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Abstract: We consider the problem of model averaging over a set of semiparametric

varying coefficient models where the varying coefficients can be functions of contin-

uous and categorical variables. We propose a Mallows model averaging procedure

that is capable of delivering model averaging estimators with solid finite-sample

performance. Theoretical underpinnings are provided, finite-sample performance is

assessed via Monte Carlo simulation, and an illustrative application is presented.

The approach is very simple to implement in practice and R code is provided as

supplementary material.
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1. Introduction

Practitioners who wish to tackle model uncertainty have a variety of ap-

proaches at their disposal. The most promising involve model selection and

model averaging. Model selection proceeds from the premise that all models

are, at best, approximations and involves selecting one model from among a

set of candidate models. It is understood that, in practice, it is unlikely that

the true model is among the set of candidate models, hence the model selected

is the least misspecified among the set of models considered, in some known

statistical sense. In essence, the practitioner who adopts model selection ap-

plies weight 1 to one candidate model and weight 0 to all others using a se-

lection criterion. Model selection has a long history, and a variety of meth-

ods have been proposed, each based on distinct estimation criteria. These in-

clude Akaike’s An Information Criterion (AIC; Akaike (1970, 1973)), Mallows’

Cp (Mallows (1973)), the Bayesian Information Criterion (BIC; Schwarz (1978)),
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delete-one cross-validation (Stone (1974)), generalized cross-validation (Craven

and Wahba (1979)), and the Focused Information Criterion (FIC) (Claeskens

and Hjort (2003)), to name but a few.

Model averaging, on the other hand, produces a model that is a weighted

average defined over a set of candidate models for which the weights are chosen by

a statistical procedure having known properties, an averaging criterion. There

is a longstanding literature on Bayesian model averaging; see Hoeting et al.

(1999) for a comprehensive review. There is also a rapidly-growing literature

on frequentist methods for model averaging, including Buckland, Burnhamn and

Augustin (1997), Hansen (2007), Wan, Zhang and Zou (2010), Hansen and Racine

(2012), Zhang and Wang (2015), Zhang, Zou and Carroll (2015) and Zhang et

al. (2016), among others.

Practitioners who adopt the model averaging approach often construct a

weighted average defined over a set of parametric candidates. An alternative

approach, one that we consider here, is to instead construct a weighted average

defined over a set of more flexible semiparametric candidates. From a practi-

cal perspective, one might hope that by using more flexible estimators for the

set of candidate models perhaps fewer candidate models might be needed, or

that perhaps the approximation capabilities of the resulting model might be

improved. Though one might be tempted to perhaps average over fully non-

parametric models, such models suffer from the so-called curse of dimensionality

and are restricted to only a few predictors at most. Semiparametric models

strike a balance between flexibility and efficiency thereby attenuating the curse

of dimensionality. Furthermore, being semiparametric in nature, one can easily

incorporate prior parametric information if it exists. Zhang and Wang (2015) is

the first to consider averaging over Robinson’s (1988) semiparametric partially

linear model. Our approach involves averaging over the so-called varying coeffi-

cient specification; see Beran and Hall (1992), Hastie and Tibshirani (1993), Cai,

Fan and Yao (2000), Li et al. (2002) and the references therein. The varying

coefficient specification is particularly appealing in this context, in part because

a range of models turns out to be special cases including a fully nonparametric

model and Robinson’s (1988) partially linear model, by way of illustration. Our

approach adopts Mallows’ Cp criterion (Mallows (1973)) for selecting the aver-

aging weights, and allows for the coefficients in the varying coefficient candidate

models to be functions of either continuous data types, categorical data types,

or a mix of both.

Our theoretical results (based on the Mallows criterion) apply both to nested
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and non-nested regression models, and allow for heterogeneous errors. Hansen

(2014) examines the asymptotic risk of nested least-squares averaging estima-

tors based on minimizing a generalized Mallows criterion in a linear model with

heteroskedasticity. Liu, Okui and Yoshimura (2016) adopt the Mallows crite-

rion to choose the weight vector in the model averaging estimator for linear

regression models with heteroskedastic errors. By averaging over semiparametric

specifications we generalize existing approaches and provide practitioners with a

straightforward and powerful approach to handling model uncertainty.

The rest of this paper proceeds as follows. Section 2 presents the vary-

ing coefficient specification defined over mixed datatypes, Mallows-driven weight

choice, and asymptotic optimality of the proposed approach. Section 3 examines

the finite-sample performance of the proposed approach relative to alternative

model averaging estimators and model selection estimators, while Section 4 con-

siders an illustrative example and a comparison of hold-out data performance for

a range of averaging and selection criteria. Section 5 presents some brief con-

cluding remarks. Proofs of the main theorems are provided in Supplementary

Material 1, while R code can be found in Supplementary Material 2.

2. Model Averaging Estimation

2.1. Model and estimators

We consider a varying coefficient model

Yi = µi + εi =

∞∑
j=1

Xijβj(Zi) + εi, i = 1, . . . , n, (2.1)

where Xi = (Xi1, Xi2, . . . )
′ is a countably infinite random vector, Zi = (Zi1, . . . ,

Ziq)
′ is a q×1 random vector, β(Zi) = (β1(Zi), β2(Zi), . . . )

′ is a countably infinite

unknown vector function, µi = X ′iβ(Zi), the idiosyncratic error term εi is possibly

conditionally heteroscedastic satisfying E(εi|Xi, Zi) = 0 and E(ε2i |Xi, Zi) = σ2i .

The observations (Xi, Zi, Yi)
n
i=1 are independent across i.

Our goal is to estimate µi for the purposes of prediction, the focus of the

literature on model averaging estimation; see Hansen (2007) and Lu and Su

(2015) by way of illustration. To this end, we use Sn candidate varying coefficient

models to approximate (2.1), where the number of models, Sn, is allowed to

diverge to infinity as n→∞. The sth candidate model is

Yi = X ′i,(s)β(s)(Zi,(s)) + bi,(s) + εi, i = 1, . . . , n, (2.2)

where X ′i,(s) is a ps-dimensional subset of Xi, Zi,(s) is a qs-dimensional (1 ≤ qs ≤
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q) subset of Zi, β(s)(Zi,(s)) is the corresponding ps × 1 unknown function, and

bi,(s) = µi−X ′i,(s)β(s)(Zi,(s)) represents the approximation error in the sth model.

To provide an optimal weighting scheme, we first need to estimate each

candidate model. Premultiplying (2.1) by Xi,(s) and taking E(·|Zi,(s) = z(s))

leads to E(Xi,(s)Yi|Zi,(s) = z(s)) = E(Xi,(s)X
′
i,(s))β(s)(z(s)), yielding

β(s)(z(s)) = {E(Xi,(s)X
′
i,(s)|z(s))}

−1E(Xi,(s)Yi|z(s)). (2.3)

Let K(s)((Zj,(s) − z(s))/h(s)) = k1((Zj,(s),1 − z(s),1)/h(s),1) × · · · × kqs((Zj,(s),qs −
z(s),qs)/h(s),qs) denote a product kernel function, where k(·) is a univariate kernel

function and h(s),r is a scalar bandwidth for r = 1, . . . , qs. When the data consist

of a mix of categorical and continuous datatypes, one can replace the above kernel

function by the generalized kernel function that smooths both the continuous and

the discrete covariates; see Hall, Racine and Li (2004) for details, and also Hall,

Li and Racine (2007), and Hall and Racine (2015) for related extensions. Then

(2.3) suggests a local constant least-squares estimator,

β̂(s)(z(s)) =


n∑
j=1

Xj,(s)X
′
j,(s)K(s)

(
Zj,(s) − z(s)

h(s)

)
−1

n∑
j=1

Xj,(s)YjK(s)

(
Zj,(s) − z(s)

h(s)

)
. (2.4)

Letting X(s) = (X1,(s), . . . , Xn,(s))
′, Z(s) = (Z1,(s), . . . , Zn,(s))

′, Y = (Y1, . . . , Yn)′,

and K[z(s)] be an n× n diagonal matrix with jth diagonal element K(s)((Zj,(s) −
z(s))/h(s)), we can rewrite (2.4) as

β̂(s)(z(s)) =
(
X ′(s)K[z(s)]X(s)

)−1
X ′(s)K[z(s)]Y. (2.5)

Then, we can estimate µi,(s) by

µ̂i,(s) = X ′i,(s)β̂(s)(Zi,(s)) = X ′i,(s)

(
X ′(s)K[Zi,(s)]X(s)

)−1
X ′(s)K[Zi,(s)]Y, (2.6)

and rewrite it in matrix notation as µ̂(s) = P(s)Y , where P(s) is a square matrix

of dimension n×n with ith row X ′i,(s)(X
′
(s)K[Zi,(s)]X(s))

−1X ′(s)K[Zi,(s)], and µ̂(s) =

(µ̂1,(s), . . . , µ̂n,(s))
′. Let the weight vector w = (w1, . . . , wSn

)T belong to the set

W = {w ∈ [0, 1]Sn :
∑Sn

s=1ws = 1}, and let P (w) =
∑Sn

s=1wsP(s). Then, the

model averaging estimator of µ is specified as

µ̂(w) =

Sn∑
s=1

wsµ̂(s) = P (w)Y. (2.7)
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2.2. Weight choice criterion and asymptotic optimality

Until now, the weight vector in µ̂(w) was left unspecified. Motivated by the

Mallows criterion for model averaging estimators (e.g. Hansen (2007), we now

outline how we choose this weight vector. Let Ω = diag(σ21, . . . , σ
2
n). Define the

predictive squared loss by

Ln(w) = n−1‖µ̂(w)− µ‖2, (2.8)

and the conditional expected loss by

Rn(w) = E{Ln(w)|X,Z} = n−1‖P (w)µ− µ‖2 + n−1 trace(ΩP (w)′P (w)). (2.9)

Let the Mallows-type criterion function be

Cn(w) = n−1‖P (w)Y − Y ‖2 + 2n−1 trace(P (w)Ω). (2.10)

It is easy to show that

Rn(w) = E{Cn(w)|X,Z} − n−1 trace(Ω),

which suggests that, for the optimal choice of w in the sense of minimizing Rn(w),

we can minimize Cn(w) to choose w by noting that n−1 trace(Ω) does not depend

on w. Assuming that Ω is known, the optimal weight choice is given by

ŵ = argminw∈W Cn(w), (2.11)

which implies that the optimal model averaging estimator of µ is µ̂(ŵ) = P (ŵ)Y ,

and we refer to µ̂(ŵ) as a Mallows model average of varying coefficient models. In

order to provide regularity conditions for the optimal choice of the weight vector,

we need to introduce some notation. Let ξn = infw∈W nRn(w), and let wos be an

Sn × 1 vector in which the sth element is one and all others are zeros. Here are

the conditions required for the asymptotic optimality of ŵ as defined in (2.11).

Given the randomness of X and Z, the following conditions and related proofs

presented elsewhere in the paper are to hold almost surely; For brevity, we omit

the phrase “almost surely”. Let p = max1≤s≤Sn
ps. For some integer N ≥ 1,

max
i
E(ε4Ni |Xi, Zi) <∞, (2.12)

Snp
4Nξ−2Nn

Sn∑
s=1

{nRn(wos)}N → 0, (2.13)

sup
s∈{1,...,Sn}

max
i

n∑
j=1

|P(s),ij | = O
(
p2
)

and sup
s∈{1,...,Sn}

max
j

n∑
i=1

|P(s),ij | = O
(
p2
)
.

(2.14)

The first two conditions are commonplace in the literature on model averaging
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estimation (e.g., Hansen (2007); Hansen and Racine (2012); Wan, Zhang and Zou

(2010); Ando and Li (2014)). Condition (2.13) requires that ξn → ∞, implying

that there is no finite approximating model whose bias is zero. This condition

also constrains the rates at which Sn and nRn(wos) approach ∞.

Condition (2.14) is a somewhat high level assumption. It implicitly imposes

some conditions on the smoothing parameters, such as h(s),j → 0 for all j =

1, . . . , qs and nH(s) →∞ for all s = 1, . . . , Sn, where H(s) = h(s),1 × · · · × h(s),qs .
As shown in Supplementary Material 1, we provide sufficient regularity conditions

on the smoothing parameters and the boundedness and full rank of X needed to

obtain (2.14). Analogously, Speckman (1988) uses the kernel smoothing to define

the weighting matrix and imposes a weaker bound condition O(1). We conjecture

that it may be possible to relax the condition maxi
∑n

j=1 |P(s),ij | = O
(
p2
)

to

maxi
∑n

j=1 |P(s),ij | = O(1), as used in Speckman (1988) and Zhang and Wang

(2015). We leave the verification of this conjecture for future investigation. In

practice, one can select the bandwidth for each candidate model by the typical

least-squares cross-validation method, and in our simulations we use the cross-

validation method that allows for different bandwidths across covariates, and

across different candidate models.

Theorem 1. Under conditions (2.12)-(2.14),

Ln(ŵ)

infw∈W Ln(w)
→ 1

in probability as n→∞.

This shows that practitioners can do as well asymptotically as if they knew

the true µi, the weight vector ŵ is asymptotically optimal in the sense that

the average loss with ŵ is asymptotically equivalent to that using the infeasible

optimal weight vector.

So far we have assumed that Ω is known. In practice, Ω will be unknown.

To make the Mallows-type criterion (2.10) computationally feasible, we estimate

the unknown Ω based on residuals from model averaging estimation by

Ω̂(w) = diag
(
ε̂21(w), . . . , ε̂2n(w)

)
, (2.15)

where ε̂i(w) = Yi − µ̂i(w). Replacing Ω with Ω̂ in Cn(w), we obtain the feasible

criterion

Ĉn(w) = n−1‖P (w)Y − Y ‖2 + 2n−1 trace(P (w)Ω̂(w)). (2.16)

Correspondingly, the new optimal weights are defined as

w̃ = argminw∈W Ĉn(w). (2.17)
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We now show that the weight vector w̃ is still asymptotically optimal. Let

ρ
(s)
ii be the ith diagonal element of P(s). The conditions required for the asymp-

totic optimality of w̃ are as follows.

There exists a constant c such that

|ρ(s)ii | ≤ cn
−1| trace(P(s))|, ∀s = 1, . . . , Sn, (2.18)

n−1p2 = O(1). (2.19)

Condition (2.18) is commonly used to ensure the asymptotic optimality of cross-

validation (e.g., Andrews (1991) and Hansen and Racine (2012)). Condition

(2.19), Condition (12) of Wan, Zhang and Zou (2010), allows the ps’s to increase

as n→∞, but restricts their rate of increase.

Theorem 2. Under conditions (2.12)-(2.14), (2.18), and (2.19)

Ln(w̃)

infw∈W Ln(w)
→ 1 (2.20)

in probability as n→∞.

It is easy to prove that Theorems 1 and 2 apply to the mixed data setting in

which Z = (Zc, Zd) with Zc being a continuous vector and Zd a discrete vector,

because our proofs are valid as long as the model averaging estimator is linear

in Y when Z consists of multivariate mixed discrete and continuous covariates,

which continues to be the case.

An alternative strategy for estimating Ω can be based on the largest model

indexed by s∗ = argmaxs∈{1,...,Sn}(ps + qs),

Ω̂(s∗) = diag(ε̂2s∗,1, . . . , ε̂
2
s∗,n), (2.21)

where (ε̂s∗,1, . . . , ε̂s∗,n) = Y − µ̂(s∗) = Y − P(s∗)Y . The idea of using the largest

model to estimate the variance parameter or covariance matrix is advocated by

Hansen (2007), Liu and Okui (2013), and Zhang and Wang (2015) (If the model

with the largest dimension is not uniquely defined because the models with the

same dimension can differ in the structure of Xi and Zi, we adopt the model with

the largest dimension of Xi following Zhang and Wang (2015)). The motivation

for Ω̂(w) in Theorem 2 is to avoid putting too much confidence in a single model

while the advantage of Ω̂(s∗) is that the computational burden is much less than

using Ω̂(w) because the estimator of the error covariance matrix Ω̂(s∗) does not

include the weight vector w, which implies that Ĉ∗n(w) defined in (2.16) below is

a lower-order function of w than Ĉn(w). In particular, using Ω̂(s∗) allows us to

solve a simple quadratic program that can be done with standard off-the-shelf

software. Replacing Ω with Ω̂(s∗) in Cn(w), we obtain the feasible criterion
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Ĉ∗n(w) = n−1‖P (w)Y − Y ‖2 + 2n−1 trace(P (w)Ω̂(s∗)).

Correspondingly, the new optimal weights are defined as

w̃(s∗) = argminw∈W Ĉ∗n(w).

Then, using the definitions of ρ
(s)
ii and p above and the same conditions as in

Theorem 2, we can show that the weight vector w̃(s∗) is still asymptotically

optimal.

Corollary 1. Under conditions (2.12)-(2.14), (2.18), and (2.19) with the alter-

native estimators Ω̂(s∗),
Ln(w̃(s∗))

infw∈W Ln(w)
→ 1 (2.22)

in probability as n→∞.

3. Monte Carlo Simulations

In this section we report on the finite-sample performance of the proposed

Mallows model averaging (‘MMA’) method. We simulated data from an infinite-

order varying coefficient regression model of the form yi =
∑∞

j=1 θj(zi)xij+εi, i =

1, . . . , n. The xij were independent and identically distributed N(0, 1) random

variates, while zi was U [−1, 1]. The heteroskedastic error εi was distributed

N(0, σ2(zi)), where σ(zi) = σ|zi|
√

3 and independent of the xij .

The parameters were determined by the rule θj(zi) =
√

2αj−α−1/2 exp(zi).

The sample size was n = 50, 100, 200, and 400. The parameter α was 0.10, 0.25,

and 0.50. Larger values of α imply that the coefficients θj(z) decline more quickly

with j. The number of models Mn was determined by the rule Mn = 3n1/3 (so

Mn = 11, 14, 18, and 22 for the four sample sizes considered herein). We rescaled

the DGP to have unit variance and set σ equal to 0.25, 0.50, 1.00, and 2.00, so

that the expected R2 for the unknown true model was 1/(1 + σ2) and was thus

0.95, 0.80, 0.50, and 0.20, respectively.

The simulations used nested regression models with variables {xij , j = 1, . . . ,

Mn}. We considered six estimators: (1) Mallows model averaging defined over

kernel smoothed varying coefficient candidates (‘MMA’), (2) smoothed AIC model

averaging (‘SAIC’), (3) smoothed BIC model averaging (‘SBIC’), (4) AIC model

selection (‘AIC’), (5) BIC model selection (‘BIC’), and (6) Mallows’ Cp model

selection. All bandwidths were selected via least-squares cross validation. To

evaluate the estimators, we computed the risk (expected squared error). We did

this by computing means (medians) across 1,000 simulation draws.



OPTIMAL MODEL AVERAGING 2803

The SAIC and SBIC weights for the j = 1, 2, . . . ,M models are given by

wj =
exp(−AICj/2)∑Mn

j=1 exp(−AICj/2)
,

wj =
exp(−BICj/2)∑Mn

j=1 exp(−BICj/2)

where AICj and BICj are given by log(σ̂2j ) + 2n−1 trace(P(j)) and log(σ̂2j ) +

n−1 trace(P(j)) log(n), respectively. The Cp criterion is given by σ̂2j (n +

2 trace(P(j))) where σ̂2j = n−1
∑n

i=1 ε̂
2
i,j and where the ε̂i,j are the residuals from

jth model.

Let H = (µ̂(1) − y, . . . , µ̂(Mn) − y) and let b = {trace(P(1)Ω̂(Mn)), . . . ,

trace(P(Mn)Ω̂(Mn))}T , where Ω̂(Mn) is a diagonal matrix formed from the squared

residuals from the model indexed by the largest j (i.e.Mn). We can rewrite Ĉn(w)

as Ĉn(w) = wTHTHw+2wT b, which is a quadratic function of the weight vector

w and the optimization can be done by standard software packages such as the

R package quadprog (code underlying this simulation can be found in Supple-

mentary Material 2). Using the largest model to estimate the error covariance

matrix is advocated by Hansen (2007) and Liu and Okui (2013), and in small

samples this approach performs admirably.

Simulation results are summarized in Table 1, which reports the mean rela-

tive MSE row normalized so that the method with lowest mean MSE has entry

1.00. R2 is higher for smaller values of σ; for larger values of α the θj(z) coeffi-

cients decay more rapidly with j. MMA, SAIC, and SBIC are model averaging

methods; AIC, BIC and Cp are model selection methods.

3.1. Discussion

Clearly no one method dominates over the range of sample sizes, signal to

noise ratio, and range of parameter decay considered above. AIC and Cp have

similar risk. If one considers the range of risk relative to the best performing

method in any experiment (row of Table 1), it would appear that the proposed

approach dominates its peers while, as n increases, it clearly emerges as the

preferred approach. On the basis of these simulations, the proposed method

ought to appeal to practitioners interested in model average estimators defined

over the flexible and popular varying coefficient specification.

4. Empirical Illustration

In what follows we report an estimate of a Mincer (earnings) equation using
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Table 1. Monte Carlo Simulation Mean Relative MSE (row normalized so that the
method with lowest mean MSE has entry 1.00). R2 is higher for smaller values of σ; for
larger values of α the θj(z) coefficients decay more rapidly with j. MMA, SAIC, and
SBIC are model averaging methods; AIC, BIC and Cp are model selection methods.

n α σ MMA SAIC SBIC AIC BIC Cp

50 0.10 0.25 1.01 1.31 1.36 1.00 1.59 1.02
50 0.10 0.50 1.00 1.15 1.18 1.05 1.50 1.06
50 0.10 1.00 1.09 1.00 1.00 1.26 1.37 1.26
50 0.10 2.00 1.41 1.03 1.00 1.77 1.21 1.75
50 0.25 0.25 1.00 1.36 1.43 1.02 1.47 1.03
50 0.25 0.50 1.00 1.10 1.13 1.07 1.42 1.08
50 0.25 1.00 1.20 1.00 1.00 1.41 1.43 1.40
50 0.25 2.00 1.51 1.04 1.00 1.93 1.24 1.90
50 0.50 0.25 1.00 1.22 1.28 1.07 1.30 1.08
50 0.50 0.50 1.09 1.00 1.01 1.23 1.34 1.22
50 0.50 1.00 1.39 1.02 1.00 1.68 1.47 1.66
50 0.50 2.00 1.63 1.05 1.00 2.12 1.24 2.09

100 0.10 0.25 1.00 1.26 1.29 1.00 1.61 1.01
100 0.10 0.50 1.00 1.15 1.18 1.03 1.53 1.04
100 0.10 1.00 1.02 1.00 1.01 1.14 1.38 1.14
100 0.10 2.00 1.24 1.01 1.00 1.57 1.19 1.56
100 0.25 0.25 1.00 1.33 1.39 1.02 1.54 1.03
100 0.25 0.50 1.00 1.13 1.16 1.06 1.48 1.06
100 0.25 1.00 1.09 1.00 1.00 1.26 1.45 1.26
100 0.25 2.00 1.33 1.02 1.00 1.75 1.24 1.73
100 0.50 0.25 1.00 1.22 1.30 1.07 1.46 1.08
100 0.50 0.50 1.05 1.00 1.02 1.19 1.38 1.19
100 0.50 1.00 1.26 1.01 1.00 1.54 1.43 1.53
100 0.50 2.00 1.41 1.03 1.00 1.91 1.16 1.90
200 0.10 0.25 1.00 1.22 1.25 1.00 1.45 1.00
200 0.10 0.50 1.00 1.15 1.17 1.02 1.46 1.02
200 0.10 1.00 1.00 1.02 1.03 1.07 1.41 1.07
200 0.10 2.00 1.10 1.00 1.00 1.33 1.29 1.32
200 0.25 0.25 1.00 1.30 1.35 1.01 1.47 1.01
200 0.25 0.50 1.00 1.15 1.18 1.04 1.48 1.04
200 0.25 1.00 1.03 1.00 1.01 1.14 1.45 1.13
200 0.25 2.00 1.17 1.01 1.00 1.46 1.38 1.46
200 0.50 0.25 1.00 1.23 1.30 1.06 1.56 1.06
200 0.50 0.50 1.01 1.00 1.02 1.14 1.44 1.14
200 0.50 1.00 1.15 1.00 1.00 1.38 1.46 1.38
200 0.50 2.00 1.21 1.02 1.00 1.59 1.30 1.59
400 0.10 0.25 1.00 1.21 1.23 1.00 1.32 1.00
400 0.10 0.50 1.00 1.16 1.17 1.00 1.37 1.00
400 0.10 1.00 1.00 1.06 1.06 1.04 1.41 1.03
400 0.10 2.00 1.06 1.00 1.00 1.20 1.39 1.20
400 0.25 0.25 1.00 1.30 1.34 1.00 1.35 1.00
400 0.25 0.50 1.00 1.18 1.20 1.02 1.44 1.02
400 0.25 1.00 1.00 1.02 1.03 1.08 1.46 1.08
400 0.25 2.00 1.10 1.00 1.00 1.31 1.51 1.31
400 0.50 0.25 1.00 1.27 1.34 1.04 1.57 1.04
400 0.50 0.50 1.00 1.04 1.07 1.11 1.53 1.11
400 0.50 1.00 1.10 1.00 1.00 1.31 1.56 1.31
400 0.50 2.00 1.14 1.01 1.00 1.45 1.46 1.44
Mean (all n) 1.10 1.10 1.11 1.25 1.42 1.25
Mean (n = 50) 1.19 1.11 1.12 1.38 1.38 1.38
Mean (n = 100) 1.12 1.10 1.11 1.29 1.40 1.29
Mean (n = 200) 1.06 1.09 1.11 1.19 1.43 1.19
Mean (n = 400) 1.03 1.10 1.12 1.13 1.45 1.13
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Wooldridge’s (2002) ‘wage1’ data which contains n = 526 observations on a range

of variables. We considered modeling expected (log) hourly wages (‘lwage’) based

on a number of commonly employed predictors, namely

1. educ: years of education

2. exper: years potential experience

3. tenure: years with current employer

4. female: “Female” if female, “Male” otherwise

5. married: “Married” if Married, “Nonmarried” otherwise

We treated the predictors educ, exper, and tenure as belonging to X and

female and married as belonging to Z. We considered varying coefficient models

that differed in terms of the contents of X. Let d be the order of a (orthogonal)

polynomial formed from each of educ, exper, and tenure. When d = 1 there

are 3 columns in X (educ, exper, and tenure) and if we consider all possible

combinations of the predictors taken 1, 2, and 3 at a time then there are M =(
3
1

)
+
(
3
2

)
+
(
3
3

)
= 7 candidate models. When d = 2 there are 6 columns in X hence

M = 63 candidate models, and when d = 3 there are 9 columns in X hence M =

511 candidate models. We also considered standard nonparametric local constant

(‘LC’), nonparametric local linear (‘LL’), and semiparametric varying coefficient

(‘VC’) models defined over the full set of predictors by way of comparison; see

Li and Racine (2007, Pages 60, 79, and 301, respectively) for details.

We conducted a simulation in which the data was repeatedly shuffled and

split into two parts 1,000 times, based on an estimation sample of size n1 = 500

and an independent validation sample of size n2 = 26. For each estimation sample

we fit the cross-validated semiparametric varying coefficient model and each of

the parametric and nonparametric models listed above. All bandwidths were

selected via least-squares cross validation. For each model we then computed

predicted square error (‘PSE’) for the independent validation data set given by

PSE = n−12

∑n2

i=1(Yi − Ŷi)2 where Ŷi is the prediction for a given model. The

mean relative hold-out PSE is presented in Table 2, row normalized so that the

method with lowest mean PSE has entry 1.00, while the mean PSE is presented

in Table 3.

Table 2 reveals some interesting features. First, from row 1 (i.e., d = 1),

when we average across models in which the parametric component X is linear,

the fully nonparametric local linear estimator is the best performer, dominating

both model averaging and model selection, which for some might be unexpected.
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Table 2. Empirical Illustration Mean Relative PSE (row normalized so that the method
with lowest mean PSE has entry 1.00). MMA, SAIC, and SBIC are model averaging
methods; AIC, BIC and Cp are model selection methods; LC, LL, and VC are nonpara-
metric and semiparametric models.

Model Average Model Selection Model Specification
d M MMA SAIC SBIC AIC BIC Cp LC LL VC
1 7 1.043 1.080 1.081 1.041 1.051 1.041 1.041 1.000 1.040
2 63 1.000 1.056 1.057 1.008 1.054 1.008 1.082 1.039 1.089
3 511 1.000 1.061 1.062 1.029 1.056 1.029 1.075 1.039 1.093

Table 3. Empirical Illustration Mean PSE. MMA, SAIC, and SBIC are model aver-
aging methods; AIC, BIC and Cp are model selection methods; LC, LL, and VC are
nonparametric and semiparametric models.

Model Average Model Selection Model Specification
d M MMA SAIC SBIC AIC BIC Cp LC LL VC
1 7 0.167 0.173 0.173 0.167 0.169 0.167 0.167 0.160 0.167
2 63 0.151 0.160 0.160 0.153 0.159 0.153 0.164 0.157 0.165
3 511 0.152 0.161 0.161 0.156 0.160 0.156 0.163 0.158 0.166

However, when we move to a larger number of candidate models allowing for

quadratic (d = 2) and cubic (d = 3) terms to enter in the parametric component

X, this appears to be sufficient for the model averaging estimator to dominate its

peers. Furthermore, Table 3 reveals that there is no further MSE improvement

in either the selection or averaging methods when we move from d = 2 to d = 3,

hence a relatively modest number of candidate models appears to be sufficient

for the proposed model averaging method to dominate its peers.

5. Concluding Remarks

In this paper we present a semiparametric approach to model averaging that

possesses a number of desirable features. Theoretical underpinnings are pro-

vided, and its finite-sample performance indicates that it ought to be of interest

to practitioners who wish to tackle model uncertainty. An illustrative applica-

tion indicates that the method is capable of delivering models with impressive

approximation capabilities. In particular, it can be seen how averaging over a

set of semiparametric models can outperform fully nonparametric specifications

in applied settings. R code for implementing the proposed approach is presented

in the Supplementary Material, and is available upon request from the authors.
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Supplementary Materials

Proofs of the main theorems are provided in Supplementary Material 1, while

R code can be found in Supplementary Material 2.
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