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Abstract� We consider the problem of resampling or bootstrapping a point process

to get con�dence intervals for the reduced second moment function� We propose a

resampling scheme for spatial data� which we call the marked point method� This

is a variant of the block of blocks bootstrap �rst introduced by K�unsch ������� A

simulation study with a Poisson� a clustered and a regular point process on the unit

square in R� shows that the marked point method yields con�dence intervals that

are closer to the nominal ��	
� level than resampling by tiling �block bootstrap�

and by using subsets �subsampling�� The con�dence intervals obtained by the

marked point method also tend to be shorter� after accounting for di�erences in

empirical coverage� Finally� the marked point method is very much computationally

less intensive so that� even with moderate sample sizes� the marked point method

takes considerably less computing time� We also �nd that the simple method of

dividing the sample and treating the subsamples as independent replicates works

reasonably well� We apply some of these methods to a set of astronomy data�

Key words and phrases� Marked point bootstrap� reduced second moment function�

resampling�

�� Introduction

The reduced second moment function K�r� is a commonly used measure of

clustering for point processes� It is de�ned as the expected number of points

within a distance r of a typical point of a point process� divided by the intensity

of the process� While various methods to estimate K�r� are available� getting

standard errors for the estimates is more di�cult�

Resampling of point processes has been studied by a number of researchers

�e�g�� Hall ����	�� K
unsch ������� Liu and Singh ������� Politis and Romano

�����a� and Lahiri ������ ������� but little has been said about resampling for

estimating second
order structure of point processes� When resampling to es


timate the second
order structure� the resampling scheme used is particularly

important since a poor resampling scheme may produce pairs of points in the

new resamples that do not re�ect properties of the original process�

In this work� we focus on �nding con�dence intervals for the isotropic es


timator �K�r� of K�r� �Ripley �������� We use a simulation study on the unit

square in R� with an unclustered� a clustered and a regular process to compare




� J� M� LOH AND M� L� STEIN

di�erent methods of �nding con�dence intervals� We consider an approximation

method and three di�erent resampling schemes� The approximation method is

based on dividing the observation region into N subregions and assuming inde


pendence and normality of the statistic of interest in the di�erent subregions�

The variance of �K�r� is then estimated from the sample variance of the N sepa


rate estimates of K�r�� The resampling schemes used are the tiling method �or

block bootstrap�� the subsets method �similar to subsampling� and a new method

which is a variant of the block of blocks bootstrap of K
unsch ������� Politis and

Romano �����b� and B
uhlmann and K
unsch ����	�� We call this method the

marked point method because of the way it is formulated� using marks assigned

to observed points�

We �nd that the marked point method tends to produce nominal �	� con


�dence intervals whose empirical coverages are closer to the �	� level� Further


more� the lengths of the intervals obtained by the marked point method are often

shorter than the intervals obtained by the other methods� Finally� resampling of

spatial point processes can be computationally demanding� The marked point

method is very much computationally less intensive than the other two resam


pling schemes considered� allowing resampling to be more readily used for point

processes�

We describe the reduced second moment function in Section �� The methods

considered in this work for obtaining standard errors are described in Section ��

In particular we introduce the marked point method as a better alternative to

the tiling and subsets resampling methods� The results of a simulation study on

the unit square in R� are given in Section �� In Section 	 we discuss further issues

regarding resampling a point process� including the use of resampling subregions

of a di�erent shape from the observation window and the advantage of toroidal

wrapping� This work was motivated by our investigations into estimating K�r�

for a particular set of astronomy data� known as an absorber catalog� The results

of simulations of absorber catalogs as well as con�dence intervals for K�r� for

the actual data are given in Section ��

�� The Reduced Second Moment Function

Second
order characteristics of a stationary spatial point process describe the

dependence of pairs of points of the process� A commonly used measure of the

second
order characteristics of a stationary point process is the reduced second

moment function

K�r� � ��	E�N�x� r�jpoint at x��

where � is the intensity of the process and N�x� r� is the number of points within

distance r of x but with the point at x excluded� Thus �K�r� can be thought of as
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the expected number of points within distance r of a typical point of the process�

Together� K�r� and � completely determine the �rst and second moments of a

stationary� isotropic point process� See Stoyan� Kendall and Mecke ����	� for

more information on the reduced second moment function� and the subject of

second order analysis of stationary point processes in general�

For a homogeneous Poisson process in Rd� K�r� � �dr
d� where �d is the

volume of a unit sphere in d dimensions� Values of K�r� for a process are often

compared with those for the Poisson process� Values larger or smaller than �dr
d

respectively indicate a more clustered or more regular process than the Poisson

process�

When estimating K�r� for a point process observed in a bounded window

A � R
d� the common practice is to �rst estimate ��vd�A�K�r�� where vd���

indicates Lebesgue measure in d dimensions� and to divide by an estimator of

��vd�A�� To estimate �
�vd�A�K�r�� we need to count the number of neighbors

within distance r of each observed point� A problem when doing this is that for

each point within r of the boundary of A� the exact number of points within r of

it is not known� If A had no edges�
P

x

P
y�y �
x �fjy � xj � rg� where �f�g is the

indicator function� or more compactly�
P

x�
y �fjy�xj � rg� would be an unbiased

estimator of ��vd�A�K�r�� When A does have edges�
P

x�
y �fjy � xj � rg has

expected value less than ��vd�A�K�r�� The di�erence can be substantial if much

of A is within r of its boundary� The resulting estimator of K�r�� which Ripley

������ calls the naive estimator� has a negative bias�

A number of edge
corrected estimators of K�r� have been developed to

deal with this problem �see� for example� Stoyan� Kendall and Mecke ����	��

Stein ������ and Ripley �������� The key idea is to get unbiased estimates

of ��vd�A�K�r� by introducing weights wA�x�y� for each observed pair �x�y��

These weights compensate for the points that we cannot observe due to the

boundary of A� Speci�cally� with proper weights� we have

E

��X
x�
y

�fjy � xj � rgwA�x�y�

�� � ��vd�A�K�r�� ���

We obtain an estimator of K�r� by dividing
P

x�
y �fjy � xj � rgwA�x�y� by

an estimator of ��vd�A�� Usual estimators of �
�vd�A� are n

��vd�A� and n�n �

���vd�A�� We use n�n����vd�A� in this work� The estimator vd�A�
P

x �
y �fjy�

xj � rgwA�x�y���n�n � ��� is not unbiased for K�r�� However� if the point

process is ergodic� the estimator is consistent for K�r� as the observation window

A increases such that the diameter d�A� of its largest inscribed circle tends to
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in�nity �see Nguyen and Zessin ������� speci�cally example � in Corollary �������

for details�� In this work� we use the isotropic correction estimate of K�r��

���� The isotropic estimator

The isotropic correction �Ripley ������� can be used to correct for edge

e�ects when estimating K�r� of a stationary and isotropic process observed in

a bounded window A� Consider such a process observed in A � R
d� Suppose

we observe a point at x � A and another point at y � A within distance r of

x� For the isotropic correction� the weight wA�x�y� is given a value equal to the

reciprocal of the fraction of the area of the shell of radius jy � xj centered at x

that is contained in A� Speci�cally�

wA�x�y� �
vd�	��B��x� jy � xj��

vd�	��B��x� jy � xj� �A�
�

�djy � xjd�	

vd�	��B��x� jy � xj� �A�
�

where �d is the surface area of a unit sphere in d dimensions and �B��x� jy� xj�

is the shell with center x and radius jy � xj� These weights wA�x�y� can be

large if only a small portion of �B��x� jy�xj� is in A� Ripley ������ shows that�

with these weights� ��� holds for r up to the circumradius of A� With n points

observed in A� the isotropic estimator of K�r� is then given by

�KI�r� �
vd�A�

n�n� ��

X
x�
y

�fjy � xj � rg
�djy � xjd�	

vd�	��B��x� jy � xj� �A�
�

vd�A�

vd�Ajy�xj�
�

where Ajy�xj is the set of all z � A that are a distance jy � xj from at least one

other z	 � A� We have used Ohser�s extension �Ohser ������� in ��� by including

the factor vd�A��vd�Ajy�xj�� Including this factor allows the estimate to be valid

for distances up to the diameter of A�

�� Con�dence Intervals for K�r�

Here� we describe a number of methods to obtain con�dence intervals for

K�r� of an observed stationary� isotropic point process� We do this in the con


text of a square observation window in R�� Extension to higher dimensions is

conceptually not di�cult� although the problem of edge e�ects is more severe

and the computation involved more demanding� We use �K�r� and �K�r� to re


spectively denote the actual and the bootstrapped estimates of K�r��

Suppose we observe a point process in a square observation window A � R
�

with area a� An estimate of K�r� is obtained by dividing an estimate of ��aK�r�

by an estimate of ��a� Our estimator of ��aK�r� is of the formX
x

X
y�y �
x

�fjy � xj � rgwA�x�y�� ���
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where wA�x�y� is a weight of some form to account for the edge e�ects�

A simple way to obtain con�dence intervals is to divide the region A into N

congruent subregions and compute N separate estimates �K	�r�� � � � � �KN �r�� An

approximate ����� � ��� con�dence interval is then given by

�K�r�� tN�	����

sdVarf �Ki�r�g

N
� ���

where �K�r� is the overall estimate of K�r�� dVarf �Ki�r�g is the sample variance of
�K	�r�� � � � � �KN �r� and tN�	���� is the �������th percentile of the tN�	 distribu


tion� Here we assume that the estimates from theN subregions are approximately

independent and Gaussian� and that the variance of �K�r� is ��N times that of
�Ki�r�� We call this the splitting method�

A simple way to resample a point process is by tiling �e�g�� Hall ����	���

which is an extension of block
sampling methods for bootstrapping time series

data� K
unsch ������ and Liu and Singh ������ also discuss the tiling method

for resampling observations in one dimension� For square A in two dimensions�

this usually involves placing N square subregions of area a�N randomly in A and

copying the pattern within each subregion� These subregions� together with the

copied patterns� are arranged in some predetermined systematic way to reproduce

A �see Figure ��� The points resulting from this arrangement of the copied

patterns form a sample of the point process� �xi� i � �� � � � � �n� With this sample�

a new estimate

�K�r� �
a

�n��n� ��

�nX
i
	

�nX
j��
j ��i

�fj�xj � �xij � rgwA��xi� �xj� ���

A A�

��

�

�

Figure �� This diagram shows the tiling method in progress� The observed
point process is shown on the left� Two tiles have been placed in A� the
pattern copied and arranged in A� on the right� The tile that ended up on
the upper left corner of A� �tile �� was wrapped round A�
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can be obtained� This is repeated a large number R of times� Assuming that
the sampling distribution of �K�r� � �K�r� is similar to that of �K�r� � K�r��
the �� � ����th and �����th quantiles of �K�r� �K�r� can be estimated by the
�R � ���� � ����th and �R � �������th ordered values of �K�r�� �K�r�� Then a
����� � ��� con�dence interval for K�r�� called the basic bootstrap interval by
Davison and Hinkley ������� is given byh

� �K�r�� �K�R�	��	������r�� � �K�r�� �K�R�	�����r�
i
� �	�

This method of resampling will be referred to as the tiling method� There are
various modi�cations to this resampling scheme� One modi�cation is to partition
the observation window A into subregions and obtain samples by independently
sampling from these subregions� Another modi�cation is to place the subregions
randomly but allow them to fall partly outside A� We treat the window as being
wrapped on a torus so that the parts of the subregions that fall outside A copy
the pattern on the other side of A �see Figure ��� Politis and Romano �����a�
suggest using toroidal wrapping before resampling� An advantage of wrapping
is that all points are chosen with equal probability� Finally� for an isotropic
process� the resampling subregions can also be rotated� rather than always be
placed in the same orientation� In our simulations we use randomly placed tiles
with toroidal wrapping and do not rotate the tiles�

The main problem with the tiling method is that points that are not near
each other in the actual sample are put close together in adjacent resampled
tiles� Points near the edges of adjacent tiles produce arti�cial point pairs that
may distort the second
order characteristics of the point process and create bias
in the estimates� The clearest example occurs in the case of a hard core process� in
which no two points can be within a distance r� of each other� This necessarily
means that K�r� � � for all r � r�� but this will generally not be true for
�K�r� estimated from samples obtained by tiling� Indeed� Lahiri ������ shows
that with longer range dependence� the tiling method begins to fail as putting
independent blocks together destroys the long
range dependence present in the
original observations�

A possible way to get round this problem is not to tile at all� We randomly
obtain copies of the point pattern using square subregions of A in the same way as
the tiling method� However� instead of tiling the subregions together to recreate
A� we treat each subregion separately from the others� Only point pairs that
occur in the same subregion contribute to the bootstrap estimate �K�r�� Suppose
we use N square subregions Ai� i � �� � � � � N � of area a�N to randomly copy
the point pattern� We consider the new sample as an �observation� of the point
process over N widely separate regions� Let xij and xik represent two di�erent
points in Ai� with j� k � �� � � � � ni� Then the two points xij and xik together
contribute �fjxij � xikj � rg�wAi

�xij �xik� � wAi
�xik�xij�� to the estimate of
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��aK�r�� where wAi
�xij �xik� and wAi

�xik�xij� are weights based on the smaller

regions Ai� For example� if the isotropic correction is used� wAi
�xij �xik� �

�djxik � xij j
d�	�vd�	��B��xij � jxik � xij j� � Ai�� Thus the estimate of K�r� is

given by

�K�r� �
aP

ni�
P
ni � ��

NX
i
	

niX
j �
k

�fjxij � xikj � rgwAi
�xij �xik�� ���

where we use
P
ni�
P
ni� ���a as our estimate for �

�a� We refer to this method

as the subsets method� The subsets method is similar to the subsampling method

introduced in Politis and Romano �������

Notice that ��� involves a sum over fewer pairs of points than in the tiling
method at ���� because points in di�erent subregions are not considered� The

fewer number of pairs in ��� is compensated for by the weights� which are larger

being based on smaller subregions� Limiting pairs of points to those occurring in

the same subregion avoids the problem of arti�cially produced pairs� but results

in more pronounced edge e�ects� This may outweigh the advantage gained by

not tiling� Some arti�cially produced pairs will be present if toroidal wrapping is
used� but they will be considerably fewer than the number that would have been

obtained by tiling� To avoid such pairs altogether� we can treat the di�erent parts

of a wrapped subregion separately� In our simulations we use randomly placed

subregions with toroidal wrapping and do not split up a wrapped subregion�

K
unsch ������ introduced a procedure to reduce the e�ect of putting inde


pendent blocks together when resampling equally spaced observations in one di


mension� By considering statistics TN that depend on anm
dimensional marginal
with m �xed� K
unsch ������ �rst de�ned blocks of m consecutive observations�

Speci�cally� with observations Xt� t � �� � � � � N � de�ne Yt�m � �Xt� � � � � Xt�m�	��

t � �� � � � � N�m��� Tiling is applied to Yt rather than to Xt directly� For exam


ple� the sample autocovariance at lag s is given by �TN �
PN�s

i
	 XiXi�s��N � s��

Take m � s � � and set 	�Yt�m� � 	�Xt� � � � �Xt�m�	� � XtXt�m�	� Then

with bootstrapped observations �Yt�m� the bootstrap estimate of TN is given by
�TN �

PN�m�	
i
	 	� �Yt�m���N�m���� Politis and Romano �����b� and B
uhlmann

and K
unsch ����	� further developed this block of blocks bootstrap method when

resampling time series� by allowing m to increase slowly�

Braun and Kulperger ������ suggest a method to estimate the second
order

intensity 
��� of a point process in R by bootstrapping the process observed in an

interval ��� T �� Using what they call the marked point process bootstrap� they
give each observed point x � ��� T � a mark equal to the number of points in

the interval �x� �� x� � � h� for �xed small h and resample using sub
intervals

without wrapping� We introduce a number of adaptations of their approach to

make it more suitable for the spatial setting and propose a resampling scheme to
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obtain con�dence intervals for K�r�� To each point x� we give a mark mx that
is the sum of all the weights wA�x�y� for points y within r of x� Thus mx is
the total contribution to the estimate of ��aK�r� by all the points within r of x�
Speci�cally�

mx �
X

y�y �
x

�fjy � xj � rgwA�x�y�� ���

Note that this expression for mx is equal to the inner sum at ���� The sum of all
the marks of the observed points is given by ���� the estimate of ��aK�r��

The points� together with the marks� are resampled using some resampling
scheme �randomly placed or �xed subregions� with or without wrapping�� For the
example shown in Figure �� point y is resampled but not point z� The mark given
to x ismx � wA�x�y��wA�x� z�� Thus the mark given to x contains information
about the presence of z� Furthermore� although point v is within r of x in the
resampled process� this is not recorded in the mark given to x and vice versa�
This avoids the problem of arti�cially produced pairs� The estimate of ��aK�r�
for the new resample is obtained by adding up the marks of the resampled points�
Speci�cally� suppose we use subregions Ai� i � �� � � � � N� to resample the point
process� resulting in Ai containing points xij � j � �� � � � � ni� Each xij has a mark
of the form of ���� mij �

P
y�y �
xij

�fy � A � jy � xij j � rgwA�xij �y�� Then� if

we use
P
ni�
P
ni � ���a to estimate �

�a� we have

�K�r� �
aP

ni�
P
ni � ��

NX
i
	

niX
j
	

mij�

We refer to this method as the marked point method� The resampling scheme
we use with this method is randomly placed subregions with toroidal wrapping�

v

z

x

y

r

A

Figure �� In this diagram only points y and z are within distance r of point
x �the dashed circle�� A resampling subregion has been wrapped round A�
Points that are resampled by this subregion include x� y and v� but not z�

With the marked point method� x is allocated a mark given by ����
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Note that with the marked point method� the mark given to each point x

consists of the sum of contributions to the estimate of ��aK�r� by points near

x in the observed process �see ����� These marks are resampled together with

the points� To compute the bootstrapped estimate� the marks of the resampled

points are added together� No new marks are calculated� so that the actual

positions of points in the resampled process are not used at all� Thus using

toroidal wrapping with the marked point method is merely a simple method

to resample points with equal probability and does not a�ect the bootstrapped

estimate�

The marked point method we introduce here is a variant of the block of

blocks bootstrap of K
unsch ������� generalizing it to allow resampling of general

point processes in Rd where the observed points are not equally spaced� More

importantly� the contribution of a point at y to mx includes information about

the boundary of the observation window� through the weights used to account

for edge e�ects� When the edge e�ects are large� as in the case of the absorber

catalog �see Section ��� including the weights in the resampling scheme is crucial�

Intuitively� the marked point process method appears to be better than the

tiling or subsets methods� There are no arti�cially produced point pairs� Marks

given to the points are contributions to K�r� by other points that were actually

found nearby� The main weakness of the subsets method is the large in�uence of

edge e�ects� With the subsets method� a very much larger number of points are

near an edge� resulting in larger weights being used� The larger weights compen


sate for the fewer number of point pairs but may cause the estimate to have more

uncertainty� In contrast� for the marked point process bootstrap� the weights used

are those based on the whole region A� For both the tiling and subsets methods�

we consider only those points resampled by subregions� Information about points

outside the subregions is lost� With the marked point method� however� some

information about points outside the subregions is retained in the resamples�

Finally� the marked point method has a computational advantage over the

tiling and subsets methods� The splitting method requires the least computation�

With N subregions� only N�� estimates of K�r� are needed� the actual estimate

and an estimate for each subregion� Among the bootstrap methods� however� the

marked point method is least computationally intensive while the tiling method

is by far the most computationally intensive� For the marked point bootstrap�

the marks given to the observed points are calculated once� when the estimate of

K�r� is computed� The resampling process merely involves keeping track of the

resampled points and summing up the relevant marks� For the tiling method�

each new resample requires a new computation of all the weights� To get a

con�dence interval using R resamples� R� � estimates of K�r� are needed� The

subsets method also requires new computation of weights for each resample� but
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is slightly less computationally intensive than the tiling method because there

are fewer point pairs and therefore fewer weights to compute�

�� Simulation Studies on the Unit Square

We performed a number of simulation studies to compare the methods de


scribed in Section �� We use the unit square in R� as the observation window

and consider three di�erent processes� the Poisson� the Neymann
Scott and the

soft core processes� The second
order statistic considered is the reduced second

moment function K�r� for ���� � r � ���� at intervals of �����

For the Poisson process we used an intensity of �	�� For the Neymann
Scott

process� the parent intensity was set at �p � �	� Each parent had a Poisson

number of daughters with mean ��� uniformly distributed on a disc of radius ���

centered on the parent� Stoyan� Kendall and Mecke ����	� call this the Mat�ern

cluster �eld� The soft core process is obtained as follows� a Poisson process

of intensity 	�� is simulated on the observation window as well as on a border

region around it� Each point is given a random radius 
 with probability density

function fp�
� � ���
 for � � 
 � ���	 and a random mark m uniform on ��� ���

All points x� with radius 
� and mark m� are deleted if there is at least one

other point in the set of all simulated points that is less than 
� away with a

smaller mark� The remaining points that lie inside the observation window form

a realization of the soft core process� This soft core process has an intensity of

about �	�� Figure � shows a simulated realization of each of these three processes�
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Figure �� Sample realizations of the three point processes used in the simu�
lation study� with approximately the same intensity of �	
�

���� Coverage

We simulated ����� realizations of each of the three point processes� For

each realization we used the splitting� tiling� subsets and marked point methods

together with ��� or �	� to compute pointwise nominal �	� con�dence intervals�

Randomly placed subregions with toroidal wrapping were used for the resampling

methods� With each method� we used square subregions with sides of length



BOOTSTRAPPING A SPATIAL POINT PROCESS 
�

����	� ���	 and ��	� Thus for each combination of point process� method and

subregion size we have ����� con�dence intervals forK�r�� ���� � r � ���� at ����

intervals� The true value ofK�r� can be computed directly for the Poisson process

and the Mat�ern cluster �eld �for the latter� see Stoyan and Stoyan ������ p�������

For the soft
core process� we used the mean of the estimates of ��aK�r� obtained

from ��� ��� simulated realizations of the process� divided by an estimate of ��a�

to be the true value of K�r�� We then �nd the empirical coverage of the di�erent

con�dence intervals� Figure � shows plots of these coverages�

The splitting method is the simplest method and requires the least compu


tation� As such it serves as a benchmark to which the other methods are to be

compared� From Figure � it appears that the splitting method performs rather

well� with coverage close to �	� for both the Poisson and soft core processes�

For the clustered process� it also does rather well with subregions of size ��	�

However� coverage is very poor for the smaller subregion sizes�

In all cases� resampling by tiling yields nominal �	� con�dence intervals

with empirical coverage that is much lower than �	�� The subregion size of

����	 is clearly not suitable for the clustered process that we used� The cluster

size has radius of ���� A subregion of size ����	 will not be able to fully capture

even one whole cluster� Since for the Poisson process the distribution of points

around a particular position is independent of whether there is an observed point

at that position or not� we would expect tiling not to have adverse e�ects on the

second
order properties of the resampled process� Thus it is disappointing that

even in this case the coverage is still quite a bit smaller than the �	� nominal

level�

For the subsets method� the coverage obtained depends on the size of the

subregions used� For all three processes� large subregions produce greater under


coverage� A subregion of size ��	 is a quarter of the size of A� There is too little

variability in the resamples and the spread of �K�r�� �K�r� does not adequately

re�ect that of �K�r� �K�r�� The subsets method performs well for the Poisson

and soft core processes and noticeably worse for the Mat�ern cluster �eld�

Using the marked point method� we �nd smaller di�erences in coverage be


tween the various subregion sizes� This similarity in coverage of con�dence inter


vals obtained with di�erent subregion sizes is an important and useful property�

Often it is di�cult to decide what subregion size to use� A method that gives sim


ilar results with di�erent subregion sizes will be preferred over another method

that gives widely varying con�dence intervals� Using subregions of size ��	 pro


duces slightly less coverage due to the lack of variability in the resamples� Again

it is the con�dence intervals for the clustered process that do the worst�
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Figure �� Plots of the empirical coverage of nominal �	
 con�dence intervals
obtained by various methods for the Poisson� Mat�ern cluster and soft core
point processes� using subregion sizes of 
�	 �dotted line�� 
��	 �dashed line�
and 
���	 �solid line�� The plots in each column correspond to the same
point process while those in each row correspond to a particular method of
obtaining con�dence intervals�
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Based on this comparison on empirical coverage� the tiling method performs
the worst� Empirical coverage is consistently below the nominal �	� level� For
large resampling subregions� this may be due to a lack of variability in the re


samples� For the smaller subregion sizes� however� it is clear that the under

performance is due to the arti�cial point pairs produced by putting subregions
together� So the most computationally demanding method �see Section �� is also
the weakest method� It is more di�cult to decide between the splitting� subsets
and marked point methods� The marked point method seems to be more robust
with regards to subregion size� with coverage for the subregion of size ��	 be

ing only slightly lower� The di�erence across subregion sizes is more noticeable
for the subsets method� Choice of subregion size appears to be crucial for the
splitting method when applied to a clustered process�

���� Widths of the nominal ��� con�dence intervals

In this section we compare the widths of nominal �	� con�dence intervals
obtained by the four methods� The widths of the intervals for the Mat�ern cluster
�eld behave di�erently from those for the Poisson and soft core processes� and
will be described separately�

For the Poisson and soft core processes� the widths of the intervals obtained
by the resampling methods increase with decreasing subregion size� On the other
hand� with the splitting method� using the subregion size of ���	 yielded shorter
intervals than using the larger or smaller subregions� At small r� the width
of intervals obtained by the resampling methods are comparable and generally
shorter than the intervals obtained by the splitting method� At larger r� the
tiling method had the smallest intervals� Note� however� that these intervals also
have much lower coverage� The main di�erences in widths between the marked
point and subsets methods occur with the smallest subregions where the intervals

obtained by the subsets method were consistently wider�
For each r and subregion size� the con�dence intervals obtained by the split


ting method were the widest� These intervals are sometimes larger by quite a
large amount� The only exceptions are r � ���� with subregion sizes ���	 and
����	� where the intervals are slightly narrower� Thus� although the splitting
method is a much simpler procedure� the choice of subregion size can be critical
and an inappropriate choice may result in very large intervals� This is a major
weakness of the splitting method� since it is often unclear what an appropriate
subregion size is�

With the clustered process� it is di�cult to compare the intervals widths
obtained by the tiling method meaningfully since the empirical coverages di�er so
drastically across subregion size� This is also the case with the splitting method�
For the subsets and marked point methods� however� using subregion size of
���	 produced the widest intervals� With subregion size ����	� the con�dence
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intervals obtained by the subsets method become very wide at large r� This may
account for the increase in the empirical coverage for r � ���� �see Figure ���
The coverages obtained by all methods with the subregion size of ��	 are similar�
Here� the splitting method had the widest intervals� The marked point method
also has consistently wider intervals than the tiling or subsets method with this
subregion size�

���� Normalizing coverage

For con�dence intervals with similar coverage� we would prefer intervals that
are smaller� We compared the widths of the nominal �	� con�dence intervals
obtained by the di�erent methods in the previous section� However� with their
empirical coverages so di�erent� it is di�cult to meaningfully compare interval
widths�

To better compare the di�erent methods using interval widths as a criterion�
we computed con�dence intervals so that all of them have empirical coverages
of around �	�� We chose �	� because it was a convenient intermediate value
to which most of the con�dence intervals could be normalized �see below�� This
normalization is done separately for each r� since the empirical coverages vary
with r� For the resampling methods� we used the basic bootstrap interval given
in �	�� choosing for each r the appropriate � to give empirical coverages of �	��
For the splitting method� we obtained intervals with empirical coverage of �	�
by using the interval given at ���� replacing tN�	���� with a suitable number�
Essentially� for each r� the nominal level of the con�dence intervals for K�r� is
increased or decreased so that the proportion of intervals that contain K�r� based
on simulations under the truth is close to ���	�

Note that� in practice� this calibration procedure cannot be performed since
there will generally be only a single realization of an unknown point process� If
calibration is desired� some other method to make a bias correction to estimates�
such as the double bootstrap Hinkley and Shi ������ or the BCa method G
otze
and K
unsch ������ must be used� We tried using the double bootstrap to obtain
con�dence intervals with better empirical coverages� but without success�

Two points regarding our normalization procedure should be mentioned�
First� even at the ��� nominal level there were still a few cases with empirical
coverage above ��� for r � ����� Rather than further reduce the nominal cov

erage� we decided to keep the lowest nominal coverage at ���� The cases where
this occurred were the Poisson and soft core processes using the subsets method
and the soft core process using the marked point method� all with subregion sizes
of ����	� Second� with the tiling method using subregions of size ����	� empirical
coverages for the clustered process were lower than ��� for r � ���� even though
the nominal levels were ������ Results for these cases are reported together with
the others� but this fact should be borne in mind when comparing with other
methods�
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Tables ���� corresponding to the Poisson� Mat�ern cluster and soft core pro


cesses respectively� summarize these results� They show the mean� median� stan


dard deviation and inter
quartile range of the widths of normalized con�dence

intervals for K�r� for r � ����� ����� ���� and ����� For the Poisson process� in

Table �� Descriptive statistics of the widths of normalized con�dence inter�

vals for K�r� of the Poisson process� for r � 
�
�� 
�
�� 
��
 and 
���� The

values have been multiplied by �
��

Poisson process Subregion size


�	 
��	 
���	

r � 
�
� Splitting mean �SD� �� ��	� �� ��
� �� ����

median �IQR� �� ���� �� ���� �� ����

Tiling mean �SD� �� ���� �� ���� �� ����

median �IQR� �� ���� �� ��	� �� ����

Subsets mean �SD� �� ���� �� ���� �� ����

median �IQR� �� ��
� �� ���� �� ����

Marked Pt mean �SD� �� ���� �� ���� �� ����

median �IQR� �� ���� �� ��	� �� ����

r � 
�
� Splitting mean �SD� ��	 ��

� ��� �		� ��	 ����

median �IQR� ��� ����� ��	 ���� ��	 ����

Tiling mean �SD� ��� ��	� ��� ��	� �	� ����

median �IQR� �
� �	�� ��� ��	� �	� ����

Subsets mean �SD� �
	 ���� ��� ���� �
� ����

median �IQR� ��� �		� ��	 ��
� ��� ��	�

Marked Pt mean �SD� ��� ���� ��� ��
� ��� ����

median �IQR� ��� �	�� ��� ��
� ��� ����

r � 
��
 Splitting mean �SD� ��� ����� ��� ���� �
� ��
�

median �IQR� ��
 ����� ��
 ���� ��� �	
�

Tiling mean �SD� ��� ��
� �
� ���� 	
� �	��

median �IQR� ��� ��
�� ��� ���� ��� ����

Subsets mean �SD� ��� ���� ��
 �	�� ��	 ����

median �IQR� �	� ���� �	� ��
� �	� �	��

Marked Pt mean �SD� ��� �	�� �
� ���� �
� ����

median �IQR� �
� ���� ��� �	�� ��� ����

r � 
��� Splitting mean �SD� 		� ����� ��� ��
�� ��� ������

median �IQR� 	�� ����� ��� ����� ��� �����

Tiling mean �SD� �		 ����� ��� ����� ��� ��	�

median �IQR� ��� ����� ��� ����� ��� �����

Subsets mean �SD� 	�� ����� 	�� ���� ���� ����

median �IQR� 	�� ����� 	�� ��
�� ���� �����

Marked Pt mean �SD� ��� ���� ��� �		� 	�� ����

median �IQR� �	� ��
� ��� ���� 	�� ����
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almost all cases� the marked point method produced the shortest intervals� These

interval widths also tend to have a smaller spread� especially for larger r� The

widths of intervals obtained by tiling are the largest in most cases� while those

obtained by the splitting method had the largest spreads�

Table �� Descriptive statistics of the widths of normalized con�dence inter�

vals for K�r� of the Mat�ern cluster �eld� The values have been multiplied

by �
��

Mat�ern cluster Subregion size


�	 
��	 
���	

r � 
�
� Splitting mean �SD� ��� ����� ��� ����� ��� ��	�

median �IQR� ��� ����� ��� ����� ��� ����

Tiling mean �SD� ��	 ���� �	� �	�� �	� ����

median �IQR� ��� ��	� ��� ���� ��� �	��

Subsets mean �SD� ��� ���� �	� �	�� �	� ����

median �IQR� �	� ���� ��� ���� ��� �	��

Marked Pt mean �SD� ��� ���� ��	 �	�� �		 �	��

median �IQR� ��� ���� �	� ���� ��� �	��

r � 
�
� Splitting mean �SD� ���� ������ ���
 ����� ��� ����

median �IQR� ���� ��
��� �


 ��
�� ��� �����

Tiling mean �SD� �
�	 ���	� ��
 ��	�� ���� �����

median �IQR� ��� �	
�� ��� ����� ���
 �	���

Subsets mean �SD� ���� ���	� �
�� ����� �	� ���
�

median �IQR� �
�� �	��� ��� ����� �
� �����

Marked Pt mean �SD� ���� �	��� ���� ����� �
	� ��	��

median �IQR� �
�
 ����� �
�� ���	� ��� �����

r � 
��
 Splitting mean �std dev� ��
� ������ ��	� ����� ���	 ��
��

median �IQR� ���� ������ ���� ������ �
�� �����

Tiling mean �SD� ���� ��
��� ���� ��	�� ���� ���	�

median �IQR� ���	 ������ ���� ��
��� ���� ���	�

Subsets mean �SD� ���
 ���

� ���� ���
� ���� �����

median �IQR� ���� ���	�� ���	 ��
	
� ��
� �����

Marked Pt mean �SD� ���� ������ ���� ��
�	� �	�� ��
��

median �IQR� �	

 ������ �	�� ������ ���� �����

r � 
��� Splitting mean �std dev� 	��� ������ ���� ������ �		� ���
��

median �IQR� ���
 ��	��� ���� ������ ���� ������

Tiling mean �SD� ��	� ����	� ���
 ��	��� ��	
 ����	�

median �IQR� �	�� ������ ��	� ������ ��	� ������

Subsets mean �SD� ��	� ������ ���
 ���	�� ���� �����

median �IQR� ���
 ������ ��
� ������ �	�� ������

Marked Pt mean �SD� ���� ������ ���� ��	��� �
�� ������

median �IQR� ���� ������ ��	� ���
�� ���� ������
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Table �� Descriptive statistics of the widths of normalized con�dence inter�

vals for K�r� of the soft core process� The values have been multiplied by

�
��

Soft core process Subregion size


�	 
��	 
���	

r � 
�
� Splitting mean �SD� �� ���� �� ��� �� ��
�

median �IQR� �� ���� �� ��
� �� ����

Tiling mean �SD� �� ��� �� ��� �� ���

median �IQR� �� ��
� �� ��
� �� ����

Subsets mean �SD� �� ��� �� ��� �� ���

median �IQR� �� ���� �� ��� �� ���

Marked Pt mean �SD� �� ��� �� ��� �� ���

median �IQR� �� ��
� �� ��� �� ���

r � 
�
� Splitting mean �SD� ��� �		� �
� ���� �
� ����

median �IQR� ��� ���� �
� ���� �
� ����

Tiling mean �SD� �	
 ���� ��� ��
� ��� ����

median �IQR� ��	 ���� ��� ���� ��� ����

Subsets mean �SD� ��� ���� ��� ���� ��� ����

median �IQR� ��� ���� ��� ���� ��� ����

Marked Pt mean �SD� �
� ���� �
� ���� �
� ����

median �IQR� �
� ���� �
� ���� �
� ����

r � 
��
 Splitting mean �SD� ��� ���� ��� ���� �
� ���	�

median �IQR� �

 ���
� ��� �	�� ��� ����

Tiling mean �SD� �	
 ���� ��
 ���� ��� ����

median �IQR� ��� �	�� ��� ���� ��	 ����

Subsets mean �SD� ��� ���� ��� ���� ��� ����

median �IQR� ��� ���� ��	 ���� ��� ��	�

Marked Pt mean �SD� ��� ��	� ��	 ���� ��� ����

median �IQR� ��� ���� ��� ���� ��� ����

r � 
��� Splitting mean �SD� ��� ���
� ��� �	�� ��� �����

median �IQR� ��� ����� �	� ��	� ��� �����

Tiling mean �SD� ��� �	�� �
� ���� ��� ����

median �IQR� �	� ���� ��� �		� ��� �	��

Subsets mean �SD� �	� �	�� �	� ���� �
		 ����

median �IQR� ��� ���� ��� ���� �
	� ����

Marked Pt mean �SD� �	� ���� �
� ���� ��� ����

median �IQR� �	� ��	� �
� ��
� ��� ����

For the Mat�ern cluster �eld� the widths look more similar across methods�

Di�erences in widths tend to be small compared to their spread� There does not

appear to be a clearly best method� However� the splitting method appears to

do the worst and� in almost all cases� one of either the tiling or subsets method
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had the shortest normalized con�dence intervals�

Finally� with the soft core process� the marked point method appears to be

superior� producing intervals with the shortest mean widths in most combina


tions of subregion size and values of r� The spread of interval widths is also

smallest with intervals obtained by the marked point method� For this process

the splitting method also does better than the tiling and subsets methods and

is on par with the marked point method in some cases� Again� the intervals

obtained by the splitting method had the greatest variability in widths� The

intervals obtained by tiling are again the largest in most cases�

From the above comparisons� it is clear that the tiling method is the weakest

method� Furthermore� it requires the most computation� with complete recalcu


lation of weights for each resample� For the Poisson and soft core processes� the

marked point method appears to be the best� with shorter and less variable inter


val widths� For the Mat�ern cluster �eld� there is no clear method of choice� This

is not surprising since this is clearly the hardest case� and there may not be any

procedure that really works well� The subsets method seems to be slightly better

in that the normalized con�dence intervals are shorter� More studies should be

done to investigate if the superiority of the marked point method indeed holds

for a wider range of processes�

�� Further Issues

In this section we investigate the di�erence toroidal wrapping makes to the

empirical coverages of con�dence intervals obtained by resampling using the

marked point method� We also report results obtained from simulation studies

using a combination of rectangular observation windows and subregions� This is

an attempt to investigate whether resampling regions should be similar in shape

to the observation window�

The tiling method was not satisfactory even for resampling Poisson processes�

In this section we look at possible reasons for this inadequacy to e�ectively re


sample Poisson processes� Finally� we describe a way to improve on the very poor

coverage achieved by all methods for the soft core process at small distances �see

Figure ���

���� Toroidal wrapping

To resample a point process observed in a window A� subregions of the same

size are randomly placed in A to copy the observed pattern� If toroidal wrapping

is not used� the subregions have to be placed completely within A� Then the

points of the observed process will not be resampled with equal probability� This

causes a bias in the estimates obtained from the resampling process� so that the

center of the distribution of �K�r�� �K�r� may not be close to that of �K�r��K�r��
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Thus we would expect that for two resampling schemes� identical except that one

uses toroidal wrapping and the other does not� the one without toroidal wrapping

will produce con�dence intervals with lower empirical coverages�

We simulated ���� realizations of the Poisson� Mat�ern cluster and soft core

processes on the unit square� With each realization we resampled the observed

pattern using the marked point method� once with toroidal wrapping and once

without� Figure 	 shows the empirical coverages for the nominal �	� con�dence

intervals obtained without wrapping� The plots here should be compared with

the plots in the top row of Figure �� Notice that� with the exception of the

clustered process resampled using the smaller subregions� the empirical coverage

is considerably lower if toroidal wrapping is not used� The drop in empirical

coverage increases with subregion size� This is to be expected� since the positions

of large subregions within the window are con�ned to a smaller area� Thus� for

resampling a point process� we suggest using toroidal wrapping�
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Poisson
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���

���

���

���

��	
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Soft core

Figure 	� Plots of the empirical coverage of nominal �	
 con�dence intervals

obtained by the marked point method without toroidal wrapping for the

Poisson� Mat�ern cluster and soft core point processes� using subregion sizes

of 
�	 �dotted line�� 
��	 �dashed line� and 
���	 �solid line��

It is possible to resample points with equal probability without using toroidal

wrapping� One way is to randomly place subregions in A and allow them to fall

partly outside A� For each subregion Ai� resample only the points in A�Ai� The

last subregion is chosen so that the total resampled area
P

i vd�A � Ai� equals

the area of A� With this method� the actual subregions used are not of the

same dimensions� but points are resampled with equal probability� This method

of using subregions can be easily applied with the marked point and subsets

methods� since these methods do not require resampling subregions to be joined

together� For the tiling method� however� it is di�cult to recreate the window A

by arranging subregions of di�erent sizes� For the marked point method at least�

there seems to be little di�erence between this method of resampling points with

equal probability and the one with toroidal wrapping�



�� J� M� LOH AND M� L� STEIN

We believe that toroidal wrapping� when used in conjunction with the marked

point method �but not with the tiling or subsets method�� provides a natural and

e�ective way of adjusting for bias due to unequal sampling� Lahiri ������ suggests

accounting for unequal sampling by centering the bootstrapped estimates �K�r�

not at �K�r� but at the average of the bootstrapped estimates� but we do not

pursue that approach here�

���� Rectangles versus squares

When resampling a point process� it seems natural to use subregions that are

similar in shape to the observation window� For example� Lahiri� Kaiser� Cressie

and Hsu ������ advocate using shape preserving subregions to subsample random

�elds� We report results from our simulation study using square and rectangular

windows and subregions�

We used observation windows of the following sizes� � 	 �� ��� 	 ���	� ��	 	

�� ��� 	 ��	 and ���	 	 �� referred to as windows � to 	� respectively� All the

windows have an area of � and represent increasingly elongated rectangular re


gions� For each observation window we simulated ����� realizations of a point

process and resampled using �ve di�erent subregions� The subregion sizes are

���	 	 ���	� ��� 	 �����	� ����	 	 ��	� ��� 	 ����	 and �����	 	 �� referred to as

subregions � to 	� respectively� Each of these are respectively similar in shape

to observation windows � to 	 and have area equal to �����	� The resampling

method used is the marked point method� For some combinations of windows

and subregions� the �� subregions used to resample the process cannot be ar


ranged to recreate the window� However� with the marked point method� we do

not need to arrange the resampled points� so this does not pose a problem�

We �nd very little di�erence in empirical coverage between window sizes

and subregion sizes regardless of the process considered� and especially so for the

Poisson and soft core processes� There is also little di�erence in interval widths�

Based on these criteria of empirical coverage and interval widths� it appears that�

for rectangular windows� there does not seem to be any real advantage with

using subregions that are similar to the observation window over using other

rectangular subregions� To the extent that there is a di�erence� rectangular

subregions may do worse with clustered processes�

Figure � shows empirical coverages of nominal �	� con�dence intervals of

K�r� for the Mat�ern cluster process� obtained from our simulations� Each plot

corresponds to simulations of the process in an observational window� The curves

in each plot show empirical coverages obtained by resampling with the marked

point method using subregions � to 	� There is a very slight drop in empirical

coverage as the resampling subregions get progressively more elongated� suggest


ing that squarer sampling subregions may do better� regardless of the shape of
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the observation window� Note that the point process considered here is isotropic�

This �nding may not hold for anisotropic processes�
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Figure �� Empirical coverage of nominal �	
 con�dence intervals obtained

by the marked point method for the Mat�ern cluster �eld� using subregion

sizes of 
��	� 
��	 �solid line�� 
��� 
����	 �long dashed line�� 
���	� 
�	

�dashed line�� 
���
���	 �dashed and dotted line� and 
�
��	�� �dotted line��

Windows � to 	 correspond to windows with sides ���� 
������	� 
�	��� 
���

��	 and 
��	� ��

���� The tiling method for Poisson processes

The tiling method did not do well for Poisson processes� even though for

a Poisson process the distribution of points in disjoint regions are independent�

With our simulations of the Poisson process on the unit square� we found that the

empirical coverage of nominal �	� con�dence intervals of K�r� were signi�cantly

lower than �	� for all r between ���� and ���� �Figure ��� This section gives a

simple explanation for this undercoverage of the basic bootstrap interval�

Suppose we simulate realizations of a Poisson process on the unit square and

obtain estimates �K�r� of K�r�� Consider resampling each realization by tiling

using very small subregions� so that each subregion contains only one or no points�

This creates resamples that are approximately realizations of a Poisson process�

and� as the area of the subregions tend to zero� resampling in this way converges

to the parametric bootstrap of generating Poisson resamples with intensity ���
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Of course� if the process is assumed to be Poisson� K�r� would be known and

a parametric bootstrap is unnecessary� We do it here simply to show why the

tiling method does not work even with Poisson processes�

For this subsection� we use �K�r� and �K	�r� to respectively represent the

general estimator of K�r� and the particular estimate of K�r� computed from an

observed process� Suppose an observed Poisson process has estimate �K	�r�� The

basic bootstrap interval given at �	� assumes that the distribution of �K�r�� �K	�r�

resembles the sampling distribution of �K�r� � K�r�� with both distributions

centered very near zero� However� for the procedure described in the previous

paragraph� the resamples are approximate realizations of Poisson processes with

intensity �� and we expect the distribution of �K�r� to resemble the distribution

of �K�r� instead� at least in terms of the locations of the distributions� In other

words� the bootstrap estimates �K�r� behave as replicate observations of �K�r� and

are estimates of K�r�� rather than estimates of the value �K	�r� of the observed

process� Thus� the distribution of �K�r� � �K	�r� is not centered near zero like

the distribution of �K�r��K�r�� Instead� relative to the sampling distribution of
�K�r��K�r�� it is shifted by about K�r�� �K	�r��

Figure � shows histograms of �K�r�� �K	�r� for r � ���� and ���� obtained by

bootstrapping a single Poisson realization using the tiling method with subregions

of size ����� The actual value �K	�r��K�r� for the realization and the mean value

of �K�r� � �K	�r� are also shown �dotted and solid vertical lines respectively��

Notice that these two values are about equal in size but with opposite signs� We

found this property to hold for other values of r for this particular realization

and for �ve other Poisson realizations we examined� In contrast� the mean value

of �K�r��K�r� is close to zero�
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Figure �� Histograms of �K�r� � �K��r� for r � 
�
� �left� and 
��
 �right�
obtained by bootstrapping a single Poisson realization using tiling with sub�

regions of size 
�
�� Also shown are the actual value �K��r� �K�r� �dotted
line� for the realization and the mean value of �K�r� � �K��r� �solid line��
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Figure � shows the empirical coverage of nominal �	� con�dence intervals

for K�r� obtained by tiling using subregions of size ����� based on bootstrapping

	�� realizations of a Poisson process on the unit square� A very similar curve

is obtained when we resampled using the parametric bootstrap� Also included

in the plot are the empirical coverages obtained using di�erent subregion sizes�

Notice that the empirical coverage is much lower than the �	� nominal level and

the other curves� indicating that the tiling method does not work well with small

subregions� With the tiling method using larger subregions� part of the pattern

of the actual realization is preserved and the subregions will overlap more� so

that the resamples are not Poisson� but the e�ect of the bias is still present�

Furthermore� using large subregions results in too little variability in �K�r�� The

scale of �K�r� � �K�r� is thus smaller than that of �K�r� � K�r� and the basic

bootstrap interval at �	� does not work well� The implications of this �nding for

the parametric bootstrap with other point process models is not clear� but the

results here suggest the need for caution� Some sort of bias adjustment might

improve the tiling method for the Poisson case� but more study needs to be done

for the case of an unknown non
Poisson process�
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Figure �� Plot of the empirical coverage of nominal �	
 con�dence intervals

obtained by the tiling method using subregion size of 
�
� for a Poisson

process simulated on the unit square �long�dashed line�� Also included are

the plots for subregion sizes of 
�	 �dotted line�� 
��	 �dashed line� and 
���	

�solid line��

���� Poisson random variable approximation for regular processes

For a regular process� the number of pairs of points separated by distance r

or less is very small for small r� This produces some problems when we resample

a regular process to obtain con�dence intervals for K�r� when r is small� For the

soft core process used in our simulations� the number of point pairs within ����

apart was less than �� for a large majority of cases� We found that the empirical

coverage of nominal �	� con�dence intervals for K������ of this process is less

than ��� regardless of the resampling method �see Figure ���
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In such circumstances� we can attempt to obtain better con�dence intervals

by approximating the number of point pairs with a Poisson random variable

with mean m�� The outline of the method of constructing con�dence intervals

for m� is given in Example �����	 of Casella and Berger ������� For a Poisson

random variable with mean m�� the ����� � ��� con�dence interval for m� is

������
��m�	���� � �����

�
�m�������� where m is the observed value of the Poisson

random variable and 
��m is a Chi
squared random variable with �m degrees of

freedom� If m � �� 
��m�	���� is taken to be ��

De�ne an r
close pair as a pair of points at most distance r apart� For the

soft core process� we set m� � E�nr�� where nr is the number of r
close pairs�

Since� for r small� �aE�N�x� r�j point at x� 
 �m�� we have �
�aK�r� 
 �m��

Using the Poisson random variable approximation� a ����� � ��� con�dence

interval for K�r� is given by�
a

n�n� ��

��nr�	���� �

a

n�n� ��

��nr������

�
� ���

Again� we use n�n� ���a as our estimate of ��a�

The con�dence interval given by ��� can be used together with a resampling

method to obtain con�dence intervals for K�r� of a regular process� For an

observed realization� the number of r
close pairs is counted� The con�dence

interval at ��� is used for distances r for which the number of r
close pairs is

small� For any observed process� an objective way to decide on when to use ���

can be as follows� a cuto� distance r� is chosen to be the smallest value of r at

which any observed point has at least two r
close pairs� Then� for r � r�� the

number of r
close pairs can be considered a count of rare independent events�

suitable to be approximated by a Poisson random variable� We obtain con�dence

intervals using ��� for r � r� and by resampling for r � r��

We tested whether the Poisson variable approximation will give con�dence

intervals with better empirical coverage for small r� For each of 	�� simulated

realizations of the soft core process� we used the criterion described above to

compute the cuto� distance� For the soft core process we used� the Poisson

variable approximation was used in all the realizations for r � ����� in about

��� of the realizations for r � ����� and in just under �� of the realizations

for r � ����� Beyond r � ����� resampling was used for all the realizations�

Thus only the empirical coverages for r � ���� to ���� were a�ected by this

approximation� With the approximation� the empirical coverages for r � ����

and ���� were ���� and ���� respectively for all the subregion sizes� and essentially

unchanged for r � ����� Thus our study suggests that the Poisson random
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variable approximation can be used to obtain better con�dence intervals for K�r�

of a process at those values of r with very few point pairs observed�

	� Application to Absorber Catalogs

In this section� we use the marked point and splitting methods in the context

of absorber catalogs� We look at the coverage properties and lengths of con�dence

intervals obtained from simulated clustered catalogs� We also use these two

methods to obtain con�dence intervals of K�r� for an available absorber catalog�

	��� Absorber catalogs

Quasi
stellar objects� or QSOs� are extremely bright sources of light and are

among the most distant objects known to man� Their bright and focused beams of

light can be easily detected from the Earth� When the electro
magnetic spectrum

of a QSO is analyzed� absorption lines� i�e�� lines of missing electro
magnetic

frequencies� can sometimes be detected� These are due to bodies of matter lying

between the QSO and the Earth that absorb certain frequencies of the light� The

characteristic pattern of the absorption lines can be used to identify the chemical

elements present in the matter� These absorption lines are redshifted and the

amount of redshift gives the distance of the matter from the Earth� These bodies

of matter are called absorption
line systems or absorbers� These absorbers are

believed to be gas clouds near distant galaxies and are observed on radial line

segments� called lines of sight� between the Earth and QSOs� Of interest is the

clustering of these absorbers� which indirectly gives an indication of the clustering

of galaxies that are too far away to be easily observed�

Thus� an absorber catalog consists of information about the lines of sight

from the Earth to QSOs� their lengths and spatial distribution� as well as the

locations of absorbers on these lines� Due to physical reasons �Quashnock� Van


den Berk and York �������� these lines do not extend all the way to the Earth

nor to the QSOs� but are about �	� to �	� h�	 Mpc long� �The quantity h is

an unknown dimensionless constant� believed to be between ��	 and ���	� The

distance � h�	 Mpc is equal to ���� million light years and corresponds to a

typical distance between neighboring galaxies�� Note that there is a theoretical

possibility of dependence between the point process of absorber centers and the

random window� depending on the positions of the QSOs� through which the

absorbers are observed� Similarities in the results of clustering obtained from

absorber catalogs and galaxy surveys �Quashnock and Stein ������� Kirshner�

Oemler and Schechter ������� suggest that this is not a serious problem�

We have available a catalog consisting of ��� lines of sight and ��	 Car


bon iv absorbers on these lines� These absorbers are selected from a larger
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catalog of heavy element absorption systems drawn from the literature� using

criteria described in Quashnock� Vanden Berk and York ������ and Quashnock

and Vanden Berk ������ to produce a homogeneous catalog� An earlier ver


sion of the catalog is described in York� Yanny� Crotts� Carilli� Garrison and

Matheson ������ and an updated version is available from Daniel Vanden Berk

�danvb�astro�as�utexas�edu�� Calculating the weights for estimating K�r� is not

straightforward for an absorber catalog� since the observation region consists of

many lines in R� and the edge e�ects are huge� Loh� Quashnock and Stein ������

describe a method to get the weights for an estimate of K�r� that includes using

pairs of absorbers lying on di�erent lines of sight� We use the marked point and

splitting methods to obtain standard errors for the estimates �K�r��

Loh� Stein and Quashnock ������ also developed a model to generate clus


tered catalogs that mimics the second
order structure and qualitatively captures

higher order structure of the Vanden Berk et al� catalog� We use the same model

to generate mock clustered catalogs to compare the marked point and splitting

methods�

	��� Resampling mock clustered catalogs

We compare the marked point and splitting methods using simulations of

mock clustered absorbers on the lines of sight of the Vanden Berk et al� catalog�

The method used to simulate the absorbers is described in Loh� Stein and Quash


nock ������� We take the true value of K�r� to be the average of the estimates
�K�r� of K�r� obtained from ������ mock absorber catalogs using all absorber

pairs� Then� with 	�� new mock catalogs we obtain nominal �	� con�dence

intervals for K�r� using the marked point and splitting methods and �nd the

proportion of con�dence intervals that contain K�r��

We assume as in Loh� Quashnock and Stein ������ that the absorbers are

balls of constant radius �� with an observation occurring when a ball intersects

a line of sight� �This creates an inherent uncertainty in the estimates of K�r��

Speci�cally� the estimates of K�r� converge to K�u� for some u � �r � �� r � ���

This uncertainty is small since the values of r considered here are much larger

than ��� The observation window is then the union of all points in R� that are

at most distance � from some line of sight� Instead of a contiguous window� we

now have as many windows as the number of lines of sight� The lines of sight are

radial line segments contained in a ball SL with the Earth as the center� This

creates some ambiguity regarding how to split up the observation windows and

regarding what subregions to use for resampling�

With the splitting method� we can split up the ball SL into octants or into

orange
section
like slices of the same size� We used both in our simulation study�
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We also divided the ball into di�erent numbers of slices� There are an in�nite

number of positions to make the cuts into octants or slices� Since the lines of

sight are �xed across simulations of mock catalogs� we chose a priori the positions

to make these cuts� These positions are chosen so that the octants or slices have

roughly equal total length of lines� By doing this� we ensure that about the same

amount of each octant or slice is probed� Speci�cally� let N be the number of

subregions used� v	�Li� the total length of lines in subregion i and v	�L� the

total length of lines� We choose the subregions so that
PN

i
	 jv	�Li�� v	�L��N j

is minimum for the given set of lines� For the splitting method with slices� we

used N � �� 	� � and ���

With the marked point method� it is unclear what type of subregions to use

for resampling� A simple way is to resample using slices about the North
South

axis of the Earth� We randomly place N slices� each of volume equal to ��N times

the volume of SL� The absorbers lying in these slices are resampled and their

marks summed to give a resampled estimate of ��QK�r�� where Q � ���v	�L��

For our simulation study� we used N � 	� � and ��� It may be desirable to

use subregions other than slices for resampling� With slices� whole lines are

resampled� While there is nothing inherently wrong with resampling whole lines�

there is also no clear reason to do so� We also use balls of �xed radius� placed

randomly in a spherical shell in R�� to resample the absorbers� With balls� we

can sometimes resample parts of lines� The center of each ball is determined

randomly by simulating the spherical coordinates �R� �!� independently� using

fR�r� � r� for �	�� � r � ����� f���� � cos��� for ���� � � � ��� and

f��	� � ���� for � � 	 � ��� We continue to place more balls until the total

length of lines of sight within these balls is approximately equal to the total length

of the lines of sight of the original catalog� This ensures that all the resamples

contain approximately the same volume of space probed by lines� We used balls

of radius ���� 	�� and ��� h�	 Mpc�

Figure � shows the empirical coverages of nominal �	� con�dence intervals of

K�r� for the mock clustered catalogs� obtained by the splitting and marked point

methods described above� Resampling with slices yields slightly conservative

con�dence intervals for moderate to large r� The empirical coverage drops below

�	� for r � �� h�	 Mpc� however� The number of slices used has little e�ect on

the empirical coverage of the intervals� The radius of the balls used for resampling

also made little di�erence to the empirical coverage� With resampling using balls�

the coverage is roughly the same for all r� slightly below �	��

The splitting method performs remarkably well� with octants as well as with

slices� The empirical coverage is roughly �	� for all r whether octants or slices

were used� The large variability in coverage with subregion size that we observed
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in our simulations on the unit square does not occur here� at least for the slices

we used� A possible reason for this is that the subregions are small relative to

the whole region SL and yet large compared to the distances r considered�

� �� ��� ���

����

����

��	�

��	�

����

r

Marked point �slices�

� �� ��� ���

����

����

��	�

��	�

����

r

Marked point �balls�

� �� ��� ���

����

����

��	�

��	�

����

r

Splitting �octants�

� �� ��� ���

����

����

��	�

��	�

����

r

Splitting �slices�

Figure �� Plots of the empirical coverage of nominal �	
 con�dence intervals

obtained by the marked point and splitting methods for 	

 mock clustered

catalogs simulated on the lines of sight of the Vanden Berk et al� catalog�

The number of slices used are � �dashed and dotted line� splitting method

only�� 	 �solid line�� � �dashed line� and �
 �dotted line�� while the balls used

have radii �

 �dotted line�� 	

 �dashed line� and �

 �solid line� h�� Mpc�

Table � shows descriptive statistics of the interval widths� The interval

widths for the splitting method using two slices are very much longer than those

for the other methods� Resampling with the marked point method using balls

results in lengths that are quite a bit smaller than those obtained by the splitting

method or by resampling using slices� Recall that the marked point method using

balls gave con�dence intervals that were below �	�� The intervals obtained by

the splitting method are slightly shorter than those by resampling using slices�

With the exception of using two slices� there seems to be little di�erence in

lengths within each method�

If we normalize the coverage of the con�dence intervals obtained by resam


pling to �	�� using the method described in Subsection ���� we �nd that the
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lengths of intervals are about the same whether slices or balls were used for re


sampling �see Table 	�� Notice also that these lengths in Table 	 tend to be

slightly shorter than the lengths of intervals obtained by the splitting method

�Table ���

Table �� Descriptive statistics of the widths of nominal �	
 con�dence
intervals for K�r� of mock clustered catalogs� obtained by the marked point

method �with slices and balls� and the splitting method �with slices and
octants�� These numbers have been divided by �
��

r �h�� Mpc�

	
 �

 �	


Marked point method

number of slices

	 mean �SD� �� ���� ���� ��
�� 	��� ��
���

median �IQR� �� ��	� ���� ���
� 		�� ���	��

� mean �SD� �� ���� ���� ����� 		�� ��
���

median �IQR� �� ���� ���� ����� 	��� ���
��

�
 mean �SD� �� ���� ���� ����� 	��� ���	�

median �IQR� �� ���� ���
 ����� 	��� ������

radius of balls

�

 mean �SD� 	� ��� ��� ���
� �
�� �	���

median �IQR� 	� ���� ��� ����� ���� �����

	

 mean �SD� 	� ��
� ��� ����� �
	� �	���

median �IQR� 	� ���� �
� ����� ���� �����

�

 mean �SD� 	� ��
� ��� ����� �
�� �����

median �IQR� 	� ���� �
� ����� ���� ���
�

Splitting method

number of slices

� mean �SD� ��� ��
�� ���� ���	�� ��	�� �������

median �IQR� ��� ����� ���� ������ ����� �������

	 mean �SD� �	 ��
� ��
� �	

� ���� ��
���

median �IQR� �� ���� ���� ����� ���� ������

� mean �SD� �� ���� ���� ���
� ���� ��	���

median �IQR� �� ���� ���	 �	��� ���
 ����	�

�
 mean �SD� �� ���� ���� ����� 	��� ���		�

median �IQR� �� ���� ���� �	�
� �	�� ����	�

octants

mean �SD� �� ���� �
�� ����� ���� ������

median �IQR� �	 ���� �
�� ����� �


 ���
��

Thus� with our model for generating mock catalogs� the splitting method

gives more accurate coverage although at the cost of somewhat wider intervals

even after normalization� Considering that in Section � we found the marked
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point method to perform very well in most situations� we suggest using it to


gether with the splitting method� This application to absorber catalogs should

be further studied� preferably with more realistic models for the absorber catalog�

Table 	� Descriptive statistics of the widths of normalized con�dence in�

tervals for K�r� of mock clustered catalogs� obtained by the marked point

method� These numbers have been divided by �
��

r �h�� Mpc�

	
 �

 �	


Marked point method

number of slices

	 mean �SD� �
 ��	� �
�� ����� ��

 �����

median �IQR� 	� ���� �
�� ��
�� �	�	 �����

� mean �SD� �
 ��	� �
�	 ���
� �	�
 �����

median �IQR� 	� ��
� �
�� ����� �	�� �����

�
 mean �SD� 	� ���� �
�� ��
�� ���� �����

median �IQR� 	� ���� �

� ���
� �	�� ��	��

radius of balls

�

 mean �SD� 	� ���� �
�� ����� ��
� �����

median �IQR� 	� ���� �
�
 ��	�� �	
� �����

	

 mean �SD� 	� ���� ��� ����� ���� ���
�

median �IQR� 	� ��	� ��� ����� �	�� ��	��

�

 mean �SD� 	� ���� �
�� ����� ���� ���	�

median �IQR� 	� ��	� �
�	 ����� �	�� ��	
�

	��� Standard errrors for the Vanden Berk et al� catalog

Here� we apply the variants of the marked point and splitting methods used in

Subsection ��� to the Vanden Berk et al� absorber catalog� Just like in Subsection

���� we �nd little di�erence between the intervals when we vary the radius of the

balls used for resampling or the number of slices used�

Figure �� shows plots of �K�r� divided by ��r��� together with pointwise

nominal �	� con�dence intervals obtained by the marked point �left column�

and splitting methods �right column�� The resampling was done with balls of

radius ��� h�	 Mpc �top plot� and with � randomly placed slices �bottom plot��

The intervals obtained by resampling with balls tend to be slightly shorter� This

agrees with the �nding in Subsection ��� �Table �� when resampling mock clus


tered catalogs� For the splitting method we show plots for splitting the ball SL
into octants �top plot� and into � slices �bottom plot��

Con�dence bands for K�r� can be obtained from the bootstrap estimates
�K�r� using an empirical approach outlined in Davison and Hinkley ������ p��	���

arrange the R sets of �K�r� into rows and� for each r� rank �K�r�� Let n be the



BOOTSTRAPPING A SPATIAL POINT PROCESS ��

number of rows with at least one rank � k or � R � � � k� The kth and

�R���k�th ordered values of �K�r� then yield a ������n�R�� con�dence band

for K�r�� Figure �� shows approximate ��� con�dence bands for K�r� obtained

in this way using bootstrap estimates from resampling with the marked point

method using balls of radius ��� h�	 Mpc�

� �� �� �� ��� ��� 
��

���

�

�

�

Marked pt method �balls�

� �� �� �� ��� ��� 
��

���

�

�

�

Marked pt method �slices�

� �� �� �� ��� ��� 
��

���

�

�

�

Splitting method �octants�

� �� �� �� ��� ��� 
��

���

�

�

�

Splitting method �� slices�

r�h�� Mpc� r�h�� Mpc�

r�h�� Mpc� r�h�� Mpc�

Figure �
� Plots of �KI�r� divided by ��r

�� together with pointwise nominal

�	
 con�dence intervals obtained by the marked point method� with balls

of radius �

 h�� Mpc and with � randomly placed slices� and the splitting

method using octants and � slices�

We �nd evidence for clustering on scales up to about ��� h�	 Mpc and

possibly even up to �	� h�	 Mpc� However� this is far from conclusive� The

Sloan Digital Sky Survey is an ongoing project to map about a quarter of the

sky and is expected to �nd as many as ������� QSOs� With a dataset of this size�

we will be able to make stronger statements regarding the existence of clustering

on these scales� In agreement with the cosmological principle� which states that

the universe is homogeneous on large scales� we �nd no evidence for clustering

at scales larger than ��� h�	 Mpc�
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� �� �� �� ��� ��� 
��

���

�

�

�

Approximate ��
 con�dence bands

r�h�� Mpc�

Figure ��� Plot of �KI�r� divided by ��r
�� together with approximate

nominal ��
 con�dence bands �see text��
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