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Abstract: Many popular methods for the analysis of serial measurements obtained
in longitudinal studies are based on an underlying multivariate normal distribution
with linear mean model for the observations. By modeling the covariance matrix sep-
arately from the mean, a broad class of correlation structures can be accommodated.
Since the multivariate normal is parameterized only by the mean and covariance of
the observations, likelihood-based and moment-based estimation approaches yield
similar estimating equations. When the longitudinal responses obtained are categor-
ical, the data structures are similar, but developing flexible model-based approaches
which parallel the general linear multivariate normal model is more complex be-
cause of two general features of categorical data: the dependence of variance on the
mean and the attractiveness of nonlinear models for the mean response. This paper
discusses two approaches to modeling these data structures, a general multivariate
and a random effects model. We draw parallels with the serial measurements case,
and consider the interpretation of the parameters in the model. We discuss max-
imum likelihood estimation of model parameters under the full likelihood and, for
the random effects model, using a conditional likelihood.

Key words and phrases: Repeated categorical response, random effects models, mul-
tivariate models for discrete responses.

1. Introduction

Longitudinal studies are commonly undertaken in the health and social sci-
ences for a variety of purposes. Not only do longitudinal studies enable us to
eliminate some biases due to selection effects in cross-sectional studies, they also
provide greater efficiency for estimating change. A major objective of many
studies is to describe growth, aging or time profiles in a response of interest
and characterize the causal effects of subject covariates or experimental vari-
ables on change over time. The focus of this paper is on probability models
and likelihood-based analyses useful in longitudinal studies when the objective
is the characterization of these time trends and their dependence on covariates
or experimental variables. Other objectives of longitudinal studies may include
describing the pattern of association in the responses obtained at different time
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points or the temporal sequence of related outcomes. For our purposes, the
structure of these associations is not of primary interest, and the parameters
describing them will be treated mainly as nuisance parameters.

For purposes of discussing models and methods of analysis it is useful to
begin with a simple but flexible design for a longitudinal study, which we will
call the standard design. In the standard design, a response is obtained for each
subject, indexed by ¢+ = 1,... ,n, at the same set of T' time points, indexed by -
t=1,...,T. The time points need not be equally spaced. Each subject also has
a p X 1 vector of covariates, a; (which may include experimentally manipulated
variables), which are assumed constant over time. Thus in the standard design
all of the explanatory variables are either pure “within subject” (functions of
time or its surrogate) or “between subject” (a;) variables. Further, the within
subject variables take on the same values for all subjects since all individuals are
measured on the same occasions. This feature of standard designs is useful in
characterizing models for longitudinal data.

The standard design is more flexible than it might first appear. For exam-
ple, it can cover the case where the same subject is measured repeatedly under
different experimental conditions. Follinsbee et al. (1988) describe a cross-over
experiment where each subject is studied under two experimental conditions in
two different periods; serial responses are obtained on each subject under each
condition. In this case, both period and time are within subject variables and
order of treatment assignment is a between subjects variable.

An epidemiological survey with participants measured annually for the same
set of years can be described as a standard design if we take “time” to be calendar
year and initial age to be a subject specific covariate. In this setting it is useful
to have separate variables for the effects of initial age and age at measurement
in order to avoid confounding longitudinal information about age (obtained from
within subject changes) with cross-sectional information about age (obtained
from subject differences at initial measurement).

Multi-wave or multi-panel longitudinal designs consist of several groups of
subjects; within each group there is a standard design, but the time design may
vary from group to group. These can be regarded as standard designs with
predetermined patterns of missing data.

Although the standard design representation provides a useful way of char-
acterizing many types of longitudinal studies, it will often fail to be sufficiently
flexible to describe some. Many epidemiological surveys or studies based on reg-
istry data or physician records will have data structures not amenable to any
simple characterization. Subjects may have any number of responses taken at
any arbitrary set of times, covariates may be fixed for some subjects and change
unpredictably for others (e.g. smoking or employment status). Setting aside the
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questions of drawing inferences from such observational data, it is useful to have
models and methods with sufficient flexibility to handle these types of situations.
We refer to these data structures as unbalanced.

Even if the intended design of a longitudinal study is of the standard form,
it is often transformed into an unbalanced design by subject attrition or failure
to obtain the requisite set of measurements for each subject on each occasion.
Because this is such a common problem, especially when dealing with long term
studies of human populations, good models and methods of analysis are needed
to deal with unbalanced designs that arise as a result of missing data, either
deliberate or unintended.

The standard design also permits a simple notation which can be used with
both discrete and measured responses. The T x1 vector of responses is denoted by
Y;, where Y;* = (Y;1,... ,Yir) and the superscript ¢ in Y;' means transpose, the
P X 1 subject specific covariate vector is a;, and the design on time is specified
by the T' X r matrix Z, where the rows of Z correspond to the T times and
each column of Z contains a suitable function of time, e.g., a constant, a linear
trend, a quadratic trend, etc. We remark that Z need not be a function of time;
see Lange and Laird (1989) for an experiment involving pressure as the within
subject variable.

Following Cox (1972), we distinguish between studies of dependence and
studies of association. In studies of dependence, the primary interest usually
centers on parameters which model E(Y;) as a function of time and covariates.
This is in contrast to studies of association, where parameters modeling cov(Y;)
or E(Yi|yie,t' < t) are of primary interest. For likelihood-based analyses, it
is of course necessary to specify fully the entire distribution of Y;, but we will
focus our discussion on models which parameterize E(Y;) as a function of Z and
a;, with the covariance parameters being treated primarily as nuisance. The
next section summarizes some key features of multivariate normal models for
measurements. The remainder of the paper deals with binary response.

2. Linear Models for Serial Measurements

Most of the flexibility of the measured data models stems from the use of
the multivariate normal distribution and the use of linear models for the mean
parameter vector. The usual distributional assumption for serial measurements
is that Y; is multivariate normal with mean vector p; and covariance matrix X;.
There are three features of the multivariate normal with linear mean structures
which make it particularly attractive for the development of a flexible class of
models for serial measurements. First, in the absence of covariates, only 7 +
T(T - 1)/2 parameters are needed for a complete model specification; if T is
small relative to n it is not necessary to assume parsimonious models. Second is
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the fact that the mean vector and covariance matrix are distinct parameters and
may be modeled separately.

When the parameters for the covariance matrix X; are primarily considered
nuisance parameters, the purposes of modeling X; include potential efficiency
due to estimating a smaller number of parameters (T large) provided we model
the structure appropriately, and simpler estimating equations (for certain struc-
tures). This must be balanced against a potential loss in efficiency, or inap-
propriate estimation of the variance of the estimated regression parameters, if
we misspecify the structure of X;. If T is small, X is often assumed arbitrary
but constant for all i. More parsimonious representations for X include random
effects, autoregressive or other time series, general linear structure, and factor
analytic. From the point of view of modeling, the random effects structure is
quite flexible in that it can accommodate any degree of imbalance in the data
with regard to number and timing of individual responses.

A third property of the multivariate normal model which is attractive for
handling longitudinal data is the relation between joint and marginal distribu-
tions. When some observations are missing on an individual unit, either at
random or completely at random in the sense of Rubin (1976), the contribution
to the likelihood for that unit is the multivariate normal kernel of the marginal
distribution of the responses that are observed (Little and Rubin(1988), Chapter
7). This marginal distribution has exactly the same form as the joint distribution
of the T responses based on a subset of the parameters.

Suppose, for example, unit i is observed on § occasions; let S; denote an
§ x T matrix consisting of the S rows of a T x T identity matrix corresponding
to the § occasions where observations are obtained. Then if we have a model
for p; and X; in the joint distribution of all T' responses, the marginal distri-
bution is multivariate normal with mean Sip; and covariance matrix S; 2,-52.
In particular, if we assume p; = X;a, the marginal mean is simply S;X;a.
This feature means that in dealing with missing observations, we merely need
to change our design matrix to get the appropriate representation for the mean
when we use likelihood-based analyses. The ease of handling the covariance pa-
rameters depends upon the assumed structure for X. In general, S; 'S¢ consists
of a subset of the rows and columns of X. For random effects structures the co-
variance matrix will retain the same general structure with missing observations.
If an autoregressive structure is assumed for X, the representation in terms of
the autoregressive parameters is more complex. Although computations may be
more complex with missing and/or unbalanced data, the equivalence of the rep-
resentations makes it easy to specify the appropriate likelihood when the data
are missing at random, or completely at random.

If in addition to assuming multivariate normality for Y;, we also assume a
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linear structure for u;, the ML computations are easily managed using a variety
of algorithms. If we have a standard design, and use the model for u; suggested
by Khatri (1966) and Grizzle and Allen (1969), then we have closed form solutions
for the maximum likelihood estimators under wide range of assumptions about
the structure for X;. Under this representation, we have

B = Zipa;, (1)

where % is a 7 X p matrix of parameters; each row of 4 corresponds to a time
trend (constant, linear, quadratic, etc.). The columns of Z give the effects of
covariates on the time parameters. Note that (1) can also be written as a more
general linear model

u; = Xia, (2)

where X is a T' X ¢ matrix and & a g X 1 vector, by setting X = a; ® Z, where
® denotes direct product, and a is formed by concatenating the rows of ;.

With the general linear model and unbalanced designs, the maximum likeli-
hood computations are generally iterative, with the complexity depending upon
the structure for ;. A new BMDP release, based on work by Schlucter (1988),
handles MLE for this general model, allowing any type of structure for X;. Un-
der the linear model, the MLE of a may also be obtained by iterative generalized
least squares (GLS), where the weight matrices are updated at each iteration us-
ing the current estimate of X; (see Ware (1985)). This has led to the suggestion
of using GLS for a, but method-of-moments type estimations for X7;, in an effort
to simplify the ML computations; in general, such iterative GLS estimators do
not converge to the MLE.

Finally, we note the connection between linear growth curve models and
the general longitudinal model. In the growth curve setting, each individual
is assumed to have a growth model with a random parameter vector 3;, then
the B;’s are modeled as a linear function of the a;’s. With linearity, a growth
curve model can be written as a special case of (2) with a random effects structure
assumed for X;, implying that the marginal mean of y; is also a linear function of
the covariates, with the same parameters in the model for the 3,’s. This generates
a class of models sometimes referred to as two-stage random effects models.
Diggle (1988) and Azzalini (1987) discuss maximum likelihood for growth curve
models which also include an autocorrelation structure for the random error
term.

3. Discrete Responses

We now turn to the case where each Y;; is categorical. For simplicity we will
consider only the case of binary outcomes. The joint distribution of the Y;;’s, t =
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1,...,T,is multinomial with 27 possible outcomes. Notice that this distribution
does not have a simple representation in terms of the first and second moments
of the Y;¢’s; rather it assumes a transformation of the Yi;’s to a 27 indicator
vector; we let W; denote this indicator vector and denote the probabilities of
its underlying multinomial by = = {7j,;,.r}, where 1'w; = 1. The fully
parameterized distribution thus has 27 — 1 parameters; this is in contrast to the
multivariate normal where the fully parameterized distribution has only T(T +
3)/2 parameters. Since 2T — 1 grows much faster than T(T + 3)/2, it becomes
essential to find parsimonious structures for the parameter set as the number
of observations on each individual increases. In this section we discuss some
of the difficulties encountered in formulating distributional models for discrete
outcomes and some alternative approaches that have been developed.

As in the case with measured responses, the starting point for our work is
formulating models for the mean response as a function of time and covariates.
When each individual is observed on only one occasion so that we are in the
univariate setting, the natural parameterization corresponding to the canonical
link function is to assume logit of E(Y) is linear in time and covariates. In
the univariate setting the logit model has many attractive features, including
shifting the parameter space on (0,1) to the whole real line (see, for example,
Cox (1970), Chapter 2) and so it is generally used in the multivariate setting
as well. However the nonlinearity of the link function does have drawbacks in
the multivariate context, particularly when we seek to develop random effects
models. Although other link functions may be used (probit or log-log), any
nonlinear one will have many of the same drawbacks as the logit.

The last 25 years have seen the development of logistic and log-linear models
for analyzing discrete multivariate outcomes (Birch (1963), Haberman (1974),
Bishop et al. (1975)). Although these models are flexible and in widespread use,
their utility is restricted to two types of situations: 1) modeling the dependence
of a univariate response on a set of predictors or covariates or 2) modeling the
association structure between a set of multivariate responses. Because the general
log-linear model places structure on the set of joint probabilities of response, w™;’s,
these models are not directly useful for studies of dependence, where interest
centers on modeling

E(Ya)=P(Yy=1)=pi= » ) . (3)

Je#t

as a function of time and covariates. This same point has been made concerning
the utility of log-linear models in the context of more general multivariate discrete
data (Cox (1972), Prentice (1988), McCullagh and Nelder (1989)).
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Following the approach u§ed with measured responses, we write
p; = Zva; (4)
for the standard design, or more generally
p; = Xia, (5)

where now p;; = logit p;; and ! = (pi1,. .., pir). A major obstacle in developing
multivariate models for discrete outcomes is that the variance parameters are
functions of the mean parameters. In particular,

var(Yi:) = pie(1 — pit)-

In fact, once we assume a parameterization for the marginal mean, we have placed
restrictions on the entire set of 27! probabilities of the underlying multinomial
distribution (equation 3).

The remainder of this section describes two approaches to specifying the joint
distribution of the responses, where we take (4) or (5) as the starting point. One
parallels the “general multivariate” approach, the other uses a random effects
modeling approach.

General multivariate

Recent work by McCullagh and Nelder (1989, Chapter 6.5-6.6), Zhao and
Prentice (1989) and Lipsitz et al. (1990) on general multivariate models for dis-
crete multivariate data show promise for application in the longitudinal data
setting. Related work on multivariate models for contingency table data ap-
pears in Haber (1985). These models use the linear logit model for the vector
of marginal probabilities (equation 5), combined with a general structure on the
joint probabilities. McCullagh and Nelder’s model was developed for the general
multivariate case with T' = 2 where the 2 occasions correspond to different out-
comes on the same individual, e.g. presence or absence of two different diseases.
Lipsitz et al. also consider the " = 2 case, but in the longitudinal data setting.
In this case, an individual’s probability vector consists of the joint probabilities
underlying the 2 x 2 table obtained by cross-classifying y;; and ;2. The approach
is to simply make a 1-1 transformation on the three dimensional parameter space
of the joint probabilities to the parameter space consisting of the logits of the two
marginal probabilities and a third parameter to make the transformation 1-1.
This third parameter can also be thought of as an association (or correlation
parameter). McCullagh and Nelder use the log of the odds-ratio of the 2 x 2
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table as the third parameter; Lipsitz et al. also consider the correlation and the
risk ratio. Although the correlation is more natural in the measurements setting
the odds-ratio allows us to model association without imposing constraints on
the margins and has the advantage that asymptotically & and the estimated as-
sociation parameters are independent (McCullagh and Nelder (1989), Palmgren
(1989)).

Following Cox (1972), we may write the general log-linear model for the 2x 2
case as

Inp(y;) = 61y + 0392 + 03,y 92 — A, (6)

where p(y;) is the joint probability that the random outcome Y; = y;,and Atisa
normalizing constant insuring that the four probabilities {r;, ;,} sum to one. The
6* parameters have an interpretation as regression parameters in the conditional
distribution of y;; given y;,, i.e.

logit P(Yi1 = 1|yiz) = 6] + 6}, y:0.

Note also that in the T = 2 case, 8}, = In(n},7},/7{,73,). The usual loglinear
model would then parameterize the 6’s as function of covariates (e.g. 0; = X;a)
for suitable X;, a and 6] = (6i,63,6;,). Instead we transform the parameter
space from 6; to 7;, where

Ni¢ = logitpyy = pie, t=1,2

and

i3 = 013,
and make 9} = (mi1,mi2,mi3) a linear function of covariates. Since the transfor-
mation is 1-1 we have allowed for arbitrary association structure, but modeled
the marginal parameters as functions of the covariates.

This approach has been generalized for the repeated measures setting with
arbitrary numbers of observations on each individual by Zhao and Prentice
(1989), using the covariances of (y;s,:x) rather than the odds ratios as asso-
ciation parameters. We consider here its application to the longitudinal data

setting with T' observations on each individual. The general log-linear model for
a 2T table can be expressed as

T
Inp(y;) = ) Oivic + 3 Ohevintie + D Obmuibin¥imyit
=1 k<t k<m<t

T
+.oo 6 r [T wie — A, (M

t=1




METHODS FOR LONGITUDINAL DATA ANALYSIS 41

where p(y;) = p(¥i1, ¥i2,- .. , ¥it). The model given in (7) is saturated in parame-
ters; a simple parsimonious model which retains all first order associations is the
pairwise model which sets all the #*’s to zero except for 6i,t=1,...,T and 6i,,
k<tt=1,...,T. In the pairwise model, the };t’s are again log odds-ratios of
the form

61, = ln(”hja...jr 7"22]'3...]'1 /Wizja...jr 7’51]'3...]'1 )s (8)
etc. The 6},’s can also be thought of conditional odds-ratios, as they model the
association between y;; and y;; given all other y;;, [ # k,t.

Zhao and Prentice (1989) suggest fixing the third-order and higher 6’s (6i,,,
8}1m: €tc.) at predetermined values (setting them equal to zero gives a convenient
class of estimators), then making a 1-1 transformation from the lower order 6%’s
to the moment parameters (p;, I';), where p; is the T X 1 vector of marginal
moments and I is the (f) vector of marginal correlations,

E(yix — pir)(vit — Pie)[pix(1 — pir)pie(1 — pie)] "2

Then p; and I are modelled as appropriate functions of the covariates, and pa-
rameter vectors (a,(3). Solving the likelihood equations gives pseudo-maximum
likelihood estimates, and maximum likelihood in the event that the higher-order
8%’s are correctly specified. They also suggest using a robust variance estimator
rather than the Fisher Information, which will only be appropriate if the assumed
model is correctly specified. We note that the adequacy of the pairwise model
can easily be tested using standard log-linear modelling techniques.

Two alternatives to modeling the correlation structure which seem more
natural here are to model the log odds-ratios, either the marginal or conditional,
as functions of the covariates. The marginal odds ratios, say wi,, are defined as

Wi =In(Ty34. 4 To24 4+ /T124..+T214...4), etc.,

while the conditional odds ratios are the 8%,’s, as defined in (8).
Generalizing the case for T = 2 and assuming the pairwise model holds, we

may write
= M‘
K (w; )

using the marginal odds ratios, or

* M
"= (0.-)
using the conditional (where 6; is taken to be the (g) vector of 6%,’s) and then

set either equal to
X;a
\ ZB
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for appropriate covariate matrices X; and Z;. The model using #; can be con-
sidered a special case of McCullagh and Nelder’s multivariate model. In the
setting where the association parameters are primarily nuisance parameters, we
can alternatively use 7. Although using #} may not be as appealing from the
point of view of interpretation of the 3 parameters, it does have the advantage
that the ;’s are invariant to changes in the marginal probabilities, and that the
asymptotic covariance of & with 3 equals 0.

This general approach can be extended to incorporate non-zero higher-order
parameters, although the number of parameter proliferates rapidly, so that the
pseudo-maximum likelihood approach suggested by Zhao and Prentice may be
more attractive.

Computation of (d,ﬁ) is fairly straightforward for T = 2, using Newton-
Rhapson or Fisher Scoring (Lipsitz et al., McCullagh and Nelder). For larger 7,
the computations become more complicated because evaluation of the likelihood
equations requires evaluation of the multinomial probability vector «* for each
i. For the pairwise model (or even for the general model) there is no closed
form expression representing * as a function of %, or 7} (Bishop, Fienberg
and Holland (1975), Ch. 3.4.2). This means one must use a series of iterations
for each i (or for each group of individuals with identical covariates), within
each step of the Fisher-Scoring or Newton-Rhapson algorithm to compute the
x'. For large n and/or T, the computations thus become prohibitive, although
the use of iterative proportional fitting to compute the #*’s may prove to make
computations more manageable.

One drawback of the general multivariate model is that the distribu-
tion is not reproducible, i.e. for some s < T, the marginal distribution of

(¥i1,¥i2,... ,¥is) does not have the same form as (7) with second and higher
order associations set to zero, i.e. it is not true that

s s
W p(Yits Yizs- - ¥i) = D Ofwie + Y Oheyikyie — A
t=1 k<t=1

for general 6'’s. Not only does pairwise independence not hold for the marginal
distribution except in special circumstances, but even if it does, the parameters of
the corresponding pairwise model are not the same as the #*’s in the joint model.
This means that the appropriate likelihood for the case where we have missing
data will be more complicated to compute. Even though model (7) and its
pairwise version is a regular exponential family density with sufficient statistics,
after reparameterization to (a,3) the likelihood can no longer be expressed in
the regular exponential family form, so that the EM algorithm is not a panacea
for computing in the missing data case.
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We remark that Bonney (1987) has proposed a class of logistic models for
longitudinal data, which take the form

logitpin = XuaB+ Yo

and
logit pit = XitB + vt-1¥it—1 + - .. + 11¥i1, t>1,

where X;; is the tth row of X, and p;; = P(Yi; = 1|yit—1,... ,¥i1). Bonney’s
model is a special case of the general log-linear model, and thus more useful
in studies of association rather than dependence, analogous to the time series
models for measured data proposed by Rosner, Mufioz et al.(1985). Similar
considerations apply to the discrete data models discussed in Rosner (1984) and
Connolly and Liang (1988). Neuhaus and Jewell (1989) discuss the relationship
between the parameters in these conditional models, mixed models (discussed in
the next section ) and marginal models.

Two-stage random effects models

Drawing on analogies with linear models for measured data, various authors
(Korn and Whittemore (1979); Stiratelli, Laird and Ware (1984); Zeger, Liang
and Albert (1988)) have suggested the use of random effects models. This allows
the estimation of individual growth curves and rates of change, and also induces
a correlation structure in the longitudinal discrete data setting. One variant of
this approach patterned after the general random effects model assumes that the
Y;: are conditionally independent given a vector of “individual” parameters, say
b, with pj; = E(Yit|bi, X;), pj; = logitp}; and

[l,: = X;a + Z;b;. (9)

The b;’s are usually assumed to be independently distributed as N(0,D). Here
X; and Z; are suitably chosen functions of time and covariates. We use the
notation u] rather than pu; to emphasize the fact that they are logits of different
probabilities, pj, rather than p;;. For the standard design (9) may be written

ut = Zepa; + Zb;. (10)

Zeger, Liang and Albert (1988) use a probit rather than a logit link function
and introduce an additional scale parameter for the distributior of Y; given b;.
Related mixed models for binary data developed in other contexis are discussed
in Wong and Mason (1985), Anderson and Aitkin (1985), Gilmour, Anderson
and Rae (1985), McCulloch (1989) and Conaway (1989a).
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An important distinction between mixed models for binary data and mixed
linear models for measured data is that the conditional and marginal regression
parameters are not, in general, equal, i.e. if model (9) holds with E(b;) = 0 so
that

E(p}) = Xia,

in general
r; = logit [E(y;| X;)] # Xia.

Zeger et al. show that for the probit link ( and the logit via approximation) effects
of covariates are greater in magnitude in the random effects model than they are
in the marginal regression model. The proof of this phenomenon in general is
the same as that which shows there is attenuation in regression parameters for
non-linear link models with omitted covariates (Gail et al. (1984)).

There is an extensive literature on parameter estimation with these mixed
models, much of it pointing out the computational difficulty in obtaining exact
maximum likelihood solutions and suggesting approximations. For the model in
(9), the likelihood of the data (sometimes called the marginal likelihood, since
we average over the distribution of the b;’s) is

n T
= I [ TTeim (1 - i -+ar (e, (1)

i=1

where F(b;) is the multivariate normal distribution of the b;’s. Much of the
computational complexity with this model arises because there is no closed form
solution for Lys. This led Zeger et al. (1988) and McCulloch (1989) to propose
using a probit rather than a logit transformation for p;, and Conaway (1989a) to
propose a log-log transformation, with a log-gamma distribution for the random
effects.

If b; is a scalar (only one random effect), then the maximum likelihood com-
putations for the mixed model are manageable. The software package EGRET
fits the mixed model using a quasi-Newton algorithm, and gives standard error
estimates using the inverse sample information matrix. Anderson and Aitken
(1985) discuss computation using a Gaussian quadrature approximation to the
likelihood. This allows the MLE’s to be obtained using iterative reweighted lo-
gistic regression. Although this approach is simple to implement, it is limited
to relatively small data sets, as the number of “observations” in the logistic
regressions is KnT, where K is the number of quadrature points.

An alternative to the full maximum likelihood approach is also available for
the case where b; is a scalar and Z; is a vector of ones. In this setting with
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the standard design, the mixed model is a special case of the Rasch model. The
Rasch model of the item analysis literature assumes

Kie = ¢+ b

and arbitrary distributional form for b; (Rasch (1960)). Here the individual
scores, S; = 3, Yit = Yi4, are sufficient statistics for b; for fixed &¢, thus we may
write with ¢ = (¢1,... ,47)" and b = (by,... ,b,)}

F(Wil#,b:) = f(y;ld, i) f(si],b;).

This implies the likelihood (for both ¢ and b) based on an independent sample
of individuals with the same ¢ factors as

L(¢7 b;yla' .- ’yn) = LC(¢;y1’°' 2y Yns 3)L3(¢1 b73)’

where s* = (s,...,8,), Lc is the likelihood for ¢ based on the conditional

distribution of Y1,...,Y, given s and L, is the likelihood for ¢ and b based on
8. Thus for an arbitrary distribution, F, on b, the marginal likelihood (11) can
be written as

LM(¢)y17 ,yn) = LC(¢’y1’ ’yn’s)L:7

where L7 is the likelihood for ¢ based on s only:

r=1] / F(s:l, b:)dF(5:).
=1

Andersen (1970) has argued that L} has very little information about ¢ in the
absence of any information about F, thus inferences about the item parameters
@ should be based on the conditional likelihood Lo. This is attractive since,
as shown by Tjur (1982), the conditional likelihood is Poisson and standard
regression packages can be used to estimate ¢ and its asymptotic standard error.
See Conaway (1989b) for an overview of methods for conditional analysis in this’
setting.

Before discussing the application of these results to the longitudinal data set-
ting it is worth noting that although the conditional estimates of ¢ are consistent
and asymptotically nearly efficient, they are not in general equal to the estimates
of ¢ obtained by maximizing Lys when we assume a parametric form for F. In
fact, as with the comparison of marginal and conditional models, there is some
attenuation in the estimates of contrasts (¢; — ¢ ) using the marginal likelihood.
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Intuitively this follows from the fact that the conditional estimator discards data
on individuals whose responses at ¢t and k are the same {(0,0) or (1, 1)} and esti-
mates the ¢; — ¢i contrast only from the “changers”. Thus the measure of overall
(or marginal) change will clearly be less, since it includes data from people who
do not change.

We now consider the application of the conditional estimation approach to
the longitudinal data setting, starting with a simple case for the standard design
with

u; = Zya; + Z,b;, (12)
where Z} = (1,1,...,1) is the first column of Z and b; is N(0,d). This is
like the compound-symmetry model for measured data, in that it assumes each
individual has a unique random “intercept” but the remaining time parameters

are fixed. It follows immediately from (12) that f(y;|%,a;,b;) can be expressed
as

T
F(:) = exp {424 + suibi + Y In(1 - p},)}

t=1

with 83; = y{Z; = y;;. Since this depends upon y; only via
8; = yfza
we write
T
F(w:) = exp {slobai + suibi + 3 In(1 - p)}.
t=1
Following Tjur (1982) it is easily seen that

exp(s;*v’a;)
2. exp(si*p a;)’
where s is the 1 X (r — 1) vector consisting of si3,... ,8ir, %" is the (r — 1) x p

matrix formed by omitting the first row of 4, and the 3 . is over all values of y;
such that y;4 = c¢. Thus the likelihood based on the conditional distribution of

F(yils1i = ¢) =

Y15 »Yp Given 8§ = (s11,...,81) = ¢* = (c1,... ,¢,) is given by
Le = exp(Y; si*4pa.) (13)
[Tz, 3., exp(si*¥a;)

Two things follow immediately from (13): 1) the conditional likelihood does not
depend upon the random effects, but there is correspondingly no information
about the first row of 1 (i.e. the “main effects”) in the conditional likelihood
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and 2) conditional estimates of the “time parameters” (4*) can be obtained via
an ordinary Poisson regression algorithm.

The attractiveness of the computational simplicity and near optimality of
the conditional likelihood approach is offset somewhat by the fact that the condi-
tional likelihood only contains information about the “change” parameters (")
and not the main effects of time (the first row of 4). Of course in many (if not
all) longitudinal settings the 1" are of primary interest, so that this will not be
a major limitation. However the model (12) specifies a fairly limited dependence
structure which may be inadequate, especially with large 7. If we add additional
random effects to allow for a more complex dependence structure, we then must
condition on additional components of s;, and the corresponding rows of ¥ will
drop out of the conditional likelihood. Thus except in fairly simple settings where
T is small so that a limited specification on the random effects is adequate, the
conditional approach to estimation seems of limited utility and we must resort
to using marginal maximum likelihood.

4. Discussion

There exists a growing body of literature on multivariate models for discrete
data that have potential application to the longitudinal data setting. A limitation
to their usage is the current state of the art in computing, as maximum likelihood
computations can be quite formidable. Judging from recent progress, maximum
likelihood methods for discrete longitudinal data will eventually be as accessible
as those currently available for the measured data setting.

We have limited our discussion to maximum likelihood estimators in this
paper. An alternative is to use quasi-likelihood or moment-type estimators, as
discussed in Liang and Zeger (1986), Zeger and Liang (1986) and Prentice (1988).
Likelihood estimators will be optimal if the assumed model is correct, although
there appears to be relatively little loss of efficiency when quasi-likelihood ap-
proaches are used. When the model for the mean is correctly specified, but
that for the association parameters is not, both the maximum likelihood and the
quasi-likelihood estimators are consistent with complete data, although using
the standard likelihood approach will misspecify the variance. In this setting,
the quasi-likelihood approach, coupled with a robust variance estimator, may be
preferable; the relative efficiency of the two in this setting has not been explored.

The situation is somewhat more complex with missing data. Here the quasi-
likelihood approach is no longer consistent in general, unless the data are miss-
ing completely at random (Rubin (1976)), which is a strong assumption on the
missingness process. Lipsitz, Laird and Harrington (1989) derive the bias of the
quasi-likelihood estimators with missing at random data for the dichotomous case
with T = 2. Maximum likelihood is consistent under the correct model speci-
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fication, when the data are missing at random, but its properties with model
misspecification and missing data have not been studied. Thus in the case of
both missing data and model misspecification there is no obvious best choice,
especially when we consider that one is often not certain about the model for the
missingness. Further research on the relative sensitivity of different estimators
to different types of model misspecification and tradeoffs between robustness and
efficiency will be necessary to resolve this issue.
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