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Abstract: Asymptotic factorizations for the small–ball probability (SmBP) of a

Hilbert–valued random element X are established and discussed. In particular,

given the first d principal components (PCs) and as the radius ε of the ball tends

to zero, the SmBP is asymptotically proportional to (a) the joint density of the

first d PCs, (b) the volume of the d–dimensional ball with radius ε, and (c) a

correction factor weighting the use of a truncated version of the process expansion.

Under suitable assumptions on the spectrum of the covariance operator of X and

as d diverges to infinity when ε vanishes, some simplifications occur. In particular,

the SmBP factorizes asymptotically as the product of the joint density of the first

d PCs and a pure volume parameter. The factorizations allow one to define a

surrogate intensity of the SmBP that, in some cases, leads to a genuine intensity.

To operationalize the stated results, a non–parametric estimator for the surrogate

intensity is introduced and it is proved that the use of estimated PCs, instead of

the true ones, does not affect the rate of convergence. Finally, as an illustration,

simulations in controlled frameworks are provided.

Key words and phrases: Hilbert functional data, Karhunen–Loève decomposition,

kernel density estimate, small ball probability.

1. Introduction

For a random element X valued in a general metric space, the measure of

how it concentrates over such a space plays a central role in statistical analysis. If

X is a real random vector, its joint density is, in a natural way, that measure. In

practical situations, the density is helpful in defining mixture models, in detecting

latent structure, in discriminant analysis, in identifying outliers, and so on. When

observed data are curves, surfaces, images, objects or, briefly, functional data (see

e.g. monographs Ferraty and Vieu (2006); Horváth and Kokoszka (2012); Ramsay

and Silverman (2005), and Bongiorno et al. (2014) for recent contributions), the

dimensionality of the space to which the data belong raises problems in defining
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an object that plays the role of the joint density. The main problem is that, with-

out an underlying dominant probability measure, the Radon–Nikodym derivative

cannot be straightforwardly applied. To manage this, a concept of “surrogate

density” can be derived from the notion of small–ball probability (SmBP in the

sequel) of a random element X.

For a given point x, a semimetric ∆, and a real positive ε, consider ϕ (x, ε) =

P (∆(X,x) < ε) . The behaviour of ϕ (x, ε) as ε vanishes (i.e. of the SmBP) pro-

vides information about the way in which X concentrates at x. From a the-

oretical point of view, the limiting behaviour has been developed in the small

tails/deviations theory, see Li and Shao (2001); Lifshits (2012), and references

therein. In functional statistics the SmBP was used to derive asymptotics in mode

estimations (see, e.g. Dabo-Niang, Ferraty and Vieu (2007); Delaigle and Hall

(2010); Ferraty, Kudraszow and Vieu (2012); Gasser, Hall and Presnell (1998)),

as well as in non–parametric regression literature in evaluating the rate of con-

vergence of estimators (see, e.g. Ferraty and Vieu (2006); Ferraty, Mas and Vieu

(2007)). Often, the necessity to have a surrogate density available for X has

involved the assumption (as done, for instance, in Ferraty, Kudraszow and Vieu

(2012); Gasser, Hall and Presnell (1998)) that

ϕ(x, ε) = Ψ (x)φ (ε) + o (φ (ε)) , ε→ 0, (1.1)

where Ψ is the intensity of the SmBP that plays the role of the surrogate density

of the random element X, whilst φ (ε) is a kind of “volume parameter”. Although

breaking the dependence on x and ε supplies a clear modelling advantage and the

existence of Ψ (x) is desirable, factorization (1.1) can be derived only in particular

settings. Notable examples are the case of Gaussian processes (e.g. Li and Shao

(2001); Lifshits (2012), and references therein) and the one of fractal processes

for suitable semi–norms ∆ (e.g. Ferraty and Vieu (2006, Chap. 13)). Hence, a

crucial task is to study some asymptotic factorizations of the SmBP leading to a

definition of its intensity or, at least a surrogate intensity, when it is not possible

to completely isolate the dependence on x and ε. In the framework of random

elements in a separable Hilbert space with ∆ the induced metric, a first factor-

ization of the SmBP that allows one to define a surrogate intensity was provided

by Delaigle and Hall (2010). Under some technical hypothesis on the spectrum

of the covariance operator of X, and assuming that principal components of X

are independent with positive and sufficiently smooth marginal density functions

{f̃j}, the authors showed that ϕ(x, ε) ∼
∏
j≤d f̃j (xj)φ(ε, d), as ε→ 0, where xj

is the projection of x over the j-th principal axis, φ(ε, d) is a volumetric term,
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and d = d(ε) diverges to infinity as ε vanishes. From the applications point

of view, the independence assumption appears quite restrictive and the spatial

factor
∏
j≤d f̃j results in just a surrogate intensity of the SmBP because of the

dependence between d and ε. Moreover, one wonders if the principal component

analysis is necessary to obtain the factorization.

The first part of this work proposes some more general factorizations for the

SmBP in the separable Hilbert framework. The aim is to relax the hypothesis of

independence, and to identify those situations which lead to a genuine intensity.

The first result holds for any positive integer d:

ϕ(x, ε) ∼ fd(x1, . . . , xd)Vd(ε)R (x, ε, d) , as ε→ 0,

where fd is the joint distribution of the first d principal components, Vd(ε) is the

volume of a d–dimensional ball with radius ε, and R (x, ε, d) ∈ (0, 1] denotes an

extra factor compensating the use of (x1, . . . , xd) instead of x. Such factorization

benefits from the fact that d is fixed but, because R depends on both x and

ε, a genuine intensity cannot be defined without additional assumptions on the

probability law of the process and/or on the point x at which the factorization

is evaluated.

Moving further, we prove:

ϕ(x, ε) ∼ fd(x1, . . . , xd)φ(ε, d), as ε→ 0, and d(ε)→∞,

where φ(ε, d) is a volume parameter that depends on the decay rate of {λj}, the

eigenvalues of the covariance operator of X and fd is the surrogate intensity. In

particular cases, this allows one to define an intensity. It turns out that our

factorizations can be derived for any basis but, for the second one, the principal

components basis is optimal in some sense.

In the second part of the paper, to make available the surrogate intensity

of the SmBP for statistical purposes, we propose a multivariate kernel density

approach to estimating fd. Under general conditions, we prove that, although

the estimation procedure involves the estimated principal components instead of

the true ones, the estimator achieves the classical non–parametric rate of con-

vergence. To show how such an estimator performs on finite sample frameworks,

we study its behaviour by means of simulated processes with known intensities.

The paper outline goes as follows: Section 2 introduces the framework, Sec-

tion 3 considers the factorization of the SmBP when d is fixed, whereas Sec-

tion 4 has d diverging to infinity as ε vanishes. Section 5 provides the statistical

asymptotic theorem in estimating the joint density fd. Section 6 illustrates some

numerical examples. The proofs are in the supplementary materials.
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2. Preliminaries

Let (Ω,F ,P) be a probability space and L2[0,1] be the Hilbert space of square

integrable real functions on [0, 1], endowed with the standard inner product

〈g, h〉 =
∫ 1
0 g (t)h (t) dt and the induced norm ‖g‖2 = 〈g, g〉. Consider a mea-

surable map X defined on (Ω,F) taking values in (L2[0,1],B), where B denotes

the Borel sigma–algebra induced by ‖ · ‖. Define the SmBP with ∆(X,x) =

‖X − x‖, ϕ (x, ε) = P (‖X − x‖ < ε). Denote by µX = {E [X (t)] , t ∈ [0, 1]},
and Σ [·] = E [〈X − µX , ·〉 (X − µX)], the mean function and covariance oper-

ator of X respectively. Consider the Karhunen–Loève expansion associated to

X (see e.g. Bosq (2000)): denoting by {λj , ξj}∞j=1 the decreasing to zero se-

quence of non–negative eigenvalues and the associated orthonormal eigenfunc-

tions of the covariance operator Σ, the random curve X admits the representa-

tion X (t) = µX (t) +
∑

j≥1 θjξj (t), 0 ≤ t ≤ 1, where θj = 〈X − µX , ξj〉 are the

so–called principal components (PCs in the sequel) of X satisfying E [θj ] = 0,

V ar (θj) = λj and E [θjθj′ ] = 0, j 6= j′.

In order to achieve our aims, we need some assumptions.

(A-1) µX = 0.

(A-2) The center of the ball x ∈ L2[0,1] is sufficiently close to the process in its

high–frequency part, that is x2j ≤ C1λj for any j ≥ 1, where xj = 〈x, ξj〉
for some positive constant C1.

The latter is not a restrictive condition since it holds when x belongs to the

reproducing kernel Hilbert space generated by the process X:

RKHS(X) = {x ∈ L2[0,1] :
∑
j≥1

λ−1j 〈x, ξj〉
2 <∞}, (2.1)

that is, when x is “at least smooth as the covariance function”, see Berlinet

and Thomas-Agnan (2004, p. 13 and p. 69). Furthermore, (A-2) is not unusual

since it is equivalent to supj≥1 E
[
(θj − xj)2/λj

]
< ∞ that was used, for similar

purpose by Delaigle and Hall (2010, Condition (4.1)).

(A-3) Denote by Πd the projector onto the d–dimensional space spanned by

{ξj}dj=1. The first d PCs, θ = ΠdX = (θ1, . . . , θd)
′, admit a joint strictly

positive probability density, ϑ ∈ Rd 7→ fd(ϑ). Moreover, fd is twice dif-

ferentiable at ϑ = (ϑ1, . . . , ϑd)
′ ∈ Rd, and there exists a positive constant

C2 (not depending on d) for which∣∣∣∣ ∂2fd∂ϑi∂ϑj
(ϑ)

∣∣∣∣ ≤ C2√
λiλj

fd(x1, . . . , xd) (2.2)
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for any d ∈ N, i, j ≤ d and ϑ ∈ Dx = {ϑ ∈ Rd :
∑

j≤d(ϑj − xj)2 ≤ ρ2}
for some ρ ≥ ε.

From now on, with a slight abuse of notation and when it is clear from the context,

fd(x) denotes fd (x1, . . . , xd). It is worth noting that (A-3) is not restrictive: it

includes, for instance, the case of Gaussian Hilbert–valued processes.

3. Approximations for a Given d

For a finite positive integer d, and a given point x ∈ L2[0,1], let

S = S(x, ε, d) =
1

ε2

∑
j≥d+1

(θj − xj)2 , R (x, ε, d) = E
[
(1− S)d/2 I{S<1}

]
,

(3.1)

and Vd(ε) = εdπd/2/Γ (d/2 + 1), the volume of the d–dimensional ball with radius

ε. With X and ϕ (x, ε) as above, set

ϕd(x, ε) = fd(x)Vd(ε)R (x, ε, d) , for ε > 0. (3.2)

Theorem 1. If (A-1), . . . , (A-3) hold, then

|ϕ(x, ε)− ϕd(x, ε)| ≤ C2
ε2

2λd
ϕd(x, ε) for ε > 0, (3.3)

that is

ϕ(x, ε) ∼ fd(x)Vd(ε)R (x, ε, d) for ε→ 0. (3.4)

In other words, for a fixed d and as ε → 0, the SmBP ϕ(x, ε) behaves as

ϕd(x, ε), the usual first order approximation of the SmBP in a d–dimensional

space fd(x)Vd(ε) up to the scale factor R (x, ε, d). The latter, depending on x

only through its high–frequency components {xj}j≥d+1, can be interpreted as a

corrective factor compensating for the use of a truncated version of the process

expansion. Changing d affects all the terms in the factorization but not (3.4).

Because of R(x, ε, d), the dependence on x and ε cannot be isolated and hence

an intensity of the SmBP is not, in general, available.

There exist some situations in which a genuine intensity can be defined from

the above factorization: a) R(x, ε, d) is independent on x; b) there exists a finite

positive integer d0 such that, for any d ≥ d0, R(x, ε, d) = 1; c) for any x, as

ε→ 0, d(ε)→∞, R(x, ε, d)→ 1 and ϕ(x, ε) ∼ fd(x)Vd(ε).

In the following, we discuss points a) and b), whereas point c) is discussed

in Section 4.

D.1. R(x, ε, d) is independent on x. Consider, for instance, xj = 0 for

any j ≥ d0 + 1, that x belongs to the space spanned by {ξ1, . . . , ξd0}. From
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Theorem 1 for any d ≥ d0, we have ϕ(x, ε) ∼ fd(x)Vd(ε)R (ε, d), as ε→ 0, where

Vd(ε)R (ε, d) now represents a pure volumetric term while fd is an intensity of

the SmBP evaluated at x.

For Gaussian processes, Theorem 1 gives

ϕ(x, ε) ∼ exp

−1

2

∑
j≤d

x2j
λj

 Vd(ε)R(ε, d)∏
j≤d
√

2πλj
= Ψd(x)Vd(ε), as ε −→ 0

where, for any d ≥ d0, Ψd(x) = Ψd0(x) = exp
{
−
∑

j≤d0 x
2
j/(2λj)

}
is the inten-

sity of the SmBP evaluated at x. In particular, for a Wiener process on [0, 1],

Ψd0(x) agrees with known results (see, for instance, Li and Shao (2001, Thm. 3.1)

and Dereich et al. (2003, Example 5.1)). The Karhunen–Loève decomposition

of a Wiener process is W (t) =
∑∞

j=1 Zjξj(t), t ∈ [0, 1], where {Zj} are i.i.d. as

Z ∼ N(0, 1), ξj (t) =
√

2 sin ((j − 0.5)πt) /
√
λj , λj = (j − 0.5)−2 π−2 and it is

known that

ϕ(x, ε) ∼ exp

{
−1

2

∫ 1

0
x′ (t)2 dt

}
4ε exp

{
−1/(8ε2)

}
√
π

, ε→ 0,

where x(t) is sufficiently smooth. Since we are interested in the definition of

an intensity, we compare the spatial parts. For any x (t) =
∑d0

j=1 bjξj (t) where

bj ∈ R, straightforward computations lead to

exp

{
−1

2

∫ 1

0
x′ (t)2 dt

}
= exp

−1

2

d0∑
j=1

b2j

 = Ψd0(x).

D.2. The case R(x, ε, d) = 1. Suppose X takes values in a d0–dimensional

subspace of the Hilbert space. Then λj = 0 for any j ≥ d0 + 1, (A-2) leads to

xj = θj = 0, and R(x, ε, j) = 1 for any j ≥ d0 + 1. Moreover, Theorem 1 can be

applied only for d ≤ d0 because fd0+1 is not strictly positive and hence (A-3) fails.

Consequently ϕ(x, ε) ∼ fd0(x)Vd0(ε), which is the usual first order approximation

of the d0–dimensional process and fd0 is the intensity of the SmBP of the process.

D.3. Changing the basis. If {ξj}∞j=1 is an orthonormal basis of the Hilbert

space, arranged so that the sequence V ar(〈X, ξj〉) = λj is in descending order,

Theorem 1 still holds.

4. Approximations When d Depends on ε

We establish conditions on X that allow one to simplify (3.4), to get ϕ(x, ε) ∼
fd(x)Vd(ε), as ε → 0. This is achieved by combining Theorem 1 and the limit

behaviour of R(x, ε, d) to have, for any x,
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R(x, ε, d)→ 1,

ϕ(x, ε) ∼ fd(x)Vd(ε),
ε→ 0, d(ε)→∞. (4.1)

Consider then the limit behaviour of R, as ε goes to zero and d diverges to

infinity.

Proposition 1. Assume (A-2) and that
∑

j≥d+1 λj = o (1/d), as d goes to in-

finity. One can choose d = d(ε) so that it diverges to infinity as ε tends to zero

and d
∑

j≥d+1 λj = o(ε2). Then, as ε→ 0,

0 ≤ 1−R(x, ε, d) ≤ C1(d+ 2)

2ε2

∑
j≥d+1

λj = o(1). (4.2)

Consider the inequality

|ϕ(x, ε)− fd (x)Vd(ε)| ≤ |ϕ(x, ε)− ϕd(x, ε)|+ |ϕd(x, ε)− fd (x)Vd(ε)| ,

that, thanks to (3.3), (4.2), and 0 < R ≤ 1, leads to∣∣∣∣ ϕ(x, ε)

fd (x)Vd(ε)
− 1

∣∣∣∣ ≤ C2
ε2

2λd
R(x, ε, d) + |R(x, ε, d)− 1|

≤ C2
ε2

2λd
+
C1(d+ 2)

2ε2

∑
j≥d+1

λj . (4.3)

Thus, the wished result holds if there exists d = d(ε) such that

ε2 = o (λd) , and (d+ 2)
∑
j≥d+1

λj = o(ε2). (4.4)

To obtain (4.1) we combine conditions in (4.4) (plug the first in the second), and

we get that eigenvalues must satisfy the hyper–exponential decay rate

d
∑

j≥d+1 λj

λd
= o (1) , as d→∞. (4.5)

This rate highlights the trade–off between the approximation errors provided by

Theorem 1 and Proposition 1. Moreover, it is a necessary condition to guarantee

that (4.3) vanishes. One wonders if it is possible to define d = d(ε) so that the

errors in (4.4) vanish at the same time as ε goes to zero.

Theorem 2. Under the conditions of Theorem 1, if the eigenvalues decay hyper–

exponentially, it is possible to choose d = d(ε) so that, if ε → 0, then d → ∞
and

ϕ(x, ε) = fd (x)Vd(ε) + o(fd (x)Vd(ε)). (4.6)

In what follows, we discuss assumptions and consequences of the above result.

D.4. Again about the intensity of the SmBP. Because of the relation
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between d and ε, in general (4.6) does not allow one to define an intensity as

commonly intended. Since fd is the only term depending on x, it can be consid-

ered as a surrogate intensity.

Gaussian processes, or suitable generalizations, provide examples for which fd
leads to define a genuine intensity. At first, consider a Gaussian process X: for

any x ∈ L2[0,1] and as ε goes to zero, ϕ(x, ε) ∼ Ψd(x)Vd(ε); see D.1. When d

tends to infinity, for any x ∈ L2[0,1], Ψd(x) tends to exp{−
∑

j≥1 x
2
j/(2λj)} which

is the intensity of the small–ball probability at x. Note that it is not null if and

only if x belongs to RKHS(X), see (2.1).

Another situation in which an intensity for the SmBP can be defined, occurs

when the PCs are independent each with density belonging to a subfamily of the

exponential power (or generalized normal) distribution (see e.g. Box and Tiao

(1973)), that is proportional to exp
{
−
(
|xj |/

√
λj
)q}

, with q ≥ 2. In this case,

Ψ(x) = exp{−1/2
∑∞

j=1(|xj |/
√
λj)

q}, for any x ∈ L2[0,1] and, it is not null if x is

in H(q) = {x ∈ L2[0,1] :
∑(
|xj |/

√
λj
)q
<∞} that includes the RKHS(X) when

q ≥ 2.

D.5. An example of hyper–exponential decay. Suppose λj = exp{−βjα}
with β > 0 and α > 1. In this case, for any real number n ≥ 1,

d
∑

j≥d+1 λj

λd
≤
dn
∑

j≥d+1 λj

λd
→ 0, as d→∞. (4.7)

In fact, some algebra and the Bernoulli inequality give∑
j≥d+1

λj
λd

=
∑
j≥1

exp{βdα(1− (1 +
j

d
)α)} ≤

∑
j≥1

exp{−βαdα−1j}.

Since exp{−βαdα−1j} ≤ (j2dn+δ)−1 eventually (with respect to d) holds for some

positive δ and for each j ∈ N, (4.7) is obtained.

4.1. Changing the eigenvalues decay rate

The factorization (4.6) is obtained at the cost of the hyper–exponential eigen-

values decay (4.5). If one changes the eigenvalues decay rate, a factorization of

the SmBP is still available, but the volumetric term cannot be written explicitly.

We focus on the decay rates

“super–exponential”: λ−1d
∑

j≥d+1 λj = o (1), as d→∞, or equivalently

λd+1

λd
→ 0, as d→∞. (4.8)

“exponential”: there exists a positive constant C so that
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λ−1d

∑
j≥d+1

λj < C, for any d ∈ N. (4.9)

It is possible to show that (4.5) ⇒ (4.8) ⇒ (4.9) but the contraries do not

hold. For instance, for any α > 1 and β > 0, λj = exp {−βj} decays expo-

nentially but not super–exponentially, λj = exp {−βj ln (ln (j))} decays super–

exponentially but not hyper–exponentially, while λj = exp {−βjα} decays hyper–

exponentially.

Theorem 3. Under the conditions of Theorem 1, as ε tends to zero, it is possible

to choose d = d(ε) diverging to infinity so that ϕ(x, ε) ∼ fd (x)φ(ε, d), where

i) φ(ε, d) = exp{(1/2)d[log(2πeε2) − log(d) + o(1)]} in the super-exponential

case;

ii) φ(ε, d) = exp{1/2d[log(2πeε2) − log(d) + δ(d, α)]} in the exponential case,

with limα→∞ lim sups→∞ δ(s, α) = 0, and α a parameter chosen so that

λ−1d ε2 ≤ α2.

In other words, fd(x) preserves the role of a surrogate intensity whereas

Vd(ε) is replaced by φ(ε, d) which depends on terms implicitly defined (namely,

o(1) and δ(s, α)). It is just the case to note that, in the exponential setting,

Discussion D.4 about Gaussian and exponential power processes still holds with

minor modifications.

D.6. About slower eigenvalues decay rates. This theoretical problem is

partially still open. In fact, a part from the Gaussian processes and, in partic-

ular, the Wiener one (whose eigenvalues decay arithmetically but the intensity,

evaluated at smooth x, can be defined as illustrated in D.1), to the best of our

knowledge, there are no other attempts to provide asymptotic factorizations for

the SmBP of processes whose eigenvalues decay slower than exponentially. Hence,

if no information about the probability law is available, a solution is to go back

to Theorem 1 to manage the dependence on x and ε in R(x, ε, d).

D.7. Optimal basis. Although the factorization results in Theorems 2 and

3 are stated using the Karhunen–Loève (or PCA) basis, they hold for any or-

thonormal basis ordered according to the decreasing values of the variances of

the projections, provided they decay sufficiently fast. In particular, using the

same notations as in D.3, if the sequence {λj}∞j=1 has an exponential decay then

Theorem 3 still holds and a surrogate intensity can be defined. The variances ob-

tained when one uses the PCA basis exhibit, by construction, the fastest decay:

in this sense the choice of this basis can be considered optimal.
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5. Estimation of the Surrogate Intensity

Theorems 1, 2 and 3 justify the use of fd as a surrogate intensity for Hilbert–

valued processes in statistical applications as done, for instance, within classifica-

tion problems by Bongiorno and Goia (2016). We aim to make the factorization

results useful for practical purposes and, in particular, to introduce an estimator

of the surrogate intensity fd.

Consider a sample of random curves {Xi, i = 1, . . . , n}, i.i.d. as X. If the

sequence of eigenvalues {ξj}∞j=1 was known, one would consider the empirical

version of the vector of the first d principal components θi = (θ1i, . . . , θdi)
′ ∈

Rd, with θji = 〈Xi − E [Xi] , ξj〉, and then introduce the classical kernel density

estimate of fd as

fd,n (Πdx) = fn (x) =
1

n

n∑
i=1

KHn
(‖Πd (Xi − x)‖) , (5.1)

whereKHn
(u) = det (Hn)−1/2K(H

−1/2
n u), K is a kernel function, andHn = Hnd

is a symmetric semi-definite positive d × d matrix (we drop the dependence

on d). Equation (5.1) defines only a pseudo-estimate for fd as the covari-

ance operator Σ and the sequence {ξj} are unknown. Thus, to operational-

ize these pseudo-estimates, we need estimates θ̂i and Π̂d of θi and Πd respec-

tively. The sample versions of µX and Σ, are Xn (t) = 1/n
∑
Xi(t), and Σ̂n[·] =

1/n
∑
〈Xi −Xn, ·〉(Xi −Xn), respectively. The eigenelements {λ̂j , ξ̂j}∞j=1 of Σ̂n

provide estimates of for {λj , ξj}∞j=1, and 〈Xi − Xn, ξ̂j〉 = θ̂ji estimates θji (the

asymptotic behaviour of these estimators has been widely studied; see e.g. Bosq

(2000)). Plugging these estimates in (5.1), we get the kernel density estimator:

f̂d,n

(
Π̂dx

)
= f̂n (x) =

1

n

n∑
i=1

KHn

(∥∥∥Π̂d (Xi − x)
∥∥∥) , Π̂dx ∈ Rd. (5.2)

Since λ̂1 ≥ · · · ≥ λ̂n ≥ 0 = λ̂n+1 = . . . one could choose d = n but, in practice,

this is not an appropriate choice: the curse of dimensionality jeopardizes the

quality of estimation. A suitable dimension d � n has to be identified. This

problem is, in practice, still open and needs developments that go beyond the

scope of this paper.

We consider the problem of whether using f̂n instead of fn has an effect

on the rate of convergence of the kernel estimator. To answer this question, we

study the behaviour of E[fd (x) − f̂n (x)]2 as n goes to infinity. For the sake of

simplicity, we consider the special case Hn = h2nI where I is the identity matrix,

with d fixed and independent of the observed data, and we suppose that the
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following hold.

(B-1) fd (x) is positive and p times differentiable at x ∈ Rd, with p ≥ 2;

(B-2) the sequence {hn} satisfies: hn → 0 and nhdn/ log n→∞ as n→∞;

(B-3) the kernel K is a Lipschitz, bounded, integrable density function with

compact support [0, 1];

(B-4) there exist positive constants s and κ such that E [‖X − x‖m] ≤ m!sκm−2/2

for all integers m ≥ 2.

Assumptions (B-1), (B-2), and (B-3) are standard in the non–parametric

framework, and p ≥ 2 is required because of (A-3). Condition (B-4) holds for a

wide family of processes, including the Gaussian.

First, observe that one can control the quadratic mean under study by in-

tercalating the pseudo-estimator (5.2); thanks to the triangle inequality

E
[
fd (x)− f̂n (x)

]2
≤ E [fd (x)− fn (x)]2 + E

[
fn (x)− f̂n (x)

]2
. (5.3)

About the first term on the right–hand side of (5.3), it is known (see for instance

Wand and Jones (1995)) that, under assumptions (B-1), . . . , (B-4) and taking

the optimal bandwidth

c1n
−1/(2p+d) ≤ hn ≤ c2n−1/(2p+d), (5.4)

where c1 and c2 are positive constants, one gets the minimax rate: E[fd (x) −
fn (x)]2 = O

(
n−2p/(2p+d)

)
uniformly in Rd. Therefore, it is enough to control the

second addend on the right–hand side of (5.3).

The following theorem states that using the estimated principal components in-

stead of the empirical ones does not affect the rate of convergence.

Theorem 4. Assume (B-1), . . . , (B-4) with p > max{2, 3d/2}, and consider the

optimal bandwidth (5.4). Thus E[fn (x)− f̂n (x)]2 = o
(
n−2p/(2p+d)

)
as n goes to

infinity, and uniformly in Rd.

Formulation (5.2) requires that each random curve Xi (t) is observed en-

tirely in the continuum and without noise over [0, 1]. In practice, the curves are

available only at design points {τi,1, . . . , τi,pi}, τi,j ∈ [0, 1], that are not necessar-

ily the same for each i. Thus, some numerical approximations to compute the

estimates are necessary. When each curve is observed without errors over the

same fixed equispaced grid, with p sufficiently large, one can replace integrals

by summations: the empirical covariance operator is approximated by a matrix
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and its eigenelements are computed by standard numerical algorithms (see Rice

and Silverman (1991)). This is the approach we follow in the simulations in

Section 6. A more general situation occurs when observed data are discretely

sampled and corrupted by noise. Suppose then that, one has observed pairs

{(τi,j , Yi,j) , i = 1, . . . , n, j = 1, . . . , pi}, where Yi,j = Xi (τi,j) + εij and the errors

εij are i.i.d. with zero mean and finite variance. If each pi ≥ Mn, where Mn

is a suitable sequence tending to infinity with n (we refer to this case as dense

functional data), a presmoothing process is run before performing PCA using

the sample mean and covariance computed from the smoothed curves (see, for

instance, Hall, Müller and Wang (2006)). Under suitable assumptions, the es-

timators of eigenelements are root-n consistent and first-order equivalent to the

estimators obtained if curves were directly observed (see Hall, Müller and Wang

(2006, Theorem 3)).

6. Finite Sample Performances in Estimating the Surrogate Density

We illustrate the feasibility of the SmBP factorization approach by exploring

how the proposed estimator works in a finite sample setting. We considered

only two situations because of the difficulty in finding explicit expressions for

the intensity. First, we focused on a finite–dimensional process for which the

surrogate density is straightforwardly derived. Then, we dealt with the Wiener

process. In both cases, we studied how the estimates behaved varying the sample

size and d. All simulations rested on the density estimator defined in (5.2),

and were performed on a suitable grid of the d–dimensional factor space: the

algorithms were implemented in R, and exploited the function kde in the package

ks (see Duong (2007)).

6.1. Finite dimensional setting

Consider the one-dimensional random process X (t) = a
√

2/π sin (t), t ∈
[0, π] , where a is a random variable with zero mean, unitary variance, den-

sity fa, and cumulative distribution function Fa. Given x (t) = b
√

2/π sin (t)

with b ∈ R, for any ε > 0, ϕ (x, ε) = Fa (b+ ε) − Fa (b− ε) and, as ε goes

to zero, ϕ (x, ε) ∼ 2εfa (b). This asymptotic is the same as obtained from the

SmBP factorization: since the first PC is θ = a and x1 = b, it holds ϕ (x, ε) ∼
f1 (x1) επ

1/2/Γ (1/2 + 1) = 2fa (b) ε, ε → 0, with fa being the intensity of the

SmBP. Here, fa was compared with its estimates f̂1,n from a sample of curves, for

different x (t), varying the nature of a and the sample size. We generated 1, 000

samples {Xi (t) , i = 1, . . . , n}, i.i.d. as X (t), (with n = 50, 100, 200, 500, 1, 000)
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Table 1. Mean and standard deviation of RMSEP (×100) for Gaussian, t, and χ2

distributions, computed over 1, 000 Monte Carlo replications varying the sample size n.

N (0, 1) t (5) /
√

5/3
(
χ2 (8)− 8

)
/4

n Mean St.dev. Mean St.dev. Mean St.dev.
50 3.235 (2.681) 5.921 (2.557) 4.081 (2.842)

100 1.860 (1.444) 4.775 (1.503) 2.401 (1.619)
200 1.091 (0.824) 4.138 (0.878) 1.422 (0.887)
500 0.546 (0.355) 3.737 (0.477) 0.753 (0.443)

1,000 0.330 (0.220) 3.606 (0.327) 0.453 (0.233)

where every curve was discretized over a mesh consisting on 100 equispaced points

{tj = (j − 1)π/99, j = 1, . . . , 100}. For each sample, we estimated the eigen-

function ξ (t), the associated PC θ and its density via kernel procedure. Besides

such samples, we built a set of curves xb (t) = b
√

2/π sin (t) (discretized on the

same grid as X (t)), where b is a suitable increasing sequence of real values. The

estimated density f̂1,n was then evaluated at the points x̂b1 = 〈xb (t) , ξ̂ (t)〉 and

compared with the true values fa (b) in term of relative mean square prediction

error (RMSEP =
∑

b[f̂1,n
(
x̂b1
)
−fa (b)]2 /

∑
b f

2
a (b) ) over the 1, 000 replications.

We also investigated for which values b the estimate of the surrogate density is

better, by using the absolute percentage error (APE = |f̂1,n
(
x̂b1
)
− fa (b) |/fa (b)

). In the experiment we took a distributed as: i) N (0, 1); ii) t (5) /
√

5/3; iii)(
χ2 (8)− 8

)
/4. For b, we used sequences consisting of 160 equispaced points over

the interval [−4, 4] for the distributions i) and ii), and [−2, 6] for the asymmetric

distribution iii). The MSEP (multiplied by 100) obtained under the different

experimental conditions are collected in Table 1. As expected, results improve

as the sample size increases. This is due to the better estimates of projections

θ̂ and x̂b and to the better performances of the kernel estimator. On the other

hand, differences due to the shape of distributions occur: long tails and asym-

metries produce a deterioration in estimates. The APE (multiplied by 100) for

some selected values b when n = 200 are reproduced in Figure 1. As one might

expect, the quality of estimate worsens at the edges of the distributions, when b

is rather far from zero. This fact is connected to the limitations of kernel density

estimator in evaluating the tails of distributions.

6.2. Infinite dimensional setting

We dealt with an infinite–dimensional setting in order to study how the

estimation of the intensity of the SmBP behaves according to the sample size

and the dimensional parameter d. We considered a Wiener process X on [0, 1]
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− − − − − − − − − −

− − − −

−

Figure 1. APE (×100) in estimating fa (b) varying b for Normal, t, and χ2 distributions,
respectively.

and the smooth function x (t) =
∑d0

j=1 bjξj (t) with, for the sake of simplicity,

d0 = 1,

x (t) = b
2
√

2

π
sin

(
πt

2

)
, t ∈ [0, 1] , (6.1)

where b ∈ R, so that the intensity is Ψd0(x) = exp
{
−b2/2

}
. We generated 1, 000

samples {Xi (t) , i = 1, . . . , n} (with n = 50, 100, 200, 500, 1, 000), where every

curve was discretized over 100 equispaced points G = {tj = (j−1)/99, j = 1, . . . ,
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Table 2. Mean and standard deviation (in parentheses) of RMSEP (×100) for Wiener
process, computed over 1, 000 Monte Carlo replications varying the sample size n and
the dimension d.

n d = 1 d = 2 d = 3 d = 4 d = 5 d = 6
50 3.36 (2.51) 7.20 (3.73) 13.53 (7.34) 22.03 (12.05) 31.90 (15.87) 42.05 (19.16)

100 1.95 (1.20) 4.82 (2.59) 9.47 (5.54) 15.86 (8.71) 23.99 (12.27) 33.73 (15.88)
200 1.16 (0.72) 3.14 (1.60) 6.64 (3.78) 11.51 (6.30) 17.89 (9.48) 25.51 (13.10)
500 0.57 (0.33) 1.78 (0.93) 4.17 (2.36) 7.77 (4.23) 12.96 (6.88) 18.99 (9.28)

1,000 0.35 (0.19) 1.15 (0.63) 2.82 (1.64) 5.86 (3.13) 10.09 (5.43) 15.29 (7.65)

100} and 160 fixed curves xb (t) generated according to (6.1) and discretized

over G (b was an increasing sequence of equispaced points, over the interval

[−4, 4]). For each sample, once empirical eigenfunctions ξ̂j (t) were obtained,

we estimated fd (with d = 1, . . . , 6) and computed them at
(
x̂b1, . . . , x̂

b
d

)′
where

x̂bj =
〈
xb (t) , ξ̂j (t)

〉
. Finally, we compared the estimated surrogate density with

the true one in term of relative mean square prediction error (MSEP) over the

1, 000 replications. The obtained results (multiplied by 100), varying n and d, are

reported in Table 2. As a general comment, one can observe that, for each d, the

MSPE reduces (both in mean and in variability) with increasing n, whereas, for

each n, the MSPE increases (both in mean and in variability) with d. To perceive

the relation between d and n, one has to read the table in a diagonal direction:

it is possible to use large d at the cost of large samples. For instance, we got

around 3% using n = 50 and d = 1, or n = 200 and d = 2, or when n = 1, 000

and d = 3. On the other hand, results benefit from the fact that the spectrum of

the process is rather concentrated. In fact, the Fraction of Explained Variance

(defined as FEV(d) =
∑

j≤d λj/
∑

j≥1 λj) are: FEV(1) = 0.811, FEV(2) = 0.901,

FEV(3) = 0.933, FEV(4) = 0.950, FEV(5) = 0.960 and FEV(6) = 0.966. Hence,

good estimates for the surrogate density are already possible with d = 1 or d = 2,

also for medium size samples.

Supplementary Materials

Proofs are collected in a supplementary document available on–line.
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