameters Kj and λj is computationally ex-

pensive and we use a three-step strategy instead. First we set Kj = K with K

determined by GCV while λj = 0. Then we consider each Kj in turn, with others

fixed to the current values. GCV is again used to update Kj , and we use the

resulting Kj as the final parameter after a complete scan through all p predic-

tors. Finally, a single smoothing parameter λj ≡ λ is chosen using GCV. In our

simulations, we find that using different Kj gives better results than constraining

them to be the same, but that using different λj does not lead to improvement.

3. Numerical Experiments

3.1. Simulation examples

We perform a Monte Carlo experiment to investigate the finite sample perfor-

mance of the estimation method, using GCV to select the two tuning parameters.

The simulated data was generated from (1.1) with p = 4 functional predictors,

a = 0, and the errors ϵ distributed as N(0, σ2). For 1 ≤ j ≤ 4 independently, we

take Wj =
∑50

k=1 ξjkϕk, where ξjk ∼ N(0, k−2), ϕ1 ≡ 1, and ϕk+1 =
√
2 cos(kπt)

for k ≥ 1. Then the functional predictors are defined through the linear trans-

formations

X1 =W1 + ρ(W2 +W3),

X2 =W2 + ρ(W1 +W3),

X3 =W3 + ρ(W1 +W2),

X4 =W4.

Note that the scalar ρ controls the strength of dependence between different pre-

dictors, with ρ = 0 resulting in independent predictors. For β1 and β2, in terms of

expansion based on {ϕk}, we took b1 = (−2, 1,−2, 1)T , b2 = (1,−1, 0.5,−0.5)T ,

and set β3 = β4 = 0. We had n = 100 for all our simulations, and set

ρ = 0, 0.2, 0.5, or 0.8, and σ2 = 0.1 or 0.3. All integrations required in the

generation of the data and the estimation procedure were Riemannian sum ap-

proximations with an equally spaced grid containing 500 points on [0, 1].

The simulation results are summarized in Table 1 based on 500 runs in each

scenario. We report the mean squared errors ||β̂ − β||2 using our regularized
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multiple functional regression model (MSE), average number of correctly iden-

tified nonvanishing coefficients (TP), average number of incorrectly identified

nonvanishing coefficients (FP), empirical coverage probability of pointwise 95%

confidence interval for β1 (95% Cov.Prob.1) and empirical coverage probability

of pointwise 95% confidence interval for β2 (95% Cov.Prob.2). For comparison,

three other methods were applied and the corresponding errors reported in the

same table: functional regression without regularization (NOPENMSE); the or-

acle for which the true zero coefficients were known and no shrinkage applied

(OMSE); functional regression with the group adaptive Lasso applied (ALAS-

SOMSE) (using the group Lasso as the initial estimate). The estimation errors

reported for the unregularized method are the sum of errors on β1 and β2 only.

For each scenario, the empirical coverage probabilities reported are the averages

over the grid (0.1, 0.2, . . . , 0.9) for β1 and β2 whenever they are estimated as

nonzero coefficients by the group SCAD estimation method.

With the unregularized procedure, we note that occasionally the GCV se-

lected a large K resulting in unstable estimation and large estimation error. In

the table, these unusual cases were deleted before computing the errors. However,

when using the regularized procedure, we observed that even if the K selected by

GCV was too large, the subsequent regularization procedure could still choose

enough penalization and produce reasonable estimates, and thus for regularized

estimators no cases were omitted.

As one can see from Table 1, the noise level has a significant effect on the

estimation errors as well as the average number of truly relevant predictors de-

tected. However, the number of false positives remains at a low level even for

larger noise variance. Compared to noise level, the correlation between different

predictors seems to have milder effects, except for the relatively high correlation

level ρ = 0.8. Shrinkage estimation based on both the adaptive Lasso and SCAD

penalty outperforms unpenalized estimation. The results also show that confi-

dence intervals based on the sandwich formula for the asymptotic variance work

well, with only a small downward bias in our simulations. As an illustration, the

true functions β1 and β2, as well as their estimates when ρ = 0.2 and σ = 0.1 or

0.3, are plotted in Figure 1.

In Table 2 we give results for the SCAD penalized estimator with truncation

points Kj ≡ K, K varying from 2 to 7, for the case ρ = 0.2 and σ = 0.1. λ was

chosen by the GCV method. The minimum error is achieved when K = 4, as

expected. When K < 4, the model underfits and the errors are much larger; as K

increases beyond 4, the results are still reasonable although they get worse as K

increases due to overfitting. In Table 3, we show the variable selection results as

both K and λ vary (note again we take K to be independent of j for illustration

purposes). The numbers in each cell are the TP/FP pairs. We see that larger

values of K demand larger values of λ.
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Table 1. Simulation results for penalized multiple functional regression with
p = 4.

Scenario ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8
σ = 0.1 σ = 0.1 σ = 0.1 σ = 0.1 σ = 0.3 σ = 0.3 σ = 0.3 σ = 0.3

NOPENMSE 0.83 0.92 1.21 1.78 1.87 2.75 3.59 5.21
ALASSOMSE 0.63 0.70 0.91 1.34 1.70 2.09 2.74 3.48
SCADMSE 0.71 0.71 0.93 1.30 1.68 2.02 2.66 3.27

OMSE 0.63 0.63 0.85 0.88 1.47 1.81 1.80 2.00
TP 2 2 2 2 1.77 1.81 1.80 1.93
FP 0.08 0.09 0.08 0.64 0.13 0.11 0.15 0.82

95% Cov.Prob.1 0.92 0.92 0.92 0.92 0.93 0.93 0.92 0.92
95% Cov.Prob.2 0.93 0.94 0.94 0.93 0.94 0.94 0.92 0.90

Table 2. MSE for different fixed K.

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7
SCADMSE 4.22 2.92 0.73 0.80 0.89 1.17

Table 3. Variable Selection results (TP/FP)for different K and λ, with
ρ = 0.2 and σ = 0.1.

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7
λ = 0.01 1.76/0.64 2/0.67 2/0.82 2/0.89 2/1.03 2/2
λ = 0.02 1.52/0.27 1.83/0.34 2/0.43 2/0.64 2/1.00 2/2
λ = 0.05 1.07/0.10 1.72/0.12 2/0.17 2/0.34 2/0.72 2/1.52
λ = 0.1 0.52/0.04 1.35/0.05 1.73/0.07 1.86/0.25 2/0.51 2/1.03
λ = 0.2 0/0 0.53/0 1.02/0 1.72/0 1.80/0.33 1.95/0.57

Finally, we have simulation results for p = 10 with s = 2. The functional

predictors were generated as before and β1, β2 the same as for p = 4. The

results are reported in Table 4. Performance is worse than when p = 4, but still

reasonable. In particular, there is a larger number of false positives especially

when correlation is high.

3.2. Spectrometrics data

We illustrate our approach on a spectrometrics dataset that contains 215

spectra of light absorbance for meat samples as functions of wavelength. Be-

cause of the denseness of wavelengths at which the measurements were made,

subjects are treated as continuous curves. Figure 2 shows the first 50 curves in

the dataset. This dataset has been previously used in functional nonparametric

regression studies where the covariate is the spectra curve and the response is the

percentage of fat content in the piece of meat (Ferraty and Vieu (2002, 2006);

Ferraty, Mas, and Vieu (2007)). In nonparametric kernel regression, the choice

of semi-metric to define distance between curves is crucial to the performance
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Table 4. Simulation results for penalized multiple functional regression with
p = 10.

Scenario ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8
σ = 0.1 σ = 0.1 σ = 0.1 σ = 0.1 σ = 0.3 σ = 0.3 σ = 0.3 σ = 0.3

NOPENMSE 3.74 3.95 4.88 5.92 5.76 5.82 5.81 6.96
ALASSOMSE 1.23 1.70 1.81 2.95 2.05 2.67 3.72 5.98
SCADMSE 1.06 1.46 1.85 3.10 2.03 2.76 3.52 5.36

OMSE 0.63 0.63 0.85 0.88 1.47 1.81 1.80 2.00
TP 2 2 2 1.73 1.82 1.88 2 2
FP 0.33 0.65 1.67 3.65 0.29 0.82 2.00 4.25

95% Cov.Prob.1 0.89 0.89 0.88 0.79 0.89 0.90 0.86 0.70
95% Cov.Prob.2 0.90 0.91 0.90 0.74 0.90 0.92 0.89 0.68

Figure 1. (a) The true coefficient β1 (solid line) with its estimates when
σ = 0.1 (dashed line) and σ = 0.3 (dotted line). (b) β2 (solid line) with
its estimates when σ = 0.1 (dashed line) and σ = 0.3 (dotted line). Here
ρ = 0.2.

of the estimator. Previous study suggested that, for nonparametric regression

function estimation, taking the L2 distance between the second derivatives of the

spectra gives favorable results based on its performance on hold-out validation

data. A desirable feature of an estimation procedure would be to determine the

appropriate order of derivative automatically.

Here we apply the multiple functional linear regression model to the spectro-

metrics data. We treat the original function, as well as up to its 3rd derivative

as the predictors in our model. The idea of using different orders of derivatives

of curves as covariates in the functional linear model is similar to using trans-

formations of the original covariates in classical multiple linear regression. Our

use of derivatives is directly motivated by previous studies which established
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that the second derivative curve contains the most important information (Fer-

raty and Vieu (2006)). Compared to nonparametric functional kernel regression,

the functional linear model is more easily interpretable and thus an interesting

alternative.

We note that since
∫
βX ′ = β(1)X(1) − β(0)X(0) −

∫
β′X (and similarly

for higher order derivatives), mathematically it seems the model is equivalent

to a standard functional linear regression. However, the current approach could

still be of some interest since (i) β(1)X(1)− β(0)X(0) is generally not zero and

thus our model is different from standard functional linear regression; (ii) even

if this intercept is incorporated, which means we try to estimate the regression

function β(1)X(1)−β(0)X(0)−
∫ 1
0 (β1(t)−β′

2(t))X(t)dt, it is not clear how to take

into account that the coefficients of X(0) and X(1) are related to the functional

coefficients; (iii) we might prefer to estimate β2 to see the effect of the derivative

curve, which cannot be recovered from β1(t)−β′
2(t) alone; (iv) since the derivative

of β2 is involved, it might be harder to estimate β′
2 than β2 (β′

2 is “less smooth”).

For these data, we trained on the first 160 spectra and used the rest as

validation. We examined the prediction accuracy of the estimated model using

mean squared error on the validation data:

MSE =
1

55

215∑
i=161

(Yi − Ŷi)
2.

With the smoothing parameters selected by GCV, the relevant predictors were

found to be the 1st and 2nd derivatives of the spectra curves, achieving an MSE of

6.89. Figure 3 shows the ability of the estimated model to predict the responses.

For comparison, we also computed the nonparametric kernel regression using

the funopare.kernel.cv function provided in the npfda package (it uses cross-

validation to select the bandwidth), which gave a smaller MSE of 5.37. However,

when using functional linear modeling, unlike kernel regression, we can visually

examine the features of the functional coefficients for interpretation. For example,

from Figure 4, higher fat content is seen to be related to higher values around

point 160 and lower values around point 215 in the first derivative, as well as

lower values around point 190 in the second derivative.

3.3. Weather data

We applied the penalized multiple functional linear regression to the analysis

of Japanese weather data, available in Chronological Scientific Tables 2005. The

data were collected at 79 weather stations in Japan. We used the annual total

precipitation averaged over 1971 to 2000 as the response. Six functional predic-

tors were used in our model, with monthly observations averaged from 1971 to
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Figure 2. The spectrometric curves.

Figure 3. Prediction accuracy with penalized multiple functional regression
on 55 validation samples.

2000: monthly average temperatures (TEMP), atmospheric pressure (PRESS),

time of daylight (LIGHT), humidity (HUMID), monthly maximum temperature

(MAX.TEMP), monthly minimum temperature (MIN.TEMP). Some of the ob-

servations on functional predictors are presented in Figure 5 (after appropriate

smoothing).
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Figure 4. (a) and (b): 1st and 2nd derivative of the spectrometric data.
Only 50 samples are shown in the figure. (c) and (d): Estimated functional
linear coefficient corresponding to 1st and 2nd derivative curves respectively,
with 95% pointwise confidence interval shown as dotted lines.

The estimated model selected MAX.TEMP, HUMID and LIGHT as predic-
tors with nonzero coefficients and the estimated functional coefficients are shown
in Figure 6. The coefficient associated with MAX.TEMP shows that higher pre-
cipitation is associated with warmer weather in the winter and colder weather in
the summer. The flat coefficient for HUMID indicates that annual precipitation
only depends on humidity through its annual average. The coefficient for LIGHT
seems harder to interpret; the estimated coefficient suggests that it is positively
correlated with precipitation in Oct-Nov and negatively correlated in Mar-Apr.
As an illustration of prediction accuracy, we compared the prediction error of our
multiple predictor model with a functional linear model using only one predic-
tor. Based on five-fold cross-validation, our model gives a cross-validation MSE
of 16.58. When only one functional predictor was used, the smallest error was
achieved with MAX.TEMP, with an error of 23.04.
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Figure 5. Some functional predictors in the Japanese weather data.

Figure 6. Estimated functional coefficients. (a) Estimated coefficient for
MAX.TEMP. (b) Esimated coefficients for HUMID. (c) Estimated coeffi-
cients for LIGHT.
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4. Concluding Remarks

We propose a regularization method for shrinkage estimation of multiple

functional linear regression models, and show that it is consistent in estimation

and variable selection. A computational algorithm based on local quadratic ap-

proximation is proposed. It is also possible to use local linear approximation (Zou

and Li (2008)) and our choice is based on ease of implementation, since closed

form solution exists for each iteration. Our simulation results and applications

to data sets demonstrate the effectiveness of the method.

A possible topic for future study is to consider partially functional linear re-

gression where scalar covariates are considered simultaneously. Variable selection

can be applied to both the functional and non-functional part. Another direction

would consider multiple functional linear regression when the number of predic-

tors diverges with sample size; for applications that involve a large number of

predictors, the diverging p case could well be more appropriate. We do not cur-

rently have such data. Extending the shrinkage estimation results to generalized

functional linear model (James (2002); Müller and Stadtmüller (2005); Cardot

and Sarda (2005)) is another interesting topic for study.

We became aware of an independent work by Fan and James (2011) on a

similar topic after the current paper was submitted for review. Their investi-

gations are more general than ours since they also considered additive models

with unknown link functions, as well as more general basis and penalty functions.

In this they assumed that the covariance information matrix (ẐT Ẑ/n using our

notation) has eigenvalues bounded away from zero, making their theoretical anal-

ysis very similar to that of classical linear regression. Still, this assumption might

not be appropriate in the functional context; we consider the magnitude of the

minimum eigenvalue in our Lemma A.2 in the Appendix.
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Appendix

Two lemmas study properties of the estimated principal component scores.

Throughout the Appendix, we follow the notation and assumptions in the main

text.

Lemma A.1. We have |ξ̂ijk − ξijk| = Op(K
αj+1
j /

√
n) and |

∑n
i=1 ξ̂ij1k1 ξ̂ij2k2/n−

λj1,j2
k1,k2

| = Op((K
αj1

+1

j1
+K

αj2
+1

j2
)/
√
n).
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Proof. Given that ϕ̂jk is the eigenvector of Ŝj , ϕjk is the eigenvector of Sj ,

and that ∥Sj − Ŝj∥ = Op(1/
√
n), by (5.2) of Hall and Horowitz (2007), we have

||ϕ̂jk − ϕjk|| = Op(K
2αj+2
j /n).

Since ξijk =
∫
(Xij−µj)ϕjk and ξ̂ijk =

∫
(Xij−X̄j)ϕ̂jk, we have |ξ̂ijk−ξijk|2 =

Op(||X̄j − µj ||2 + ||ϕ̂jk − ϕjk||2) = Op(K
2αj+2
j /n), using (c2) and (5.2) in Hall

and Horowitz (2007). For the second part, we have∑n
i=1 ξ̂ij1k1 ξ̂ij2k2

n
− λj1,j2

k1,k2

=

(∑n
i=1 ξ̂ij1k1 ξ̂ij2k2

n
−
∑n

i=1 ξij1k1ξij2k2
n

)
+

(∑n
i=1 ξij1k1ξij2k2

n
− λj1,j2

k1,k2

)
=: (I) + (II).

Obviously the second term is of order Op(n
−1/2). The first term is further de-

composed as

(I) =
1

n

n∑
i=1

[
(ξ̂ij1k1 − ξij1k1)ξ̂ij2k2 + (ξ̂ij2k2 − ξij2k2)ξij1k1

]
.

Using |ξ̂ijk| = Op(1), since |ξ̂ij1k1−ξij1k1 | = op(1), we have a bound Op((K
αj1

+1

j1
+

K
αj2

+1

j2
)/
√
n) for (I), and the proof is complete.

Lemma A.2. For A, a subset of {1, 2, . . . , p}, let ẐA be the columns of Ẑ cor-

responding to those predictors in A, and similarly let ΛA be the submatrix of Λ

corresponding to the predictors in A. Then ρmin(Ẑ
T
AẐA/n) = Ωp(K̄

−ᾱ).

Proof. We use || · || to denote also the operator norm of a matrix, and || · ||1
for the maximum row sum of a matrix. Now |ρmin(Ẑ

T
AẐA/n) − ρmin(ΛA)| ≤

||ẐT
AẐA/n − ΛA|| ≤ ||ẐT

AẐA/n − ΛA||1 = Op(K̄
ᾱ+2/

√
n), by Lemma A.1. This

together with (c4) implies the statement of the lemma.

Proof of Theorem 1. Let the minimum eigenvalue of ẐT Ẑ/n be ρ∗, and thus

ρ∗ = Ωp(K̄
−ᾱ) by Lemma A.2. The true functional coefficients are denoted by

βj =
∑

k bjkϕjk. Then

0 ≥ J(b̂)− J(b)

= ||Y − Ȳ 1− Ẑb̂||2 − ||Y − Ȳ 1− Ẑb||2 + n
∑
j

pλj
(||b̂j ||)− n

∑
j

pλj
(||bj ||)

= ||Y − Ȳ 1− Ẑb+ Ẑb− Ẑb̂||2 − ||Y − Ȳ 1− Ẑb||2 + n
∑
j

pλj
(||b̂j ||)
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−n
∑
j

pλj
(||bj ||)

= 2(Y − Ȳ 1− Ẑb)T Ẑ(b− b̂) + ||Ẑ(b−b̂)||2+n
∑
j

pλj
(||b̂j ||)−n

∑
j

pλj
(||bj ||).

Let η = Ẑ(ẐT Ẑ)−1ẐT (Y − Ȳ 1 − Ẑb) be the projection of Y − Ȳ 1 − Ẑb onto

the columns of Ẑ. Lemma A.3 below shows that ||η||2 = Op(r
2
n), where r2n =

Op(K̄
2ᾱ+3 + nK−α−2β+1). We can then write

0 ≥ −Op(rn)||Ẑ(b− b̂)||+ ||Ẑ(b− b̂)||2 + n
∑
j

pλj
(||b̂j ||)− n

∑
j

pλj
(||bj ||)

≥ −Op(r
2
n)−

1

2
||Ẑ(b− b̂)||2 + ||Ẑ(b− b̂)||2 + n

∑
j

pλj
(||b̂j ||)− n

∑
j

pλj
(||bj ||)

≥ −Op(r
2
n) + nρ∗||b− b̂||2 − n

∑
j

λj ||b̂j − bj ||

≥ −Op(r
2
n) + nρ∗||b− b̂||2 −

n
∑

j λ
2
j

2ρ∗
− nρ∗

2
||b̂− b||2, (A.1)

where we used Cauchy-Schwarz inequality on the second line, the property

|pλ(a)− pλ(b)| ≤ λ|a− b| on the third line, and Cauchy-Schwarz inequality again

on the last line. Thus ||b̂− b||2 = Op(r
2
n/nρ

∗ +
∑

j λ
2
j/(ρ

∗)2) = op(1) by (c3).

The convergence rate for ||b̂ − b||2 can be improved to Op(r
2
n/nρ

∗), which

is useful in the proof of part (b). Since ||b̂ − b|| = op(1) and λj → 0, we

have P (pλj
(||b̂j ||) = pλj

(||bj ||), 1 ≤ j ≤ s) → 1, and thus
∑

j pλj
(||b̂j ||) −∑

j pλj
(||bj ||) ≥ 0 with probability converging to 1. This combined with (A.1)

gives ||b̂− b||2 = Op(r
2
n/nρ

∗).

From ||b̂j − bj || = op(1),

||β̂j − βj ||2 ≤ 2||b̂j − bj ||2 + 2

∫ [ Kj∑
k=1

bjk(ϕ̂jk − ϕjk)
]2

+
∞∑

k=Kj+1

b2jk

= 2||b̂j − bj ||2 + 2K̄

Kj∑
k=1

b2jk||ϕ̂jk − ϕjk||2 +
∞∑

k=Kj+1

b2jk

= 2||b̂j − bj ||2 +O(K̄ · K̄
2ᾱ+2

n
) +

∞∑
k=Kj+1

b2jk.

The last converges to zero, and this proves (a).

Now we prove part (b). Let b̂∗ = (b̂T1 , . . . , b̂
T
s , 0, . . . , 0)

T , so b̂∗ is obtained from

b̂ by constraining the truly irrelevant components to zero. By similar arguments
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as for the proof of part (a), we have

0 ≥ J(b̂)− J(b̂∗)

= 2(Y − Ȳ 1− Ẑb̂∗)T Ẑ(b̂− b̂∗) + ||Ẑ(b̂− b̂∗)||2 + n
∑
j

pλj
(||b̂j ||)

−n
∑
j

pλj
(||b̂∗j ||)

≥ −Op(||η∗||)||Ẑ(b̂− b̂∗)||+ n

p∑
j=s+1

pλj
(||b̂j ||)

≥ −Op(||η∗||)
√
n

p∑
j=s+1

||b̂j ||+ n

p∑
j=s+1

λj ||b̂j ||, (A.2)

where η∗ = Ẑ(ẐT Ẑ)−1ẐT (Y − Ȳ 1 − Ẑb̂∗). In the last line we use the fact that

||b̂j || = Op(rn/
√
nρ∗) = op(λj) when j > s (from the proof of part (a)), and thus

pλj
(||b̂j ||) = λj ||b̂j ||.
We bound ||η∗|| as

||η∗||2 ≤ 2||η||2 + 2||Ẑ(b̂∗ − b)||2

= Op(r
2
n) +Op

(nr2n
nρ∗

)
= Op

(r2n
ρ∗

)
.

Since we have that Op(||η∗||) = op(
√
nλj), there is a contradiction in (A.2) if∑p

j=s+1 ||b̂j || > 0.

Lemma A.3. Let η = Ẑ(ẐT Ẑ)−1ẐT (Y − Ȳ 1− Ẑb) as in the proof of Theorem

1, then ||η||2 = Op(r
2
n), where r2n = K̄2ᾱ+3 + nK−α−2β+1.

Proof. Denote by Z the matrix similar in structure to Ẑ but with the true

principal component scores ξijk instead of ξ̂ijk. We have

Y − Ȳ 1− Ẑb = ϵ+ (µ− Ȳ )1+ (Z − Ẑ)b+ ν, (A.3)

where ϵ = (ϵ1, . . . , ϵn)
T and ν is a n-dimensional vector with

νi =

p∑
j=1

∞∑
k=Kj+1

ξijkbjk.

Let PẐ = Ẑ(ẐT Ẑ)−1ẐT . Now η = PẐ(Y− Ȳ 1− Ẑb) is the projection of the four

terms at (A.3) onto columns of Ẑ, and we bound each term in turn below.

Since ||PẐϵ||
2 = ϵTPẐϵ, using the fact E[ϵTPẐϵ|X] = σ2tr(PẐ) = σ2

∑
j Kj

= O(K̄), V ar(ϵTPẐϵ|X) = 2σ4tr(P 2
Ẑ
) + (Eϵ4i − 3σ2)

∑n
j=1(PẐ)

2
jj ≤ 2σ4tr(P 2

Ẑ
) +
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|Eϵ4i −3σ2|
∑n

j=1(PẐ)jj = Op(K̄) (see, for example, (3.3) and (3.4) in Huang and

Fan (1999)), where (PẐ)jj are the diagonal elements of PẐ which are no larger

than 1, since PẐ is a projection matrix. Using EϵTPẐϵ = E[E(ϵTPẐϵ|X)] and

V ar(ϵTPẐϵ) = E[V ar(ϵTPẐϵ|X)] + V ar(E[ϵTPẐϵ|X]), we have

||PẐϵ||
2 = Op(K̄). (A.4)

Now ||PẐ(Z − Ẑ)b||2 ≤ ||(Z − Ẑ)b||2 = O(||(Z − Ẑ)T (Z − Ẑ)||) using Lemma

A.1, we get ||(Z − Ẑ)T (Z − Ẑ)|| ≤ ||(Z − Ẑ)T (Z − Ẑ)||1 = Op(K̄
2ᾱ+3) and thus

||PẐ(Z − Ẑ)b||2 = Op(K̄
2ᾱ+3). (A.5)

Finally,

V ar(

∞∑
k=Kj+1

ξijkbjk) =

∞∑
k=Kj+1

λjkb
2
jk

= O(
∞∑

k=Kj+1

k−αjk−2βj )

= O(K−α−2β+1).

Since the number of predictors p is fixed, we have V ar(νi) = O(K−α−2β+1) and

thus

||ν||2 = Op(nK
−α−2β+1). (A.6)

Combining (A.4), (A.5), (A.6) as well as |µ − Ȳ | = Op(n
−1/2), we get ||η||2 =

Op(r
2
n).

Proof of Proposition 1. From (2.5), the Karhunen-Loève expansion of the

predictors are

Xi(t) =

∞∑
k=1

ξikϕk(t), with ξik =

l∑
j=1

aijωjk, i = 1, 2.

Using the notation in the text, we have that the general entries of Λ are

λi1,i2
k1,k2

= Eξi1k1ξi2k2 =

{∑l
j=1 ai1jai2jκjk k1 = k2 = k

0 k1 ̸= k2 .

Thus, in this case, in the block matrix form

Λ =

(
E F

F T G

)
,
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F is also diagonal. Since Λ is similar to

Λ̃ =

(
E 0

0 G− F TE−1F

)
,

the eigenvalues of Λ are just the diagonal elements of E and G − F TE−1F .

The eigenvalues of E are Ω(K−α) by assumption, and the diagonal elements of

G− F TE−1F are

l∑
j=1

a22jκjk −
(
∑l

j=1 a1ja2jκjk)
2∑l

j=1 a
2
1jκjk

=

∑
1≤j1 ̸=2≤l(a1j1a2j2

√
κj1kκj2k − a2j1a1j2

√
κj1kκj2k)

2

2
∑l

j=1 a
2
1jκjk

≥
c2
∑

1≤j1 ̸=j2≤l(a1j1a2j2 − a2j1a1j2)
2k−2α

2C
∑l

j=1 a
2
1jk

−α

= Ω(k−α).
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