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Abstract: Nonparametric and semiparametric regression models are useful statis-

tical regression models to discover nonlinear relationships between the response

variable and predictor variables. However, optimal efficient estimators for the non-

parametric components in the models are biased which hinders the development of

methods for further statistical inference. In this paper, based on the local linear

fitting, we propose a simple bias reduction approach for the estimation of the non-

parametric regression model. Our approach does not need to use higher-order local

polynomial regression to estimate the bias, and hence avoids the double bandwidth

selection and design sparsity problems suffered by higher-order local polynomial

fitting. It also does not inflate the variance. Hence it can be easily applied to com-

plex statistical inference problems. We extend our approach to varying coefficient

models, to estimate the variance function, and to construct simultaneous confi-

dence band for the nonparametric regression function. Simulations are carried out

for comparisons with existing methods, and a data example is used to investigate

the performance of the proposed method.

Key words and phrases: Simultaneous confidence band, undersmoothing, variance

function estimation.

1. Introduction

Nonparametric and semiparametric regression models have been widely used

to discover nonlinear relationships between response and predictor variables, and

to reduce the model bias to avoid model misspecification. Efficient model estima-

tion to make statistical inference is a necessary step for data interpretation and

for finding the insufficiency of the original statistical model. Classical efficient

estimators of nonparametric components in the nonparametric or semiparamet-

ric regression models are always biased. For nonparametric or semiparametric

regression models, finding an unbiased estimator for the nonparametric compo-

nents or reducing the bias for classical efficient nonparametric estimators is very
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important for further inference.

As an important technique and methodology for nonparametric regression

modelling, local linear estimators enjoy numerical and theoretical advantages (see

Fan (1993); Fan and Gijbels (1996); Hastie and Loader (1993), etc.). For exam-

ple, they achieve the minimax efficiency among all linear estimators. Compared

with higher-order local polynomial modelling, they involve less parameters and

are less subject to design sparseness (see Choi, Hall and Rousson (2000)). On the

other hand, when the nonparametric function shows a high degree of smoothness,

local linear estimators are less appealing than those from higher-order local poly-

nomial modelling. That is, with n as the sample size and h as the bandwidth

used to estimate the nonparametric components in the model, the local cubic

estimator has a bias of order O(h4) and variance of order O((nh)−1), while the

local linear estimator has a bias of order O(h2) and variance of order O((nh)−1)

even though the local cubic estimator would suffer from the sparseness of the

data design. To develop an approach to reducing the bias of the local linear

estimator to combine the advantages of both has attracted many statisticians,

e.g. Choi and Hall (1998), Choi, Hall and Rousson (2000), He and Huang (2009),

Xia (1998), and Fan and Zhang (2000), among others.

In this literature, there are two bias reduction approaches. The first is to

use higher-order local polynomial fitting, such as cubic, to estimate the bias (See

Xia (1998), Fan and Zhang (2000), etc.). The other approach uses information

from the closest design points and model averaging to find an approximately

unbiased estimator (see Choi and Hall (1998); Choi, Hall and Rousson (2000),

He and Huang (2009), etc.). The first approach carries a high computational

cost; one needs to select an appropriate bandwidth for the higher-order local

polynomial fitting. The second approach avoids estimating the bias of the local

linear estimator, and one can directly construct a nearly unbiased nonprarametric

function estimator by model averaging. Here there is no problem in bandwidth

selection, and there is less computational cost. Still there is the sparseness of data

close to the boundary of the support area of the data. Though nonparametric

function estimation can be nearly unbiased, the asymptotic variance structure

of such estimators is complex which hinders its application for further statistical

inference and extension to more complicated semiparametric or nonparametric

regression models.

Fan and Yao (1998) gives a good review for estimation of variance of the

nonparametric regression model error based on the sum squares of residuals ap-

proach, and suggests a two-step estimator of the variance function of model
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errors. Though they show the proposed estimator of variance function is opti-

mally efficient, as discussed by Wang et al. (2008), the bias of the estimator of

the regression function cannot be further reduced by the second stage smoothing

of the squared residuals. With the nearly unbiased regression function estimator,

using the sum of squares of the residuals, it is possible to construct a stable esti-

mator of the variance, or variance function, of the model error for further infer-

ence. Bias reduction can be used in constructing a simultaneous confidence band

(SCB) for nonparametric component in the model. Many methods have been

proposed to cope with the bias term in the estimation of functions to achieve the

right coverage probability for SCB. Most are based on undersmoothing or over-

smoothing. For undersmoothing estimation of the nonparametric components

see Chen and Qin (2002), Fan and Zhang (2000), Zhang and Peng (2010), Li et

al. (2014). For oversmoothing, see Xia (1998). Hall and Horowitz (2013) used a

bootstrap method to avoid the bias problem and construct confidence bands for

nonparametric functions. The bootstrap is time consuming and does not provide

general finite-sample guarantees. For undersmoothing/oversmoothing, effective

bandwidth selection relies on empirical results and data themselves (Hall and

Horowitz (2013)).

In this paper, we propose a bias reduction technique for local linear es-

timation that is easy to implement and extend. To be specific, consider the

nonparametric regression model

Yi = m(Xi) + εi, i = 1, . . . , n,

where m(·) is an unknown smooth function and εi, i = 1, . . . , n, are independent

random errors. Denote the local linear estimator of m(x0) using bandwidth

h as m̂h(x0). We choose different h1, . . . , hB to obtain a series of estimates

{m̂hi
(x0), i = 1, . . . , B} for m(x0), then perform a linear regression with m̂hi

(x0)

as the dependent variable and h2i as the explanatory variable. The estimator of

intercept term here can be regarded as a bias-reduced estimator for m(x0). By

the coefficient estimate of the term h2i , we also get an estimate of bias term of

m̂h(x0) and then, based on such estimate of the bias, bias correction can be made

to obtain the new estimator. This estimator of m(x0) has the same order of bias

and variance as the local cubic estimator, and it retains the advantages of the

local linear estimator such as suffering less from design sparseness.

The remainder of this paper is organized as follows. In Section 2 we give

the details of our proposed bias reduction methods for the local linear regres-

sion, and investigate its asymptotic properties. In Section 3, we consider the
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extension of our bias reduction estimators to varying coefficient regression mod-

els. We also investigate the use of the bias reduction estimators to estimate the

variance function of the error, and how to use them to construct simultaneous

confidence bands for the nonparametric components in the classical nonparamet-

ric regression model. In Section 4, some numerical studies with comparison and

data analysis are given. In Section 5, we give some conclusion and discussion

of the proposed methods . The proofs of the main results can be found in the

Supplementary Material.

2. Bias Reduction

Consider the nonparametric regression model for a bivariate random vector

(X,Y ),

Y = m(X) + σ(X) e , (2.1)

where m(x) = E(Y |X = x) is the regression function, σ2(x) = Var(Y |X = x)

is the conditional variance function, and e is a random error independent of X

with mean zero and variance one. Suppose the data (Xi, Yi), i = 1, . . . , n, are

observed from model (2.1). The local linear regression estimator of m(x0) at a

given point x0 is obtained by minimizing the objective function
n∑
i=1

{Yi − a− b(Xi − x0)}2Kh(Xi − x0) , (2.2)

where K is a kernel function, h is a bandwidth, and Kh(u) = K(u/h)/h. Letting

âh(x0) and b̂h(x0) denote the minimizer of the objective function (2.2), we have

âh(x0) =
Tn,0Sn,2 − Tn,1Sn,1
Sn,2Sn,0 − Sn,1Sn,1

, and b̂h(x0) =
Tn,1Sn,0 − Tn,0Sn,1
Sn,2Sn,0 − Sn,1Sn,1

,

where Sn,l =
∑n

i=1Kh(Xi − x0)(Xi − x0)l, l = 0, 1, 2, and Tn,l =
∑n

i=1Kh(Xi −
x0)(Xi − x0)lYi, l = 0, 1. Then the local linear estimator of m(x0), denoted by

m̂h(x0), is defined as m̂h(x0) = âh(x0).

Given a sequence of bandwidths h1, . . . , hB, we denote the respective local

linear estimators of m(x0) by V1 ≡ m̂h1
(x0), . . . , VB ≡ m̂hB

(x0). From Fan and

Gijbels (1996) we have the following asymptotic properties for these estimators

if the bandwidths hi, i = 1, . . . , B, satisfy some general regularity conditions:

Bias{m̂h(x0)|X} =
1

2
µ2m

(2)(x0)h
2 + op(h

2),

Var{m̂h(x0)|X} = ν0
σ2(x0)

f(x0)nh
+ op

(
1

nh

)
,
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where µj =
∫∞
−∞ u

jK(u)du, ν0 =
∫∞
−∞K(u)2du and f is the density function of

the predictor X. Hence for any given x0, we can consider a linear regression

model for the pairs (Vi, h
2
i ), i = 1, . . . , B:

Vi ≈ α+ β h2i + σ̃(hi) εi , i = 1, . . . , B , (2.3)

where σ̃2(hi) = Var(Vi|h2i ) = Var{m̂hi
(x0)}, ε is independent of h2i with E(εi) = 0

and Var(εi) = 1. The least squares estimators of α and β in (2.3) are

α̂B =

B∑
i=1

{∑B
k=1 h

4
k −

(∑B
k=1 h

2
k

)
· h2i

B
∑B

k=1 h
4
k −

(∑B
k=1 h

2
k

)2
}
Vi , and

β̂B =

B∑
i=1

{
B · h2i −

(∑B
k=1 h

2
k

)
B
∑B

k=1 h
4
k −

(∑B
k=1 h

2
k

)2
}
Vi .

Then β̂B is an estimator of (1/2)µ2m
(2)(x0) and β̂Bh

2
i is an estimator of the

asymptotic bias of Vi. Therefore, α̂B is a bias-reduced estimator for m(x0).

Denote it by m̃B(x0) and write

m̃B(x0) = α̂B =

B∑
i=1

giVi ,

where

gi =

∑B
k=1 h

4
k −

(∑B
k=1 h

2
k

)
· h2i

B
∑B

k=1 h
4
k −

(∑B
k=1 h

2
k

)2 , i = 1, . . . , B.

Since the linear regression model (2.3) has heterogenous error variance, α and

β can be estimated efficiently by weighted least squares with weights hi, i =

1, . . . , B. This yields another set of estimators for α, β and m(x0):

α̂WB =

B∑
i=1

{
hi
∑B

k=1 h
5
k −

(∑B
k=1 h

3
k

)
· h3i∑B

k=1 hk
∑B

k=1 h
5
k −

(∑B
k=1 h

3
k

)2
}
Vi ,

β̂WB =

B∑
i=1

{
(
∑B

k=1 hk) · h3i − hi
(∑B

k=1 h
3
k

)∑B
k=1 hk

∑B
k=1 h

5
k −

(∑B
k=1 h

3
k

)2
}
Vi ,

m̃WB(x0) = α̂WB =

B∑
i=1

gwiVi ,

where

gwi =
hi
∑B

k=1 h
5
k −

(∑B
k=1 h

3
k

)
· h3i∑B

k=1 hk
∑B

k=1 h
5
k −

(∑B
k=1 h

3
k

)2 , i = 1, . . . , B.

Alternatively, as β̂B and β̂WB both estimate (1/2)µ2m
(2)(x0), we can define

two other bias-reduced estimators for m(x0) as
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m̂B(x0) ≡ m̂h(x0)− β̂Bh2 ,

m̂WB(x0) ≡ m̂h(x0)− β̂WBh
2.

Then, independent of the choices of hi = Cih0, i = 1, . . . , B, the asymptotic bias

of the new estimator m̂B(x0) is of the order h2h20 + h4 because

E{m̂B(x0)} −m(x0) = E{m̂h(x0)} − E(β̂B)h2 −m(x0)

= O(h4 + h2h20),

In addition, if we take h0 such that h = o(h0), the asymptotic variance is exactly

the same as that of the local linear estimator m̂h(x0) because

Var{m̂B(x0)} = Var{m̂h(x0)}+ Var(β̂B)h4 − 2Cov(m̂h(x0), β̂B)h2

= Var{m̂h(x0)}+O

(
h4

nh50
+

h2

n
√
hh50

)

= Var{m̂h(x0)}+ o

(
1

nh

)
.

Similarly, we have

E{m̂WB(x0)} = m(x0) +O(h4 + h2h20),

Var{m̂WB(x0)} = Var{m̂h(x0)}+ o

(
1

nh

)
.

Let X denote (X1, . . . , Xn)T . For the estimator m̃B(x0) we can obtain results

similar to those obtained by Lin and Li (2008) and Wu, Liu and Zhou (2013).

Theorem 1. Under Assumptions (a)-(e) in the Supplementary Material, hi =

Cih, i = 1, . . . , B, with h→ 0 and nh→∞ as n→∞, we have

E{m̃B(x0)|X} = m(x0) + C(x0)h
4 + op(h

4) ,

Var {m̃B(x0)|X} =
σ2(x0)

nf(x0)

B∑
i=1

B∑
j=1

gigj

{
ψ
(0)
ij + op(1)

}
,

where

C(x0) =
1

2
d(x0)

{
1

12
m(4)(x0)−m(2)(x0)b(x0)

}
µ4,

d(x0) =

∑B
k=1C

4
k

∑B
i=1C

4
i −

∑B
k=1C

2
k

∑B
i=1C

6
i

B
∑B

k=1C
4
k −

(∑B
k=1C

2
k

)2 , and

ψ
(k)
ij =

∫
K(hiu)K(hju)ukdu.

Bias reduction estimators similar to m̃B(x0) and m̃WB(x0) have been in-
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vestigated by Lin and Li (2008) and Wu, Liu and Zhou (2013). We give more

discussion and study of the properties of m̃B(x0) and m̃WB(x0) and their appli-

cations to further statistical inference, and we compare them with m̂B(x0) and

m̂WB(x0).

Remark 1. By Theorem 1, we know that the bias of m̃B(x0) is of the order h4.

Even when B = 2 we can get such a bias-reduced estimator for m(x0), although

the variance could be larger with a smaller value of B compared to using a larger

value of B. As for m̃WB(x0), it has similar properties as m̃B(x0). Compared with

m̂B(x0) and m̂WB(x0), their asymptotic variances are slightly more complicated,

making them more dependent on bootstrap methods in applications.

Remark 2. As shown in the Supplementary Material, the variance of m̃B(x0)

is no larger than(
B∑
i=1

g2
i

){
n∑
i=1

Var(Vi)

}
=

σ2(x0)

nhf(x0)

∑B
i=1C

4
i

B
∑B

i=1C
4
i − (

∑B
i=1C

2
i )2

(
B∑
i=1

1

Ci

)
.

If we let B = 3 and C1 = 1, C2 = 2, C3 = 3, then the variance of m̃B(x0) is no

larger than twice that of m̂h, and if B = 6 and Ci = i, i = 1, . . . , 6, the variance of

m̃B(x0) is close to the variance of m̂h. Using a larger B and selecting C1, . . . , CB
appropriately, the variance of m̃B(x0) can be even smaller than that of m̂h, but

with smaller bias.

Remark 3. For x0 near the boundary of the support of the density of X, our

proposed method cannot directly reduce the bias from the order h2 to h4, but it

still has smaller bias than when x0 is in the interior region. Refer to the details of

the automatic boundary carpentry property of the local linear regression in Fan

and Gijbels (1996). To reduce the order of the bias when x0 is in the boundary

region, take the design density of X to have support [0, 1] and x0 = 0 for example.

Then, consider the finer regression model for bias reduction,

Vi = α+ β
µ2ci − µ1,ciµ3,ci
µ2,ciµ0,ci − µ21,ci

h2i + σ̃(hi)εi , i = 1, . . . , B,

where µj,ci =
∫∞
−ci u

jK(u)du, and ci = x0/hi, i = 1, . . . , B.

Remark 4. From Theorem 1, m̂B(x0) and m̂WB(x0) have the same asymptotic

variance as the local linear estimator, but with smaller asymptotic biases. Use of

larger bandwidths to estimate the bias of the local linear estimator is similar to

that of Xia (1998) and Fan and Zhang (2000), but we do not use higher-order local

polynomial regression, hence we avoid their design sparseness and complicated

bandwidth selection problems. While the variance of β̂B is still somehow large,
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as shown by our numerical study, it is expected to be more stable than other bias

estimation methods.

3. Extensions and Applications

Our bias reduction methods can be easily extended to additive models and

varying coefficient models. We use the varying coefficient models as an example

to illustrate how to make this extension.

In addition, under the classical nonparametric regression model, we discuss

how to use the bias reduction estimators to estimate the variance function of the

model error, and how to use the bias reduction estimators to construct simulta-

neous confidence bands for the nonparametric function in the model.

3.1. Extension to varying coefficient models

Consider the varying-coefficient model

Yi =

p∑
j=1

aj(Ui)Xij + εi, i = 1, . . . , n

with

E(εi|Ui, Xi1, . . . , Xip) = 0,

Var(εi|Ui, Xi1, . . . , Xip) = σ2(Ui).

By local linear fitting, we obtain an estimator of a1(u) as

â1h(u) = eT1,k(X
TWX)−1XTWY,

where ei,j denotes the unit vector of length j with 1 at position i, k = 2p,

Y = (Y1, . . . , Yn)T , W = diag(Kh(U1 − u), . . . ,Kh(Un − u)),

X =

X11 X11(U1 − u) . . . X1p X1p(U1 − u)
...

...
. . .

...
...

Xn1 Xn1(Un − u) . . . Xnp Xnp(Un − u)

 .

Estimators for the other components can be obtained similarly. As shown by

Fan and Zhang (1999),

Bias{â1h(u0)} = C1h
2 + op(h

2) and Var{â1h(u0)} =
C2

nh
{1 + op(1)}

where C1 and C2 are constants that depend only on u0. Hence given different

bandwidths h1, . . . , hB, we can construct the simple linear regression

â1hi
(u0) ≈ α+ βh2i + εi, i = 1, . . . , B,
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and obtain a bias-reduced estimator for a1(u0) as

ã1B(u0) = α̂B, ã1WB(u0) = α̂BW ,

â1B(u0) = â1h(u0)− β̂1Bh2, and â1WB(u0) = â1h(u0)− β̂1WBh
2.

3.2. Variance function estimation

For the model (2.1), {nhf(x)}−1ν0σ2(x) is the asymptotic variance of the

local linear m̂h(x), and shown in Section 2, it is also the asymptotic variance of

the bias-reduced estimators m̂B(u) and m̂WB(u). Let

Y = (Y1, . . . , Yn)T , W = diag (Kh(X1 − x), . . . ,Kh(Xn − x)) ,

X =

(
1 . . . 1

X1 − x . . . Xn − x

)T
.

With local linear fitting, σ2(x) can be estimated by the kernel estimator

σ̂2(x) =
1

tr {W −WX(XTWX)−1XTW}

n∑
i=1

(Yi − Ŷi)2Kh(Xi − x)

where

Ŷ = (Ŷ1, . . . , Ŷn)T = X(XTWX)−1XTWY.

Define the squared residuals as r̂i = {Yi − m̂h(Xi)}2, i = 1, . . . , n. Then

the residual-based estimator, denoted by σ̂2L(x) = α̂, with the kernel K and

bandwidth h∗ is obtained by

(α̂, β̂) = arg min
α,β

n∑
i=1

{r̂i − α− β(Xi − x)}2K
(
Xi − x
h∗

)
.

Fan and Yao (1998) have shown that the estimator σ̂2L(x) is more efficient

than the kernel estimator σ̂2(x) but, as discussed by Wang et al. (2008), the

bias of the local linear estimator of the regression function affects the efficiency

of σ̂2(x) and σ̂2L(x). We use the bias-reduced estimators m̃B(Xi), m̃WB(Xi),

m̂B(Xi), and m̂WB(Xi) to replace m̂h(Xi) in the calculation of the squared resid-

uals r̂i, and get new versions of σ̂2L(x), denoted by σ̃2B(x), σ̃2WB(x), σ̂2B(x) and

σ̂2WB(x), respectively. These estimators of the error variance function remove

the bias effect occurring in the first step of regression estimation, hence are more

stable and efficient than σ̂2L(x) and σ̂2(x).

3.3. Simultaneous confidence band

We consider construction of simultaneous confidence bands for m(·) on the
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interval [0, 1] using the bias-reduced estimators m̂B(x) and m̃B(x).

Theorem 2. Under Assumptions (a)-(e) in the Supplementary Material, h =

n−b, 1/(2q + 3) ≤ b < 1− 2/s, h = o(h0) with h0 → 0 and nh0 →∞ as n→∞,

and hi = Cih0, i = 1, . . . , B, we have

P
(

(−2 log h)1/2
[
ν
−1/2
0

∣∣ {nhσ−2(x)f(x)
}1/2 {m̂B(x)−m(x)}

∣∣
∞ − dn

]
< u

)
→ exp(−2e−u)

where

dn = (−2 log h)1/2 +
1

(−2 log h)1/2

{
log

K2(A)

ν0π1/2
+

1

2
log log h−1

}
if Assumption (e1) in the Supplementary Material holds, and

dn = (−2 log h)1/2 +
1

(−2 log h)1/2
log

(
1

4ν0π

∫
{K ′(t)}2dt

)
,

if Assumption (e2) in the Supplementary Material is satisfied.

The asymptotic variance of m̂B(x) (or m̂h(x)) can be approximated by

V̂ar{m̂B(x)} = V̂ar{m̂h(x)} = eT1,2(X
TWX)−1(XTW2X)(XTWX)−1e1,2σ̂

2
∗(x),

where ei,j denotes the unit vector of length j with 1 at position i, and σ̂2∗(x) is

a consistent estimator for the error variance σ2(x). Combining this result with

Theorem 2 gives a simultaneous confidence band for m(x) on [0, 1]:

(m̂B(x)−∆1,α(x), m̂B(x) + ∆1,α(x)) , x ∈ [0, 1],

where

∆1,α(x) =
(
dn + [log 2− log 2{− log(1− α)}] (−2 log h)−1/2

)
[V̂ar{m̂B(x)}]1/2.

The probability that the true curve m(x) is covered by the above band is ap-

proximately 1− α.

The bandwidth h0 can be selected by some plug-in methods for the local

linear fitting; this would reduce computational time, and increase the stability of

the final result.

To use m̃B(x) to construct simultaneous confidence bands, let hi = Cih, i =

1, . . . , B, and define

K1(t) =

B∑
i=1

giK(t/Ci)

Ci
and ν1,0 =

∫
K2

1 (t)dt.

Theorem 3. Under Assumptions (a)-(d) and (e2) in the Supplementary Mate-

rial, with h = n−b, 1/(2q + 3) ≤ b < 1− 2/s, we have
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P
(

(−2 log h)1/2
[
ν
−1/2
1,0

∣∣ {nhσ−2(x)f(x)
}1/2 {m̃B(x)−m(x)}

∣∣
∞ − dn

]
< u

)
→ exp(−2e−u),

where

dn = (−2 log h)1/2 +
1

(−2 log h)1/2
log

(
1

4ν1,0π

∫
{K ′1(t)}2dt

)
.

As shown in the proof of Theorem 1 given in the Supplementary Material,

{nhf(x)}−1ν1,0σ(x) is the asymptotic variance of m̃B(x). Let

Wi = diag (Khi
(X1 − x), . . . ,Khi

(Xn − x)) , i = 1, . . . , B.

Then the asymptotic variance of the estimator m̃B(x) can be approximated by

V̂ar{m̃B(x)} =

B∑
i,j=1

gigje
T
1,2(X

TWiX)−1(XTWiWjX)(XTWjX)−1e1,2σ̂
2
∗(x) ,

where σ̂2∗(x) is a consistent estimator of σ2(x). Then an approximate 1 − α

simultaneous confidence band of m(x) on [0, 1] can be constructed as

(m̃B(x)−∆1,α(x), m̃B(x) + ∆1,α(x)) , x ∈ [0, 1],

where

∆1,α(x) =
(
dn + [log 2− log 2{− log(1− α)}] (−2 log h)−1/2

)
[V̂ar{m̃B(x)}]1/2.

Although m̃B(x) is a bias-reduced estimator, its asymptotic variance is not

easy to estimate stably. And the bootstrap can be used to estimate the variance

of m̃B(x). Given m̃B(x) and σ̂2∗(x), simulate ε∗i , i = 1, . . . , n, from the standard

normal distribution N (0, 1), and construct a bootstrap sample as

Y ∗i = m̃B(Xi) + σ̂∗(Xi)ε
∗
i , i = 1, . . . , n.

Use the bias-reduction method with the same bandwidth series to estimate m(x)

based on the bootstrap sample. Repeat the above procedure T times to get

m̃B1
(x), . . . , m̃BT

(x), and use their sample variance as an estimator of the vari-

ance of m̃B(x). Then we have an approximate 1 − α simultaneous confidence

band if we use this bootstrap variance estimator in ∆1,α(x).

Similarly, we can also use m̂WB(x) and m̃WB(x) together with their variance

approximations to construct simultaneous confidence bands for m(x).

4. Numerical Studies

4.1. Bias reduction

In this section, the finite sample performances of our bias-reduced estimators
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are investigated under nonparametric regression and varying coefficient models.

Example 1. Consider univariate regressions with constant variance function

σ(x), m(x) specified as in Fan and Gijbels (1996) and He and Huang (2009)

and the covariate X uniform over [−2, 2]. For our models n = 200 and 1,000

replicates were simulated.

(1) m(x) = x+ 2e−16x
2

with σ = 0.4;

(2) m(x) = sin(2x) + 2e−16x
2

with σ = 0.3;

(3) m(x) = 0.3e−4(x+1)2 + 0.7e−16(x−1)
2

with σ = 0.1;

(4) m(x) = 0.4x+ 1 with σ = 0.15.

Figure 1 depicts these models for the local linear estimate m̂(x) and the bias-

reduced estimates m̃B and m̂B(x) on one realization.

We used the functions thumbBw and locpol in the R package locpol to get the

rule-of-thumb bandwidth, denoted by hopt, and the optimal local linear estimate

m̂(x) based on hopt. We used the bandwidth series hi = (1 + Ci/10)hopt, Ci =

−5, . . . , 5 to construct m̃B(x) and m̃BW (x). The bandwidth series hi = (1 +

Ci/10)hoptn
1/5, Ci = 0, 1, . . . , 10, was used to obtain m̂B(x) and m̂BW (x). The

mean square error (MSE), defined as the average squared error over a set of

equally-spaced grid points, was used to evaluate performance.

For the first three models, Table 1 shows that the MSE of m̃B(x) and

m̃BW (x) are much smaller than that of the local linear estimator (LL). From

Figure 1, we can also see the biases of m̃B(x) and m̃BW (x) are much smaller in

the convex or concave places of the true regression curve. The MSEs of m̂B(x)

and m̂BW (x) are comparable to the MSE of the local linear estimator, possibly

because the bandwidth series used to construct m̂B(x) and m̂BW (x) was rela-

tively large. For Model 4, the local linear estimator performs better than the

bias-reduced estimators; this is reasonable because the local linear estimate is

almost unbiased as the true regression function is linear.

Following a referee’s suggestion, we compared our bias reduction meth-

ods with the twicing local linear kernel regression smoother (TLL) and the lo-

cal cubic smoother (LC). The twicing local linear kernel regression smoothers

with different bandwidth selection methods, denoted by TLL1 and TLL2, were

proposed and investigated by Zhang and Xia (2012). We considered Model

3 with σ = 0.2 or 0.5 and n = 100, 200, or 400. As before, we used the

functions thumbBw and locpol in R package locpol to get the optimal band-

width hopt for the local linear estimate. We then used the bandwidth series
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Table 1. Median (median absolute deviation) ×1,000 of mean square error for models
1-4 in Example 1.

LL m̃B(x) m̃BW (x) m̂B(x) m̂BW (x)

Model 1 18.7785 (5.0014) 13.4333 (4.3978) 12.7000 (4.1420) 18.7035 (5.0656) 18.7100 (5.0854)
Model 2 11.0121 (2.9765) 9.2218 (2.6248) 8.3234 (2.5929) 10.7091 (2.8912) 10.7219 (2.8775)
Model 3 1.3469 (0.3701) 1.0199 (0.3033) 0.9377 (0.2815) 1.3291 (0.3642) 1.3290 (0.3665)
Model 4 0.5257 (0.3331) 0.8801 (0.4809) 0.8010 (0.4541) 0.5341 (0.3406) 0.5330 (0.3408)

− −

−
−

−

− −

−

− −

−

− −

Figure 1. Example 1, Models 1-4. True regression function (solid line), and the local
linear estimate m̂(x) (dash line) and the bias-reduced estimate m̃B(x) (dotted line) and
m̂B(x) (dot-dash line) based on one realization (circles).

hi = (1 + Ci/10)hopt, Ci = 0, 1, . . . , 10, to construct m̃B(x) and m̃BW (x). The

bandwidth series hi = (1 + Ci/10)hoptn
1/5, Ci = 0, 1, . . . , 10 was used to obtain

m̂B(x) and m̂BW (x). The numerical results are shown in Table 2. In Table 2

our methods perform much better than the local cubic smoother. Compared to

the twicing local linear estimators, m̃B(x) and m̃BW (x) are always perferable,
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Table 2. Mean (standard deviation) ×1,000 of mean square error for model 2 in Example 1
with σ = 0.2 or 0.5.

σ n m̃B(x) m̃BW (x) m̂B(x) m̂BW (x) LL TLL1 TLL2 LC
0.2 100 9.1 (3.3) 9.8 (3.5) 11.4 (3.5) 11.4 (3.5) 12.9 (13.1) 11.5 (10.8) 11.2 (5.6) 25.8 (70.3)

200 4.8 (1.5) 5.2 (1.6) 7.3 (1.7) 7.4 (1.7) 6.1 (2.5) 5.1 (2.2) 5.3 (2.1) 7.9 (13.7)
400 2.5 (0.7) 2.7 (0.8) 4.6 (1.0) 4.6 (1.0) 3.2 (0.9) 2.6 (0.8) 2.7 (0.9) 2.9 (0.9)

0.5 100 34.8 (13.1) 35.2 (13.1) 35.0 (12.4) 35.1 (12.4) 48.7 (24.7) 47.5 (20.9) 50.5 (22.3) 74.3 (84.2)
200 18.5 (6.3) 18.9 (6.3) 20.4 (6.4) 20.4 (6.4) 25.5 (10.8) 24.1 (9.7) 24.6 (9.4) 32.3 (34.1)
400 10.6 (3.7) 10.8 (3.7) 12.7 (4.0) 12.7 (4.0) 13.4 (4.7) 12.4 (4.3) 12.4 (4.3) 14.4 (8.2)

and m̂B(x) and m̂BW (x) are comparable and sometimes better. Our methods

are more stable than the twicing local linear kernel methods as they are quite

robust to the bandwidth choice. This difference may be explained by the fact

that twicing kernel smoothers use only one local linear estimator (based on one

bandwidth) and the bias estimator uses the same bandwidth while our estimators

are based on multiple local linear estimators with different bandwidths.

Example 2. With n = 500 and 100 replicate samples, we considered two varying

coefficient models studied by Fan and Zhang (1999, 2000).

(1) Y = sin(6πU)X1 + sin(2πU)X2 + ε;

(2) Y = sin(2πU)X1 + 4U(1− U)X2 + ε;

where U was uniform on [0, 1], and X1 and X2 were standard normal with corre-

lation coefficient 2−1/2. We took ε, U , and (X1, X2) as independent. The random

error ε was normal with mean zero and variance σ2. The variance σ2 was chosen

so that the signal-to-noise ratio was about 5 : 1,

σ2 = 0.2Var{m(U,X1, X2)}, with m(U,X1, X2) = E(Y |U,X1, X2).

Given original bandwidths ho = 0.05, 0.075, 0.15, 0.225, 0.3, we calculated the

local linear estimates for the models (1) and (2). Then based on the bandwidth

series hi = (1+Ci/10)ho, Ci = −5, . . . , 5, we obtained the bias-reduced estimates

ãB(u), and the bandwidth series hi = (1 + Ci/10)hon
1/5, Ci = 0, 1, . . . , 10, was

used to calculate the estimate âB(u). The numerical results are summarized by

Tables 3 and 4 for the models 1 and 2 respectively.

From Figure 2, one can see that the varying coefficient functions in the

first model are more occillatory than those in the second model. From Tables 3

and 4, compared to the local linear estimator the MSE of the estimator ãB(u)

for the varying coefficient function is much smaller when the bandwidth ho is

relative large. The performance of âB(u) is close that of the local linear estimator,

probably because the bandwidth series used for âB(u) is relatively large. When
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−
−

−

−
−

−
Figure 2. Varying coefficient regression models 1 (left panel) and 2 (right panel) in
Example 2. Solid line: varying coefficient function for X1; Dash line: varying coefficient
function for X2.

Table 3. Median (median absolute deviation) of mean square error for varying coefficient
model 1 in Example 2.

LL ãB(x) âB(x)
ho = 0.300 α1(u) 0.3303 (0.0362) 0.1885 (0.0246) 0.3305 (0.0362)

α2(u) 0.0328 (0.0142) 0.0067 (0.0045) 0.0328 (0.0140)
ho = 0.225 α1(u) 0.2648 (0.0223) 0.0854 (0.0125) 0.2647 (0.0213)

α2(u) 0.0172 (0.0091) 0.0031 (0.0021) 0.0171 (0.0090)
ho = 0.150 α1(u) 0.1243 (0.0171) 0.0134 (0.0181) 0.1237 (0.0169)

α2(u) 0.0044 (0.0029) 0.0036 (0.0021) 0.0043 (0.0030)
ho = 0.075 α1(u) 0.0143 (0.0049) 0.0062 (0.0022) 0.0138 (0.0045)

α2(u) 0.0037 (0.0019) 0.0062 (0.0027) 0.0039 (0.0021)
ho = 0.050 α1(u) 0.0066 (0.0032) 0.0096 (0.0040) 0.0064 (0.0031)

α2(u) 0.0051 (0.0025) 0.0094 (0.0042) 0.0050 (0.0026)

the bandwidth h0 is small, the bias of the local linear estimator is relatively small,

and the bias-reduced estimators have little advantage, or even overestimate. In

addition, when there is more than one varying coefficient function to estimate,

bias reduction may not be simultaneously achieved. The one-step estimation

procedure proposed by Fan and Zhang (1999) can be considered; this is outside

the scope of this paper.

We have the following conclusions. When the signal-to-noise ratio or the

variation of the regression function is relative large, m̃B(x) and ãB(u) are more

appropriate for the bias reduction. When the signal-to-noise ratio is small or the
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Table 4. Median (median absolute deviation) ×100 of mean square error for varying
coefficient model 2 in Example 2.

LL ãB(x) âB(x)
ho = 0.300 α1(u) 3.1044 (0.7985) 0.4716 (0.3594) 2.5782 (0.9184)

α2(u) 0.3553 (0.2964) 0.1743 (0.1586) 0.2145 (0.1718)
ho = 0.225 α1(u) 1.3474 (0.5038) 0.2398 (0.1578) 0.6000 (0.4281)

α2(u) 0.2071 (0.1850) 0.2332 (0.2000) 0.1914 (0.1665)
ho = 0.150 α1(u) 0.4527 (0.3243) 0.3177 (0.1981) 0.2546 (0.1733)

α2(u) 0.2175 (0.1465) 0.3386 (0.2134) 0.2389 (0.1725)
ho = 0.075 α1(u) 0.3630 (0.2116) 0.5602 (0.1773) 0.4091 (0.1951)

α2(u) 0.3572 (0.1499) 0.5563 (0.2009) 0.4316 (0.1547)
ho = 0.050 α1(u) 0.5609 (0.2893) 1.0152 (0.4015) 0.5552 (0.2977)

α2(u) 0.5548 (0.2469) 1.1153 (0.3784) 0.5485 (0.2250)

estimated function is smooth, the performance of m̂B(x) and âB(u) are much

better than the performance of m̃B(x) and ãB(u), respectively.

4.2. Variance function estimation

We used Example 2 of Fan and Yao (1998) to assess the performance of our

variance function estimates.

Example 3. We simulated 400 random samples of size n = 200 from the model

Yi = a{Xi + 2 exp(−16X2
i )}+ σ(Xi)ei,

with σ(x) = 0.4 exp(−2x2) + 0.2, where {Xi} and {ei} were independent, with

Xi ∼ Uniform[−2, 2] and ei ∼ N(0, 1). We took a = 0.5, 1, 2, 4 in the simulation.

For each simulated sample, the performance of an estimator σ̂(·) was evaluated

by the mean absolute deviation error,

EMAD = n−1
grid

ngrid∑
j=1

|σ̂(xj)− σ(xj)|,

where {xj , j = 1, . . . , ngrid} are grid points on [−1.8, 1.8] with ngrid = 101.

The numerical results for the variance function estimator of Fan and Yao

(1998) and the proposed estimators are shown in Table 5. From Table 5 one can

see that σ̃2B(x), the variance function estimator based on m̃B(x), always outper-

forms the local linear estimator of the variance function of Fan and Yao (1998).

Especially, its performance improves as a becomes larger, which is reasonable

because the sign-to-noise ratio increases as a increases, as shown by Figure 3(a).

As for σ̂2B(x), the variance function estimator based on m̂B(x), it outperforms

their estimator when a is small. From the numerical results of Example 1, the
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Table 5. Median (median absolute deviation) ×100 of mean absolute deviation error for
Example 3.

σ̃2
B(x) σ̂2

B(x) Fan and Yao (1998)
a = 4 3.3732 (1.0997) 9.9722 (2.8180) 3.7587 (1.3658)
a = 2 3.5580 (1.2847) 3.8548 (1.3814) 3.6814 (1.2727)
a = 1 3.4945 (1.1850) 3.0713 (0.9096) 3.6653 (1.0994)
a = 0.5 3.4596 (1.0887) 3.0365 (1.0202) 3.5635 (1.15539)

− −

−
−

− −

−
−

Figure 3. Regression model in Example 3. Panel (a): Regression functions. Solid line:
a = 4, Dash line: a = 2, Dot line: a = 1, Dot-Dash line a = 0.5. Panel (b): Variance
function.

performance of m̂B(x) is similar to that of the local linear estimator. Small bias

reduction in estimating the regression function can make much improvement in

estimating the variance function of the error. This supports the conclusion by

Wang et al. (2008) that bias in estimation of the nonparametric regression func-

tion seriously affects the efficiency of the estimation for the variance function

of the error. On the other hand, when the signal-to-noise ratio increases, the

variation of the bias estimate increases so the variance function estimator based

on m̂B(x) performs worse.

4.3. Simultaneous confidence band

In this section, we consider the example investigated by Eubank and Speck-

man (1993) and Xia (1998) to assess the performance of their simultaneous confi-

dence bands. The sample size n = 100, 200, 300, 500 and 1,000 replicate samples

were considered in the simulation.
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Table 6. Empirical coverage of simultaneous confidence band based on m̂B(x).

σ Norminal coverage % n = 100 n = 200 n = 300 n = 500
0.05 90 0.895 0.887 0.869 0.870

95 0.945 0.941 0.947 0.958
0.10 90 0.890 0.897 0.915 0.882

95 0.954 0.951 0.955 0.961

Example 4. Let

Yi = sin2(2π(Xi − 0.5)) + εi,

where εi, i = 1, . . . , n, are i.i.d. and N(0, σ2), with σ = 0.05 or 0.1, and Xi, i =

1, . . . , n, follow a fixed design with Xi = i/n, i = 0, 1, . . . , n.

Consider using m̂B(x) to construct simultaneous confidence bands. Un-

dersmoothing is necessary to construct the simultaneous confidence bands in

practice, we used hB = (1/2)hopt and chose the bandwidth series hi = (1 +

Ci/B)hBn
1/5 to construct m̂B(x), where hopt is again the rule-of-thumb band-

width and Ci = 0, 1, . . . , B with B = 10. Based on m̂B(x), and following the

procedure given in Section 3.3, we constructed the simultaneous confidence bands

for the regression function. We did not consider simultaneous confidence bands

based on m̃B(x) as the bootstrap variance estimation required much more com-

putational time. Compared to the procedures of Xia (1998) and Fan and Zhang

(2000), we did not need any further steps to reduce the bias of m̂B(x) in con-

structing the simultaneous confidence band. The numerical results shown in

Table 6 are comparable or even better than the results given in Table 1 of Xia

(1998). Figure 4 illustrates simultaneous confidence bands based on m̂B(x) when

n = 500 and σ = 0.1. From Figure 4 one sees clearly the benefit of using m̂B(x)

to construct simultaneous confidence bands.

4.4. Example

The motorcycle data set given in Härdle (1990) consists of accelerometer

readings taken through time in an experiment on the efficiency of crash helmets.

The X-value denotes time (in milliseconds) after a simulated impact with motor-

cycles. The response variable Y is the head acceleration (in g) of a post mortem

human test object (PTMO). The details of the experiment are in Schimdit, Mat-

tern and Schuler (1981). We used similar procedures as before to obtain the

local linear estimate, m̃B, and m̂B, then followed our procedure to estimate the

variance function of the error since it is obvious that the variation of the data is

heterogeneous with time point X. From Figure 5, we can see that the variance
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(a) Nominal coverage 1− α = 0.95 (b) Nominal coverage 1− α = 0.90

Figure 4. Simultaneous confidence bands for Example 4 with n = 500 and σ = 0.1, Solid
line: true regression function m(x); Dash line: bias-reduced estimate m̂B(x); Dotted
line: simultaneous confidence band.

−
−

−
−

−
−

Figure 5. Motorcycle data. Panel (a): Residuals and the curve estimate of the error
variance function based on the estimate m̃B(x). Panel (b): Nonparametric regression
function estimates for acceleration versus time. Solid line: the local linear estimate;
Dash line: the estimate m̃B(x); Dotted line: the estimate m̂B(x); Dot-Dash lines: the
simultaneous confidence band based on m̂B(x).

function is not a constant and the bias-reduced estimate m̃B reduces much bias

when the data is at the extreme points, though m̃B is close to the local linear

estimate.
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5. Summary

In this paper, in the classical nonparametric regression problem, based on the

local linear regression model we investigate two simple bias-reduced estimation

approaches from both theoretical insights and numerical studies, and we extend

the methods to to the error variance estimation problem and the semiparametric

varying coefficient regression model. Our methods avoid using higher-order local

polynomial regression to estimate the bias term of the local linear estimator

without reducing the efficiency as shown by our theoretical results. From the

numerical results, it is obvious that our proposed estimators improve on the

local linear estimator to a large extent in terms of efficiency, in particular they

reduce the estimation bias by a large amount when the nonparametric functions

in the nonparametric regression models or semiparametric models depict much

occillation.

Asymptotically unbiased nonparametric function estimation has applications

in, for example, construction of simultaneous confidence bands. In our approach

we need not use complicated procedures to remove the bias effect of the nonpara-

metric function estimation.

One can improve our bias reduction methods. For example, we know that the

choice of the bandwidth series can change the efficiency of the bias-reduced esti-

mators. This is an interesting topic for further investigation. Our bias-reduced

estimators have different performances when used in estimating of the variance

of the error. It would be interesting to understand their differences.

Supplementary Materials

Technical conditions and proofs of the main theoretical results are here.
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