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Abstract: We test the number of spikes in a generalized spiked covariance matrix,

the spiked eigenvalues of which may be much larger or smaller than the nonspiked

ones. For high-dimensional problems, we first propose a general test statistic and

derive its central limit theorem using random matrix theory without a Gaussian

population constraint. We then apply the result to estimate the noise variance and

test the equality of the smallest roots in generalized spiked models. The results of

our simulation studies show that the proposed test method is sized correctly, and

the power outcomes demonstrate the robustness of our statistic to deviations from

a Gaussian population. Moreover, our estimator of the noise variance results in

much smaller mean absolute errors and mean squared errors than those of existing

methods. In contrast to other methods, we eliminate the strict conditions of a

diagonal or a block-wise diagonal form of the population covariance matrix, and

extend the work to a wider range, without the assumption of normality. Thus, the

proposed method is highly suitable for real problems.

Key words and phrases: Central limit theorem, generalized spiked model, high-

dimensional covariance matrix, testing the spikes.

1. Introduction

In this study, we consider a generalized spiked model from a population co-

variance matrix Σ, without a diagonal or a block-wise diagonal assumption, and

with a Gaussian population constraint. We let Tp be a p × p deterministic ma-

trix, and let Σ = TpT
∗
p be a general population covariance matrix with spikes

α1, . . . , αK and multiplicity mk, for k = 1, . . . ,K, arranged arbitrarily in groups

among all the eigenvalues. The condition m1 + · · ·+mK = M is satisfied, where

M is a fixed integer compared with the large dimension p. Furthermore, a few

fixed eigenvalues (spikes) are allowed to be much larger or smaller than the major-

ity of the eigenvalues. This model is the so-called generalized spiked model, and

is closely related to a principal component analysis (PCA) and a factor analysis
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(FA), which are important and powerful tools for dimensionality reduction, data

visualization, and feature extraction. Spiked models are also used in other sci-

entific fields, for example, as factor models in economics and as signal-plus-noise

models in wireless communication. In such cases, we need to determine whether

the spikes affect the identification of the key factors in a data set. Thus, the

limiting behaviors of sample spiked eigenvalues and eigenvectors have attracted

significant interest from researchers. In a pioneering work, Johnstone (2001) as-

sumes the population covariance is a high-dimensional identity matrix with fixed

spikes. Under this simplified framework, Baik, Arous and Péché (2005), Baik and

Silverstein (2006), Paul (2007), and Bai and Yao (2008) examined the limiting

results of sample spiked eigenvalues. Bai and Yao (2012), Fan and Wang (2017),

Cai, Han and Pan (2020), and Jiang and Bai (2021a,b) extended the structure of

the population covariance to a more general form and investigated the asymptotic

distributions of the sample spiked eigenvalues in high-dimensional settings.

However, relatively fewer studies test the number of spikes for large dimen-

sionality p, which is offen a fundamental step in reconstructing the structure of

the population covariance. Most related works determine the number of spikes in

a high-dimensional setting using random matrix theory, such as those of Kritch-

man and Nadler (2008) and Passemier and Yao (2012). In contrast, Johnstone

and Onatski (2020) test for the existence of spikes, Passemier, Li and Yao (2017)

derive a goodness-of-fit test for a high-dimensional principal component model

and determine the number of principal components, and Onatski (2009) test the

number of factors in large factor models with a white noise assumption. These

previous approaches are limited in various ways, such as requiring a diagonal or a

block-wise diagonal form of the population covariance matrix or a Gaussian pop-

ulation assumption, or only including extremely large spikes, but not extremely

small ones.

To relax these restrictions, we recall the generalized spiked model described

earlier and provide a corrected pseudo-likelihood ratio test on the number of

spikes for this model. The proposed test is universal for all population assump-

tions and the general form of the spiked covariance matrix. We apply the test to

estimate the noise variance and to test the equality of the smallest roots in the

generalized spiked model. The proposed test method has several advantages over

existing methods. First, we extend the population covariance matrix to a general

nonnegative definite matrix and remove the diagonal and block-wise diagonal as-

sumptions. Second, we establish the asymptotic distribution of the proposed test

statistic in a high-dimensional setting, without assuming a Gaussian population.

Moreover, under this setting, the spikes are allowed to be significantly larger or
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smaller than the nonspiked eigenvalues, occurring in several groups. Overall, our

assumptions are more practical than those imposed in previous studies.

The remainder of this paper proceeds as follows. In Section 2, we describe

the problem in a generalized setting, and propose a universal test on the spikes,

without imposing Gaussian and diagonal or block-wise diagonal assumptions.

In Sections 3 and 4, we estimate the noise variance and test the equality of

the smallest roots in generalized spiked models, respectively. We also conduct

simulations for each result to compare our work with existing works. Then, we

analyze two sets of real data and give the corresponding statistical inferences in

Section 5. Finally, Section 6 concludes the paper. Detailed proofs are provided

in the Appendix.

2. Test on Spikes in a High-Dimensional Generalized Spiked Model

We consider the generalized spiked model first proposed by Jiang and Bai

(2021a), and define the singular value decomposition of Tp as

Tp = V

(
D

1/2
1 0

0 D
1/2
2

)
U∗, (2.1)

where U and V are unitary matrices, D1 is a diagonal matrix of the M spiked

eigenvalues, and D2 is a diagonal matrix of the nonspiked eigenvalues with

bounded components. We define U1 and U2 as the first M and the last p −M
columns, respectively, of the matrix U defined in Eq. (2.1).

We assume that the double array {xij , i, j = 1, 2, . . .} consists of independent

and identically distributed (i.i.d.) random variables with mean zero and variance

one. Furthermore, E(xij) = 0 and E(x2ij) = 0 for the complex case. Thus,

TpX = (Tpx1, . . . , Tpxn) (2.2)

can be viewed as a random sample from a population with general population co-

variance matrix Σ, where xj = (x1j , . . . , xpj)
′, for 1 ≤ j ≤ n. The corresponding

sample covariance matrix of observations TpX is

S = Tp

(
1

n
XX∗

)
T ∗p , (2.3)

which is the generalized spiked sample covariance matrix.

To test the number of the spikes, we use the following hypothesis:

H0 : M = M0 vs. M 6= M0, (2.4)
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where M0 is a given nonnegative integer, such that (2.4) tests whether the true

number of spikes is M0. We consider the hypothesis test in (2.4) under a high-

dimensional setting in which p/n = cn → c > 0 and both n and p tend to infinity

simultaneously.

We define the empirical spectral distribution (ESD) of Σ as Hn(t), which

tends to a proper probability measure H(t) as p→∞. We let

Jk = {jk + 1, . . . , jk +mk} (2.5)

denote the set of ranks of the mk-ple eigenvalue αk in the descending population

eigenvalues, where αk is out of the support of H(t). Moreover, {lj(S), j ∈ Jk}, for

k = 1, . . . ,K, are the associated sample eigenvalues of the matrix S, denoted as

lj , henceforth. By Proposition 2.1 of Jiang and Bai (2021a), for each population

spiked eigenvalue αk with multiplicity mk satisfying the separation condition

mini 6=k |αk/αi − 1| > d, where d is some positive constant, we have lj(S)/φk −
1 → 0, a.s., for all j ∈ Jk and the function φ(x) = x{1 + c

∫
t/(x− t)dH(t)}.

This conclusion holds under the bounded fourth-moment assumption. However,

based on the truncation procedures of Jiang and Bai (2021a), the convergence

in Proposition 2.1 still holds in probability without the bounded fourth-moment

assumption if one of the tail probabilities is satisfied, that is,

lim
τ→∞

τ4P (|xij | > τ) = 0. (2.6)

Inspired by this result, we propose a test statistic for (2.4) and derive its

asymptotic distribution. Recall that the likelihood ratio test statistic for (2.4) in

the probabilistic principal component analysis model Σ = diag(a1, . . . , aM , 0 . . . , 0)

+ σ2I is expressed by

L =

 1

p−M

p∑
i=M+1

li

(
p∏

i=M+1

li

)−1/(p−M)
−((p−M)n)/2

(2.7)

in classical statistical theory. The test statistic −2 logL relies mainly on the

partial linear spectral statistic involved with the nonspiked eigenvalues, such as∑p
i=M+1 li and

∑p
i=M+1 log li. Following Anderson and Rubin (1956), we also

use this type of statistic in the goodness-of-fit test for the probabilistic princi-

pal component analysis model. Therefore, for the generalized spiked model, we

propose the statistic
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p∑
j=1

f(lj)−
K∑

j∈Jk,k=1

f(lj), (2.8)

where Jk is defined as (2.5), f ∈ A, and A is a set of analytic functions defined

on an open set of the complex plane, including the whole supporting set of the

limiting spectral distribution (LSD), H(t). We define F c,H as the LSD of the

sample matrix S, and F cn,Hn is the analogue of F c,H , with c and H replaced by

cn and Hn, respectively. Furthermore, m(z) ≡ mF c,H (z) is defined as the Stieltjes

transform of F c,H ≡ (1− c)I[0,∞) + cF c,H . To obtain the asymptotic distribution

of the test statistic (2.8), we require the following assumptions:

Assumption 1. The tail probability (2.6) is satisfied and p/n = cn → c > 0 as

both n, p→∞;

Assumption 2. Assume that lim
∑p

j=1 |uji|4E{|x11|4I(|x11| ≤
√
n)−q−2} <∞,

where q = 1 for the real case, q = 0 for the complex case, I(·) is the indicator

function, and ui = (u1i, . . . , upi)
′ is the ith column of the matrix U1.

Assumption 2*. Suppose that

max
1≤i≤M,1≤j≤p

|uji|2E
{
|x11|4I(|x11| <

√
n)− q − 2

}
→ 0. (2.9)

Thus, the central limit theorem (CLT) for the test statistic (2.8) is established

as follows; the proof is provided in the Appendix.

Theorem 1. For the testing problem (2.4), suppose that Assumptions 1 and 2

[or 2∗] hold simultaneously. Then, the asymptotic distribution of the test statistic

(2.8) is as follows:

Tf,H = ν
−1/2
f,H


p∑
j=1

f(lj)−
K∑

j∈Jk,k=1

f(lj)− bf,Hn
− µf,H

⇒ N (0, 1) , (2.10)

where

bf,Hn
= p

∫
f(t)dF cn,Hn(t)−

K∑
k=1

mkf

(
αk + cαk

∫
t

αk − t
dH(t)

)
,

µf,H =− q

2πi

∮
f(z)

c
∫
m3(z)t2{1 + tm(z)}−3dH(t)[

1−c
∫
m2(z)t2{1 + tm(z)}−2dH(t)

]2dz
− βc

2πi

∮
f(z)

m3(z) ·
∫
t{1 + tm(z)}−1dH(t) ·

∫
{1 + tm(z)}−2dH(t)

1−c
∫
m2(z)t2{1 + tm(z)}−2dH(t)

dz,
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νf,H =− q + 1

4π2

∮ ∮
f(z1)f(z2)

{m(z1)−m(z2)}2
dm(z1)dm(z2)

− βc

4π2

∮ ∮
f(z1)f(z2)

∫
tdH(t)

{1 + tm(z1)}2

∫
tdH(t)

{1 + tm(z2)}2
dm(z1)dm(z2).

(2.11)

Here, β = lim
∑p

j=1 |uji|4E{|x11|4I(|x11| ≤
√
n)− q − 2} if Assumption 2 is met,

and β = 0 if Assumption 2∗ holds instead. The contours all contain the support

of F c,H and are non-overlapping in (2.11).

Remark 1. Note that the CLT given by Theorem 1 depends on the number

mk, the values of the population spikes αk, and the LSD H(t). However, these

parameters are usually unknown in data analyses, and need to be estimated; see

(Li et al. (2013), Jiang and Bai (2021a), Bao et al. (2019), and Zheng, Ma and

Lin (2021)).

For H(t) = δ{1,+∞}, we select f(x) = x and f(x) = log x as two examples,

and present the details of the computations in the Supplementary Material.

Example 1. If f(x) = x and H(t) = δ{1,+∞}, the statistic in (2.10) simplifies to

Tx,1 = ν
−1/2
x,1


p∑
j=1

lj −
K∑

j∈Jk,k=1

lj − bx,1 − µx,1

⇒ N (0, 1) ,

where bx,1=(p−M)−
∑K

i=1mkcαk/(αk − 1), µx,1 = 0, and νx,1=(q + 1 + β)c.

Example 2. If f(x) = log x and H(t) = δ{1,+∞}, the statistic in (2.10) is given

as

Tlog,1 = ν
−1/2
log,1


p∑
j=1

log(lj)−
K∑

j∈Jk,k=1

log(lj)− blog,1 − µlog,1

⇒ N (0, 1) ,

where

blog,1 = p

{
(c− 1)

c
log(1− c)− 1

}
−

K∑
i=1

mk log

(
1 +

c

αk − 1

)
,

µlog,1 =
q

2
log(1− c)− 1

2
βc, νlog,1 = −(q + 1) log(1− c) + βc.

2.1. Monte Carlo experiments

To demonstrate the effectiveness of the proposed CLT using simulations, we

first provide the following two models:
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Model 1: Assume that Σ = Λ, where Λ is assumed to be an identity ma-

trix with a finite-rank perturbation. In descending order, its spikes are

(25, 16, 16, 0.2, 0.2, 0.1), with multiplicities (1, 2, 2, 1).

Model 2: Assume that Σ = U0ΛU
∗
0 , where Λ is defined in Model 1, and U0

is a matrix of the eigenvectors of a p × p matrix, with entries sampled

independently from N(0, 1). Thus, we relax the diagonal assumption of Σ.

Furthermore, to show that the conclusion is widely applicable and free of the

population assumption, we consider the following Gaussian and gamma popula-

tions for each model:

Gaussian Assumption: {xij} are i.i.d. samples from a standard Gaussian pop-

ulation.

Gamma Assumption: {xij} are i.i.d. from the population distribution

Gamma(4, 0.5)− 2.

For the sake of simplicity, we select the function f(x) = x and the LSD

H(t) = δ{1,+∞}. For each case, the sample size is set to n = 100, 200, and 400,

and p/n = 0.5, 1, and 1.5, respectively. We report the empirical probability of

rejecting the null hypothesis (2.4), H0 : M = M0, with 1,000 replicates in Table 1

and Table 2. We list only the results for Model 2, because those for Model 1 are

similar, and thus given in the Supplementary Material. Moreover, we plot the

empirical distributions of the proposed test statistic when M0 is equal to the

true value of M . Figure 1 shows the performance of our proposed method under

Model 2 with a gamma population assumption; the figures for the other cases are

provided in the Supplementary Material.

To further demonstrate that the proposed CLT is valid for a distribution

with infinite fourth moments, we generate i.i.d. samples xij from a 2−1/2t(4)

population distribution under Model 2, where the fourth moments of xij are

infinite. The simulated results are presented in the Supplementary Material.

The results of the simulation study show that the proposed test on the num-

ber of spikes provides good sizes for both the Gaussian and the nonGaussian,

diagonal and off-diagonal populations when the null hypothesis is true. More-

over, the power increases as the alternative hypothesis moves further from the

null hypothesis. Based on the above results, we infer that M0 tested in (2.4) usu-

ally matches the true value of M at the inflection points of the empirical sizes.

This corresponds to the first local minimum value of the empirical sizes.
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Table 1. Empirical probability of rejecting the null hypothesis (2.4) for Model 2 under a
Gaussian assumption when the true value of M is six.

Values of M0 1 2 3 4 5 6 7

p = 50 ; n = 100 1 1 0.649 0.319 0.096 0.048 0.068

p = 100; n = 200 1 1 0.691 0.366 0.116 0.049 0.115

p = 200; n = 400 1 1 0.698 0.389 0.129 0.055 0.150

p = 100; n = 100 1 1 0.383 0.195 0.085 0.044 0.125

p = 200; n = 200 1 1 0.411 0.223 0.099 0.042 0.174

p = 400; n = 400 1 1 0.403 0.231 0.121 0.052 0.213

p = 150; n = 100 1 0.998 0.263 0.151 0.078 0.039 0.174

p = 300; n = 200 1 1 0.286 0.178 0.102 0.040 0.244

p = 600; n = 400 1 1 0.301 0.199 0.124 0.054 0.263

Table 2. Empirical probability of rejecting the null hypothesis (2.4) for Model 2 under a
gamma assumption when the true value of M is six.

Values of M0 1 2 3 4 5 6 7

p = 50 ; n = 100 1 1 0.403 0.190 0.071 0.038 0.051

p = 100; n = 200 1 1 0.446 0.235 0.085 0.046 0.086

p = 200; n = 400 1 1 0.456 0.236 0.101 0.043 0.112

p = 100; n = 100 1 0.996 0.242 0.115 0.060 0.040 0.086

p = 200; n = 200 1 1 0.282 0.155 0.082 0.044 0.127

p = 400; n = 400 1 1 0.292 0.164 0.084 0.049 0.144

p = 150; n = 100 1 0.980 0.137 0.078 0.055 0.043 0.094

p = 300; n = 200 1 0.991 0.177 0.122 0.077 0.044 0.148

p = 600; n = 400 1 0.998 0.214 0.125 0.091 0.052 0.181

3. Estimating the Noise Variance in a Generalized Spiked Model

We suppose the spiked model described in Section 2 has the following struc-

ture:

Σ = AA′ + Ψ, (3.1)

where A is a p×M matrix, the eigenvalues of A′A are M distinct elements, and

the eigenvalues of Ψ are groups of the general population eigenvalues. Thus, the

spectrum of Σ is denoted as

σ2(α̃1, . . . , α̃1︸ ︷︷ ︸
m1

, . . . , α̃k, . . . , α̃k︸ ︷︷ ︸
mk

, . . . , r1, . . . , r1, . . . , rs, . . . , rs︸ ︷︷ ︸
p−M

), (3.2)

where m1 + · · ·+mk = M , and both M and s are fixed small numbers.
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Figure 1. Model 2 under a gamma assumption.

It is relatively common for general population eigenvalues to be divided into

several groups with fixed distinct spikes. Thus, we assume that the LSD of Σ

excluding the spikes, denoted as H(t), follows a probability distribution that

takes the value riσ
2 with probability ωi, for i = 1, . . . , s, where ω1 + · · ·+ωs = 1.

In traditional statistical theory, the statistic

σ̂2 =
1

(p−M)(ω1r1 + · · ·+ ωsrs)

 p∑
j=1

lj −
K∑

j∈Jk,k=1

lj

 (3.3)

is a reasonable estimate of the noise variance σ2, where lj is a sample eigenvalue

of Σ and Jk is a set of ranks of the spikes.

As is well known, when the dimensionality p is large relative to the sample

size, the sample spiked eigenvalues do not converge to the population eigenvalues.

Thus, the estimator (3.3) has a negative bias. Using the CLT proposed in Theo-

rem 1, we establish the following CLT for the estimator σ̂2 in the high-dimensional

setting, which can be used to identify the bias of estimator (3.3).
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Theorem 2. For the spiked model (3.1) with the spectrum in (3.2), we assume

that the assumptions in Theorem 1 hold and cn = p/n → c > 0 when both the

dimensionality p and the sample size n go to infinity. Then, we have that

ν−1/2x

{
(σ̂2 − σ2)(p−M)

s∑
i=1

ωiri + b(α̃k, σ
2)− µx

}
⇒ N (0, 1) ,

where

b(α̃k, σ
2) =

K∑
k=1

s∑
i=1

mkcα̃kσ
2riωi

α̃k − ri
,

µx =− q

2πi

∮
cm2(z)

[
cm(z)

∫
t{1 + tm(z)}−1dH(t)− 1

][
1−c

∫
m2(z)t2{1 + tm(z)}−2dH(t)

]2
×
∫
t2{1 + tm(z)}−3dH(t)dz

− βc

2πi

∮
m2(z)

[
− 1 + cm(z)

∫
t{1 + tm(z)}−1dH(t)

]
×
∫
t{1 + tm(z)}−1dH(t)

∫
{1 + tm(z)}−2dH(t)

1−c
∫
m2(z)t2{1 + tm(z)}−2dH(t)

dz,

νx =− q + 1

4π2

∮ ∮ [
−m−1(z1) + c

∫
t{1 + tm(z1)}−1dH(t)

]
{m(z1)−m(z2)}2

×
[
−m−1(z2) + c

∫
t{1 + tm(z2)}−1dH(t)

]
dm(z1)dm(z2)

− βc

4π2

∮ ∮ [
−m−1(z1) + c

∫
t{1 + tm(z1)}−1dH(t)

]
×
[
−m−1(z2) + c

∫
t{1 + tm(z2)}−1dH(t)

]
×
∫

tdH(t)

{1 + tm(z1)}2
·
∫

tdH(t)

{1 + tm(z2)}2
dm(z1)dm(z2).

Note that b(α̃k, σ
2) depends on the number mk, the LSD H(t), and the values

of the population spikes, which are most likely unknown in practice; refer to the

literature discussed in Section 2 on how to estimate these values.

We now use the above theorem to correct the bias of σ̂2. As shown in

Theorem 2, the bias of the estimator is also related to the unknown parameter

σ2, which we estimate; a plug-in estimator is given in the following corollary.



TEST ON SPIKES IN A GENERALIZED SPIKED MODEL 1759

Corollary 1. For the spiked model (3.1), from Theorem 2, a bias-corrected plug-

in estimator is given by

σ̂2c = σ̂2 +
b(α̃k, σ̂

2)− µx
(p−M)

∑s
i=1 ωiri

. (3.4)

Therefore, the asymptotic distribution of σ̂2c is a natural consequence of The-

orem 2.

Theorem 3. If the conditions in Theorem 2 all hold, then the following holds:

ν−1/2x (p−M)

s∑
i=1

ωiri(σ̂
2
c − σ2)⇒ N (0, 1) .

3.1. Simulation study for the estimation of the noise variance

For the estimation of the noise variance in the spiked model (3.1), we establish

the following models:

Model 3 Assume that Σ = σ2Λ, where Λ is defined in Model 1 and σ2 = 4.

Model 4 Assume that Σ = σ2U0ΛU
∗
0 , where U0 and Λ are defined in Model 2

and σ2 = 4.

We use simulations to compare our proposed estimator σ̂2c in (3.4) with other es-

timation methods, such as the maximum likelihood estimation (MLE) σ̂2 defined

in (3.3), the estimator σ̂2∗ presented by Passemier, Li and Yao (2017), the estima-

tor σ̂2us presented by Ulfarsson and Solo (2008), and the estimator σ̂2m presented

by Johnstone and Lu (2009). The Gaussian and gamma population assumptions

in Section 2 remain. The mean absolute error (MAE) and mean squared er-

ror (MSE) of these estimators for Model 4 are reported in Tables 3 and 4 for

1,000 replicates. Similar results for Model 3 are presented in the Supplementary

Material.

As shown by the simulated results, our proposed method yields the lowest

MAEs and MSEs for the various populations and models. Furthermore, the

advantage of our estimation becomes increasingly evident as the dimensionality

increases. The estimator σ̂2∗ presented by Passemier, Li and Yao (2017) performs

well for the diagonal population covariance matrix with only extremely large

spikes. Their method involves a consistent estimate of α̃k, obtained by solving

the equation lj → σ2{α̃k+cα̃k/(α̃k − 1)}. However, for the general spiked matrix

with both extremely large and extremely small spikes, their method always yields

estimates close to one for the small spikes 0.1 and 0.2. Thus, the estimates of σ2

are ineffective.
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Table 3. MAEs and MSEs of σ̂2
c compared with those of existing estimators of the noise

variance for Model 4 under a Gaussian assumption.

Estimators σ̂2
c σ̂2 σ̂2

∗ σ̂2
US σ̂2

m

p = 50; n = 100 MAE 0.0672 0.1091 6.87× 102 0.1195 3.3049

MSE 0.0071 0.0166 6.51× 105 0.0220 11.103

p = 100; n = 200 MAE 0.0335 0.0569 2.77× 102 0.0647 1.7115

MSE 0.0018 0.0045 1.17× 105 0.0065 2.9538

p = 200; n = 400 MAE 0.0159 0.0277 8.51× 101 0.0335 0.7907

MSE 0.0004 0.0011 1.59× 104 0.0017 0.6279

p = 100; n = 100 MAE 0.0549 0.1154 1.09× 103 0.2239 1.6165

MSE 0.0062 0.0165 1.66× 106 0.0628 2.6569

p = 200; n = 200 MAE 0.0257 0.0551 5.13× 102 0.1102 0.7743

MSE 0.0010 0.0038 3.65× 105 0.0156 0.6047

p = 400; n = 400 MAE 0.0127 0.0265 1.98× 102 0.0558 0.4261

MSE 0.0003 0.0009 5.58× 104 0.0041 0.1824

p = 150; n = 100 MAE 0.0398 0.1137 2.02× 103 3.2501 1.0087

MSE 0.0025 0.0150 4.07× 106 10.564 1.0320

p = 300; n = 200 MAE 0.0195 0.0573 7.73× 102 3.2277 0.5286

MSE 0.0006 0.0038 5.98× 105 10.418 0.2816

p = 600; n = 400 MAE 0.0097 0.0289 3.77× 102 3.2167 0.2778

MSE 0.0001 0.0009 1.42× 105 10.347 0.0776

4. Testing the Equality of the Smallest Roots in a Probabilistic Prin-

cipal Component Analysis Model

Suppose that the observable covariance matrix

Σ = AA′ + σ2I (4.1)

has a characteristic root of σ2 with multiplicity p−M , where A′A is the positive

semidefinite matrix of rank M . We denote the population eigenvalues of Σ as

λ1, . . . , λp, in descending order. We then test the null hypothesis that

H′ : λM+1 = · · · = λp. (4.2)

This is equivalent to the null hypothesis that Σ = AA′+σ2I when A′A is positive

semidefinite of rank M .

As shown in Section 11.7 in Anderson (2003), the pseudo-likelihood ratio

criterion is the statistic L defined in (2.7), where li denotes a sample eigenvalue.

Moreover, −2 logL has a limiting χ2-distribution with (p−M + 2)(p−M − 1)/2

degrees of freedom. However, this conclusion no longer holds when the dimension
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Table 4. MAEs and MSEs of σ̂2
c compared with those of existing estimators of the noise

variance for Model 4 under a gamma assumption.

Estimators σ̂2
c σ̂2 σ̂2

∗ σ̂2
US σ̂2

m

p = 50; n = 100 MAE 0.0834 0.1226 6.93× 102 0.1407 3.0216

MSE 0.0108 0.0219 6.54× 105 0.0308 9.3263

p = 100; n = 200 MAE 0.0426 0.0625 2.44× 102 0.0727 1.5157

MSE 0.0028 0.0057 9.48× 104 0.0083 2.3219

p = 200; n = 400 MAE 0.0223 0.0314 8.53× 101 0.0386 0.8012

MSE 0.0008 0.0014 1.59× 104 0.0023 0.6454

p = 100; n = 100 MAE 0.0706 0.1149 1.12× 103 0.2546 1.5130

MSE 0.0102 0.0178 1.63× 106 0.0796 2.3255

p = 200; n = 200 MAE 0.0322 0.0588 4.85× 102 0.1301 0.7568

MSE 0.0019 0.0046 3.28× 105 0.0212 0.5788

p = 400; n = 400 MAE 0.0167 0.0281 1.99× 102 0.0647 0.4352

MSE 0.0008 0.0011 5.63× 104 0.0054 0.1905

p = 150; n = 100 MAE 0.0511 0.1183 2.02× 103 3.2568 1.0796

MSE 0.0041 0.0175 4.06× 106 10.608 1.1852

p = 300; n = 200 MAE 0.0263 0.0576 7.73× 102 3.2311 0.5576

MSE 0.0011 0.0042 5.98× 105 10.439 0.3144

p = 600; n = 400 MAE 0.0126 0.0293 3.77× 102 3.2184 0.2839

MSE 0.0003 0.0011 1.42× 105 10.358 0.0813

p goes to infinity. Passemier, Li and Yao (2017) propose a goodness-of-fit test for a

probabilistic principal component analysis model of the form of (4.1). However,

their result applies only to a Gaussian population. Therefore, we propose a

corrected test statistic −2 logL/{n(p −M)} and derive its limiting distribution

using Theorem 1, which is widely used without a Gaussian assumption constraint.

Theorem 4. For the test problem (4.2), we suppose that the standardized entries

for the model (4.1) satisfy condition (2.6) and p/n = cn → c > 0 when both n

and p go to infinity simultaneously. For the test statistic −2 logL
/
{n(p −M)},

we have that

TL = ν
−1/2
L

{
− 2 logL

n(p−M)
− log

(
bx,σ2

p−M

)
+
blog,σ2 + µlog,σ2

p−M

}
⇒ N (0, 1) ,

where νL is expressed by (4.7) and bx,σ2, blog,σ2, µlog,σ2, νx,σ2, and νlog,σ2 are

defined in (4.4).

Proof. We set α∗k, for k = 1, . . . ,K, as the M nonzero eigenvalues of AA′ with

mk multiplicity. The spikes of Σ in model (4.1) are σ2α̃k, for k = 1, . . . ,K, where

α̃k = α∗k/σ
2+1 and also has multiplicity mk. We define ∆1 =

∑p
i=M+1 li−bx,σ2−
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µx,σ2 and ∆2 =
∑p

i=M+1 log li − blog,σ2 − µlog,σ2 . By Theorem 1, we have that

Tx,σ2 = ν
−1/2
x,σ2 ∆1 → N (0, 1) and Tlog,σ2 = ν

−1/2
log,σ2∆2 → N (0, 1), (4.3)

where

bx,σ2 = (p−M)σ2 −
K∑
i=1

mkcσ
2α̃k

α̃k − 1
, µx,σ2 = 0, νx,σ2 = (q + 1 + β)cσ4,

blog,σ2 = p

{
(c− 1)

c
log(1− c)− 1

}
−

K∑
i=1

mk log

(
1 +

c

αk − 1

)
,

µlog,σ2 =
q

2
log(1− c)− 1

2
βc, νlog,σ2 = −(q + 1) log(1− c) + βc. (4.4)

The calculations are similar to those in Examples 1 and 2. Furthermore, by the

expression of L given in (2.7) and the Taylor expansion, it follows that

− 2 logL

n(p−M)
= log

(
p∑

i=M+1

li

)
− 1

p−M

p∑
i=M+1

log li − log(p−M)

= log(∆1 + bx,σ2 + µx)− 1

p−M
(∆2 + blog + µlog)− log(p−M)

= log

(
bx,σ2 + µx,σ2

p−M

)
+

∆1

bx,σ2 + µx,σ2

− ∆2

p−M
−
blog,σ2 +µlog,σ2

p−M
. (4.5)

Based on equation (4.3), we have

∆1

bx,σ2 + µx
− ∆2

p−M
→ N (0, νL), (4.6)

where

νL =
νx,σ2(p−M − 2bx,σ2)

(p−M)b2x,σ2

+
νlog,σ2

(p−M)2
(4.7)

is calculated from (4.4) and (4.6).

Thus, by (4.5) and (4.6), the proof is complete.

4.1. Simulation study for testing the equality of the smallest roots

We use simulations to compare our proposed test statistic TL with the classi-

cal pseudo-likelihood ratio test statistic (TPLR) and the corrected likelihood ratio

test (CLRT) presented by Passemier, Li and Yao (2017). These test methods all

rely on the pseudo-likelihood function, and therefore have good statistical prop-

erties, but can be used only for the case p < n, owing to their correlation with the
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Figure 2. Empirical sizes of the competitive tests for hypothesis (4.2) when n = 500 and
p/n < 1.
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Figure 3. Empirical sizes of the competitive tests for hypothesis (4.2) when p = 500 and
p/n > 1.

log function. Thus, to expand the application of our method, we also include the

test statistic Tx,σ2 in (4.3). The value of the test statistic of the CLRT presented

by Passemier, Li and Yao (2017) cannot be calculated under our general model

assumptions, as mentioned in Section 3.1. We use CLRTr to represent their test

method, with their estimated α̃k replaced by the real values of α̃k. Models 1 and

2 and the population assumptions in Section 2 are used again here. The em-

pirical sizes of the competitive tests for hypothesis (4.2) are calculated for 1,000

replicates. The simulated results for Model 2 are presented in Figures 2 and 3.

Similar figures for Model 1 are included in the Supplementary Material.

Our proposed test statistics TL and Tx provide the empirical sizes around

the selected test level of 5%. Moreover, Tx can be applied more broadly to the

case with p > n. Furthermore, the classical test statistic TPLR rejects the null
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hypothesis when the dimensionality increases. As explained in Section 3.1, the

CLRT is not available (N.A.) under our model assumptions, which has both

extremely large and small spikes. Even if we used the true values of the spikes

instead of their estimates in the CLRT, there are still problems. First, in the case

of the gamma population, the empirical size of CLRTr is significantly higher than

the given test level. Second, for the high-dimension case p = 400 and n = 500,

we still cannot calculate the value of the CLRTr test statistic.

5. Real-Data Analysis

To demonstrate the feasibility of our proposed test method, we examine two

real data sets. The first is an environmental data set for countries, freely avail-

able from the website https://www.kaggle.com/zanderventer/environmental

-variables-for-world-countries. Because country-level social and economic

statistics are often limited to socio-economic data, this data set enables us to

use environmental statistics to predict social and economic data. Determining

how many environmental variables have a significant impact on socioeconomic

status is an important problem. The data set consists of 243 countries and 27

environmental variables. We apply our testing method to determine the number

of spikes in the covariance matrix generated from the standardized data, based

on 188 observations without missing values. The p-values of the sequential tests

are listed in Table 5. We infer that the true value of the number of spikes appears

at the first inflection point of the p-value, where the first local maximum value

occurs, enabling us to determine the number of spikes and provide appropriate

estimates. The estimates of the values of the spikes are also included.

The second data set is the Wisconsin Breast Cancer Diagnosis data set, down-

loaded from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wi-

sconsin+%28Diagnostic%29. This data set contains 569 instances, with 357 be-

nign (62.7%) and 212 malignant (37.3%) cases of breast cancer. We compute 30

real-valued input features for each cell nucleus, as well as two nominal features:

ID number and diagnosis. This database is a standardized version of the original

Wisconsin Breast Cancer Diagnosis data set, and we use our proposed testing

method to determine the number of spikes for all instances. The test results are

listed in Table 6.

6. Conclusion

We have established a universal test for the number of spikes in a high-

dimensional generalized spiked model, with assumptions that are more relaxed

https://www.kaggle.com/zanderventer/environmental-variables-for-world-countries
https://www.kaggle.com/zanderventer/environmental-variables-for-world-countries
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
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Table 5. Estimates of the number and values of the population spikes for the environ-
mental data set by country.

Values of M0: 1 2 3 4 5 6 7

p-values: 0 0.0211 0.3498 0.6976 0.9488 0.4211 02205

Estimated number: 5

Estimated values of spikes: α̂1 α̂2 α̂3 α̂4 α̂5

9.7848 7.0903 2.1086 1.7522 1.3634

Table 6. Estimates of the number and values of the population spikes for the Wisconsin
Breast Cancer Diagnosis data set.

Values of M0: 1 2 3 4 5 6

p-values: 0 0 8.11× 10−10 0.1026 1.18× 10−14 0

Estimated number: 4

Estimated values of spikes: α̂1 α̂2 α̂3 α̂4

13.1817 5.6174 2.7219 1.9264

than those of previous tests. We applied our method to two typical statistical

problems, and proved its effectiveness using simulation results. In this study, we

focus on the one-sample spiked model related to the covariance matrix. In future

work, we will examine the two-sample spiked model with the Fisher matrix.

Supplementary Material

The supplementary material for “A universal test on spikes in a high-dimen-

sional generalized spiked model and its applications” is available online and in-

cludes some simulation results as well as detailed proofs for Examples 1 and 2.
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Appendix

A.1. Proof of Theorem 1

To prove Theorem 1, we first need to generalize the CLT for the linear spec-

tral statistic (LSS) of a sample covariance matrix in Bai and Silverstein (2004)

and Jiang (2016). Similar to their works, the LSS for our generalized sample
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covariance matrix is also expressed as

p∑
j=1

f(lj) = p

∫
f(x)dFn(x)

= p

∫
f(x)d(Fn − F cn,Hn)(x) + p

∫
f(x)dF cn,Hn(x)

= Gn(x) + p

∫
f(x)dF cn,Hn(x),

where Fn(x) is the empirical spectral distribution of the sample covariance ma-

trix S, and F c,H(x) is the corresponding limiting spectral distribution. Denote

F cn,Hn(x) as the analogue of F c,H(x), except that the parameter c and H are

replaced by cn and Hn.

Under different finite 4th moment assumptions, both of Bai and Silverstein

(2004) and Jiang (2016) proved that the process

Gn(x) =

p∑
j=1

f(lj)− p
∫
f(x)dF cn,Hn(x)

would converge to a Gaussian random variable with some specific mean and

variance. For example, when the condition of E|x11|4 = q + 2 was assumed with

q = 1 for the real case and q = 0 for the complex case, Bai and Silverstein (2004)

showed that

Gn(x)⇒ N
(
µ
(1)
f,H , ν

(1)
f,H

)
, (A.1)

where

µ
(1)
f,H =− q

2πi

∮
f(z)

c
∫
m3(z)t2{1 + tm(z)}−3dH(t)[

1−c
∫
m2(z)t2{1 + tm(z)}−2dH(t)

]2dz
ν
(1)
f,H = −q + 1

4π2

∮ ∮
f(z1)f(z2)

{m(z1)−m(z2)}2
dm(z1)dm(z2). (A.2)

Furthermore, Jiang (2016) extended their work to a wider range of applica-

tion to the non-Gaussian populations. Under the assumption of E|x11|4 <∞ and

β = E|x11|4 − q − 2, Jiang (2016) claimed that

Gn(x)⇒ N
(
µ
(1)
f,H + µ

(2)
f,H , ν

(1)
f,H + ν

(2)
f,H

)
, (A.3)

where µ
(2)
f,H and ν

(2)
f,H are compensations for the difference between Gaussian and

non-Gaussian populations, and expressed as below,
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µ
(2)
f,H =− βc

2πi

∮
f(z)

m3(z)
∫
t{1 + tm(z)}−1dH(t) ·

∫
{1 + tm(z)}−2dH(t)

1−c
∫
m2(z)t2{1 + tm(z)}−2dH(t)

dz,

ν
(2)
f,H =− βc

4π2

∮ ∮
f(z1)f(z2)

∫
tdH(t)

{1 + tm(z1)}2

∫
tdH(t)

{1 + tm(z2)}2
dm(z1)dm(z2).

(A.4)

We find that both of the proofs in Bai and Silverstein (2004) and Jiang (2016)

depend on following formula, i.e

(x∗tAxt − tr(A))2 =

p∑
i=1

(E|xit|4 − |Ex2it|2 − 2)aii + tr(AxA
>
x ) + tr(A2

x), (A.5)

where A = (aij) is a p× p matrix, and Ax = (Ex2itaij). All of the compensation

for the non-Gaussian populations come from the first term of (A.5). Bai and

Silverstein (2004) supposed that E|xit|4 = 3 for real case and E|xit|4 = 2 for

complex case, then the first item is 0. In Jiang (2016), they assumed that E|xit|4’s
are the same and bounded, then the coefficient of the non-Gaussian compensation

is β = E|x11|4 − |Ex211|2 − 2. For our generalized model, the CLT for Gn(x) also

relies heavily on the equations with the same form in (A.5). We take the following

item as an example to illustrate our result,

ζ =

[
1

n

{
x∗tT

∗
pA
−1
n Tpxt − tr(T ∗pA

−1
n Tp)

}]2
,

where An = S−λI − (1/n)Tpxtx
∗
tT
∗
p and λ is an eigenvalue of S defined in (2.3).

By the decomposition of Tp in (2.1), we let ξt = 1/
√
nU∗xt, then

ζ =

{
ξ∗tB

−1
n ξt −

1

n
tr
(
B−1n

)}2

,

where

B−1n =

(
D

1/2
1 0

0 D
1/2
2

)
V ∗A−1n V

(
D

1/2
1 0

0 D
1/2
2

)
It is obvious that the matrix B−1n is bounded even if the spiked eigenvalues of S

converge to infinity. Thus, if the bounded 4th moment condition is assumed, our

result is identical to the one in Jiang (2016). When the 4th moment of xit may

not exist, by the equation (A.5), we have

ζ =

p∑
i=1

(E|ξit|4 − |Eξ2it|2 − 2)b̌ii + (|Eξ2it|2 + 1)tr(B2
n)
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=

p∑
i=1

(
p∑
j=1

|uji|4E|x11|4−
p∑
j=1

|uji|2|Ex211|2−2

)
b̌ii+

(
p∑
j=1

|uji|2|Ex211|2+1

)
tr(B2

n)

=

p∑
i=1

(
p∑
j=1

|uji|4E|x11|4 − |Ex211|2 − 2

)
b̌ii + (|Ex211|2 + 1)tr(B2

n)

due to the properties of Hermitian matrix U , i.e.
∑p

j=1 u
2
ji = 1 and

∑
j1 6=j2 uj1iuj2i

= 0, and b̌ii is the ith diagonal element of B−1n .

Let x̂ij = xijI(|xij | < ηn
√
n) and x̃ij = (x̂ij − Ex̂ij)/σn with σ2n = E|x̂ij −

Ex̂ij |2, where ηn → 0 with a slow rate. It was demonstrated in Jiang and Bai

(2021a) that it is equivalent to replace the entries of X with the truncated and

renormalized ones under the Assumption (a). So when Assumption (b) holds for

one side, and we let

β = lim

p∑
j=1

|uji|4E{|x11|4I(|x11| ≤
√
n)− q − 2},

then ζ = β
∑p

i=1 b̌ii + (q + 1)tr(B2
n), which is identical to the result in Jiang

(2016), except that the coefficient β is replaced by the limit. For the other side,

if Assumption (b) is not met, but the Assumption (b∗) is valid, then

β =

p∑
j=1

|uji|4E{|x11|4I(|x11| ≤
√
n)− q − 2}

≤ max
1≤i≤M,1≤j≤p

|uji|2E
{
|x11|4I(|x11| <

√
n)− q − 2

}
→ 0,

because only the eigenvectors ui, i = 1, . . . ,M corresponding to the extreme

eigenvalues. Thus the proof is completed.
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