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Abstract: Although change-point detection for high-dimensional data has become

increasingly important in many scientific fields, most existing methods are designed

for specific models (e.g., mean shift model, vector auto-regressive model, graphical

model). Here, we provide a unified framework for structural break detection that

is suitable for a large class of models. Moreover, we propose a three-step algorithm

that automatically achieves consistent parameter estimates during the change-point

detection process, without needing to refit the model. The first step combines the

block segmentation strategy and a fused lasso-based estimation criterion, leading

to significant computational gains, without compromising the statistical accuracy

of identifying the number and location of the structural breaks. Then, we use hard-

thresholding and exhaustive search steps to consistently estimate the number and

location of the break points. We prove strong guarantees on both the number of

estimated change points and the rates of convergence of their locations, and provide

consistent estimates of the model parameters. The findings of our numerical studies

support the theory and validate the competitive performance of the algorithm for

a wide range of models. The proposed algorithm is implemented in the R package

LinearDetect.

Key words and phrases: Block segmentation, fused Lasso, high-dimensional data,

linear model, piecewise stationarity, structural breaks.

1. Introduction

Methods for detecting change points (break points) in dynamic systems have

become increasingly important in areas such as quality control (Qiu (2013), neu-

roscience (Ombao, Von Sachs and Guo (2005)), economics and finance (Frisén

(2008)), and social network analysis (Savage et al. (2014)). A change point rep-

resents a discontinuity in the parameters of the data-generating process. Previous

studies have investigated both offline and online versions of the problem (Bas-

seville and Nikiforov (1993); Csörgö and Horváth (1997)). In the former case, we

have a sequence of observations, and we wish to determine, for example, whether

change (break) points exists, and, if so, their locations, as well as estimating the
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parameters of the data-generating process. In the online case, we sequentially

obtain new observations, with the goal of finding the change point as quickly as

possible (Wang and Mei (2015); Chan, Ng and Yau (2021)).

The fused lasso (Rinaldo (2009)) is a computationally attractive offline change-

point detection method, owing to its linear computation time with respect to the

sample size (Bleakley and Vert (2011)). In this method, we first expand the pa-

rameter space to allow the model parameters to change at all time points. Here,

the consecutive differences of the parameters are fused (forced to zero) to reduce

the parameter space dimension. It is known that the fused lasso method over es-

timates the number of change points, that is, it has a nonvanishing false positive

rate (Harchaoui and Lévy-Leduc (2010)). In addition, there is no unified result

for deriving upper bounds for the total positive rate of the fused lasso, which

means we typically need additional steps to consistently estimate the number

of change points; see, for example, the screening step in Safikhani and Shojaie

(2022). These additional steps usually include several hyperparameters, and the

finite-sample detection performance can be sensitive to small changes in these

hyperparameters. Furthermore, the theoretical rates of these hyperparameters

depend on the model, and need to be derived separately for each statistical model

under consideration. Note that despite these issues, the fused lasso is a popular

detection algorithm, because it has a faster computational speed than that of

more exhaustive search methods, such as dynamic programming, which has at

least a quadratic computation time with respect to the sample size, and thus is

not scalable to large-scale (and high-dimensional) data sets.

We propose a new detection algorithm called the threshold block-fused lasso

(TBFL). Although it is motivated by the fused lasso, the problems with the lat-

ter method are mitigated in the proposed algorithm. Unlike the fused lasso, the

TBFL consistently estimates the number of change points in a single step, with

computational complexity similar to that of the fused lasso (or better; see Re-

mark 2). Furthermore, we estimate the locations of the change points consistently

by developing a local exhaustive search step. The proposed algorithm is flexible

and can detect breaks in a wide range of statistical models. Here, we focus on

detecting break points and estimating the model parameters for general sparse

multivariate regression models with high-dimensional covariates (Rothman, Lev-

ina and Zhu (2010)). In such models (model 2.1), both the response variable and

the covariates are multivariate, and their dimensions can potentially be much

larger than the sample size. Moreover, unlike in the case of typical regression

models, we do not assume independence among the covariates in different sam-

ples (see Sections 2 and 4). This makes the model flexible enough to include a
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wide range of models (with possible temporal and/or spatial correlations), includ-

ing the mean shift models (Harchaoui and Lévy-Leduc (2010)), multiple linear

regression model (Leonardi and Bühlmann (2016)), vector auto-regressive mod-

els (Lütkepohl (2005)), Gaussian graphical models (Yuan and Lin (2007)), and

network auto-regressive model (Zhu et al. (2017)).

The TBFL first partitions the time domain into blocks, assuming the model

parameters remain fixed within each block and change among neighboring blocks.

The block sizes (bn, with n as the sample size) are selected carefully to control the

false positive rates, while not missing any true break point. Then, we estimate the

model parameters among all blocks simultaneously using regularized estimation

procedures motivated by the fused lasso. Furthermore, we calculate the Frobenius

norm of the differences between the estimated model parameters in consecutive

blocks, called “jumps.” Intuitively, a large magnitude of jump implies that a true

break point exists inside the neighboring blocks, whereas a small jump may be

caused by a finite-sample estimation error. Thus, jumps are thresholded using

a certain data-driven threshold, and only block ends corresponding to jumps

above the threshold are regarded as “candidate” change points. Note that the

hard-thresholding technique has been used in lasso regularization to reduce the

false positive rate (van de Geer, Bühlmann and Zhou (2011)), but thresholding

has not been investigated fully for the fused lasso. We verify (Theorem 1) that,

under certain conditions, this procedure leads to a set of “clusters” of candidate

change points, and the number of clusters matches the true number of break

points in the model (denoted by m0) with high probability. As a byproduct of

this result, the total number of candidate change points is at most 2m0, with

high probability, converging to one as the sample size diverges. This can be

interpreted as an upper bound that controls the false positive rate, a result that

is not available for the fused lasso for such a general linear model. Moreover, a

simple exhaustive search within each estimated cluster gives the final estimation

for the locations of the break points. We derive the nonasymptotic consistency

rates of these estimates in Theorem 2, where we show that the change-point

estimates are optimal up to a logarithmic factor (see Section 4). Few works have

examined model parameter estimates after break detection. In addition, having

consistent estimators for the model parameters before and after break points can

reveal the main drivers of breaks in the system, providing valuable insights into

the main features that contributes to a shock/break in a system (e.g., see the

application of the TBFL to an EEG data set in Section 8). Interestingly, we

can use the estimated parameters within the TBFL to develop model parameter

estimates between any two consecutive break points, without refitting, and derive
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Figure 1. Illustration of the TBFL algorithm.

their consistency as well (see Theorem 3). The steps of the TBFL algorithm are

illustrated in Figure 1. A random realization from model 2.1 is generated with

sample size n = 1000, px = 20, py = 1, two true change points at 333 and 666

(solid red lines), and a block size of bn = 30. In Figure 1, we plot the square of the

jump sizes (i.e., the square of the Frobenius norm of the differences between the

estimated model parameters in consecutive blocks) at block ends (30, 60, 90, . . .)

in all panels (for the model settings, see the Supplementary Material S7). The left

panel shows that there are large jumps close to two break points, and some small

jumps far from any true break point that can be removed using thresholding

(green horizontal dashed line). The middle panel shows clusters of candidate

change points in neighborhoods of the true break points. Three candidate break

points remain after thresholding, supporting Theorem 1, which states that there

should be at most 2m0 = 4 candidate break points. Finally, the right panel shows

the final estimated break points as blue vertical dashed lines from using a local

search within each cluster.

In summary, this study contributes to the literature in four ways. First,

we propose a detection algorithm that can handle a wide range of linear mod-

els, including the change-in-mean model, multiple linear regression model, vec-

tor autoregressive (VAR) model, and Gaussian graphical model, in both high-

dimensional and fixed-dimensional cases. Second, we provide theoretical guar-

antees in terms of the consistency rate of change-point detection and parame-

ter estimation. Third, we provide consistent model parameter estimates during

the change-point detection process, without needing to refit the model. Lastly,

we provide data-driven methods for selecting all hyperparameters in the algo-

rithm. The algorithm is implemented in the R package LinearDetect (Bai and

Safikhani (2021)).
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1.1. Related Works

Numerous works have examined the problem of change-point detection in

the offline version, focusing mostly on fix-dimensional regimes. These studies

can be categorized into the following three groups according to the dimension of

the coefficient parameters considered by the model: univariate, multivariate, and

high-dimensional. Several works focus on different types of models in the univari-

ate case. For example, Davis, Lee and Rodriguez-Yam (2006) use the minimum

description length principle to locate change points in piecewise univariate auto-

regressive models, and Killick, Fearnhead and Eckley (2012) propose a pruned

exact linear time (PELT) method using the optimal partitioning approach of

Jackson et al. (2005) and a pruning step within the dynamic program to detect

the structural breaks. Fryzlewicz (2017) applies a tail-greedy Haar transforma-

tion to consistently estimate the number and locations of multiple change points

in the univariate piecewise-constant model, and Aue, Rice and Sönmez (2018)

develop a method based on the (scaled) functional cumulative sum (CUSUM)

statistic for detecting shifts in the mean of a functional data model. In the mul-

tivariate case, with the number of model parameters p fixed, Ombao, Von Sachs

and Guo (2005) develop a spectral representation to locate the break points,

Zhang and Lavitas (2018) propose a self-normalized technique for testing change

points, and Matteson and James (2014) propose a nonparametric approach based

on the Euclidean distances between sample observations. There is increasing in-

terest in the high-dimensional case, in which the number of model parameters p is

much larger than the number of observations n (Hastie, Tibshirani and Friedman

(2009)). Cho and Fryzlewicz (2015) and Cho (2016) use binary segmentation to

locate break points in high-dimensional data, and Wang and Samworth (2016)

propose a high-dimensional change-point detection method that uses a sparse

projection to project the high-dimensional data into a univariate case. The al-

gorithm for estimating a single change point can be combined with the wild

binary segmentation scheme of Frick, Munk and Sieling (2014) to locate multiple

change points sequentially in high-dimensional time series. Wang et al. (2019)

develop an l0-optimization for change point detection in VAR models, and Roy,

Atchadé and Michailidis (2017) propose a likelihood-based method for locating

a single break point in high-dimensional Markov random fields, and provide the

rate of estimating the change point and the model parameters. In addition, a

U-statistic-based cumulative sum statistic is developed in Liu et al. (2020) to test

for the existence of a single change point, and Safikhani and Shojaie (2022), Bai,

Safikhani and Michailidis (2020), and Safikhani, Bai and Michailidis (2021) use



1726 BAI AND SAFIKHANI

a fused lasso (Tibshirani et al. (2005)) and a screening step to estimate multiple

break points in a VAR model and establish consistency results for both the break

points and the model parameters. Moreover, Kolar and Xing (2012) consider a

fused lasso regularization together with a neighborhood selection approach to de-

tect the change points in the Gaussian graphical model, and Bybee and Atchadé

(2018) introduce a majorize-minimize algorithm plus a simulated annealing (SA)

algorithm for computing change points in large graphical models. Finally, Gib-

berd and Roy (2017) use a group-fused graphical lasso (GFGL) to detect multiple

change points in a high-dimensional setting. See Aue and Horváth (2013); Yu

(2020) for a comprehensive review.

The remainder of the paper is organized as follows. In Section 2, we introduce

the general model formulation, and in Section 3, we describe the proposed TBFL

algorithm. We establish the asymptotic properties, including the consistency

of the number of change points and their locations, in Section 4, and provide

examples of models in Sections 5 and S3 (Supplementary Material). In Section 6,

we discuss the optimal block size selection method, and in Section 7, we compared

the numerical performance of the proposed TBFL in various simulation settings

with that of other methods in Sections 7, S9, and S10 (Supplementary Material).

In Section 8, we present a real-data application of electroencephalograms (EEGs)

recorded during eyes-closed and eyes-open resting conditions. Section 9 concludes

the paper.

Notation: Denote the indicator function of a subset S as 1S . For any vector

v ∈ Rp, we use ‖v‖∞ to denote max1≤i≤p{|vi|}. For any matrix A, the `1, `2, and

`∞ norms of the vectorized form ofA are denoted by ‖A‖1 = ‖vec(A)‖1, ‖A‖F =

‖vec(A)‖2 and ‖A‖∞ = ‖vec(A)‖∞, respectively. The transpose of a matrix A

is denoted by A′. Let Λmax(Σ) and Λmin(Σ) denote the maximum and minimum

eigenvalues of the symmetric matrix Σ. Denote the tensor product of two matrices

as ⊗. For functions f(n) and g(n), we write f(n) = Ω(g(n)) if and only if for some

constants c ∈ (0,∞) and n0 > 0, f(n) ≥ cg(n) for all n ≥ n0; we write f(n) =

O(g(n)) if and only if for some constants c ∈ (0,∞) and n0 > 0, f(n) ≤ cg(n),

for all n ≥ n0. We define the Hausdorff distance between two countable sets on

the real line as dH(A,B) = max{maxb∈B mina∈A |b− a|,maxa∈A minb∈B |b− a|}.
For scalars a and b, define a ∧ b = min(a, b) and a ∨ b = max(a, b).

2. Model Formulation

We consider a multivariate regression model (Rothman, Levina and Zhu

(2010)) with a structural break such that the values of the coefficient matrix
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change over time in a piecewise constant manner. Specifically, suppose there exist

m0 change points {t1, . . . , tm0
} such that 1 = t0 < t1 < · · · < tm0

< tm0+1 = n+1.

Then, the structural break multivariate regression model is given by

yt =

m0+1∑
j=1

(
B?
jxt + εj,t

)
1{tj−1≤t<tj}, t = 1, . . . , n, (2.1)

where yt ∈ Rpy is the response vector at time t, B?
j ∈ Rpy×px is the true coefficient

matrix during the jth segment, xt ∈ Rpx is the predictor vector at time t, and

εj,t ∈ Rpy is a multivariate white noise during the jth segment at time t. All

parameters in the model are considered fixed during each segment, whereas the

coefficient matrices B?
j are allowed to vary over segments. The multivariate

regression model requires that we estimate pxpy parameters within each segment,

which is challenging when either the number of predictors px or the number

of responses py becomes large. We work under the high-dimensional setting

in which we allow the number of predictors px and the number of response py
to grow with the sample size, and possibly exceed the sample size n, that is,

px � n and/or py � n. As a result, we assume the coefficient matrices B?
j

are sparse. Specifically, denote the number of nonzero elements in B?
j by dj , for

j = 1, 2, . . . ,m0 + 1. Let d?n = max1≤j≤m0+1 dj be the maximum sparsity of the

model. We assume that d?n is much smaller than px and py; see Section 4.

3. The TBFL

In this section, we introduce the proposed three-step TBFL estimation pro-

cedure. The first step selects candidate change points from among blocks and

estimates each segment’s coefficient matrix by solving a block-fused lasso prob-

lem. A hard-thresholding step is then added to reduce the over-selection problem

from the fused lasso step. In the third step, a local exhaustive search examines

every time point inside a neighborhood region based on the cluster of candidate

change points estimated in the previous step. Moreover, we obtain a consistent

model parameter estimate during the block-fused lasso step.

Step I. Block-Fused Lasso. Define a sequence of time points 1 = r0 <

r1 < · · · < rkn = n + 1 for block segmentation, such that ri − ri−1 ≈ bn, for

i = 1, . . . , kn − 1, where kn = bn/bnc is the total number of blocks. To simplify

the notation and without loss of generality, throughout the rest of the paper, we

assume that n is divisible by bn such that ri− ri−1 = bn, for all i = 1, . . . , kn. By

partitioning the observations into blocks of size bn and fixing the model parame-
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ters within each block, we set Θ1 = B?
1 and Θi = B?

j+1−B?
j when tj ∈ [ri−1, ri),

for some j, and Θi = 0 otherwise, for i = 2, 3, . . . , kn. Note that Θi 6= 0 for

i ≥ 2 means that Θi has at least one nonzero entry, and implies a change in the

coefficients. We now formulate the following linear regression model in terms of

Θ(kn) = (Θ1, . . . ,Θkn)′:
y(1:r1−1)

y(r1:r2−1)
...

y(rkn−1:rkn−1)


︸ ︷︷ ︸

Y

=


x(1:r1−1) 0 . . . 0

x(r1:r2−1) x(r1:r2−1) . . . 0
...

...
. . .

...

x(rkn−1:rkn−1) x(rkn−1:rkn−1) . . . x(rkn−1:rkn−1)


︸ ︷︷ ︸

X


Θ1
′

Θ2
′

...

Θkn
′


︸ ︷︷ ︸

Θ(kn)

+


ζ(1:r1−1)

ζ(r1:r2−1)
...

ζ(rkn−1:rkn−1)


︸ ︷︷ ︸

E

, (3.1)

where y(a:b) := (ya, . . . ,yb)
′, x(a:b) := (xa, . . . ,xb)

′, ζ(a:b) := (ζa, . . . , ζb)
′; Y ∈

Rn×py , X ∈ Rn×knpx , Θ(kn) ∈ Rknpx×py , and E ∈ Rn×py . Letting πn = knpxpy,

y = vec(Y), Z = Ipy ⊗ X , and θ = vec(Θ(kn)), the regression model (3.1) can

be written in vector form as y = Zθ + vec(E), where y ∈ Rnpy , Z ∈ Rnpy×πn ,

θ ∈ Rπn , and vec(E) ∈ Rnpy . Owing to the sparsity of the parameter θ, we can

estimate it using an `1-penalized least squares regression of the form:

θ̂ = argmin
θ∈Rπn

 1

n
‖y − Zθ‖22 + λ1,n‖θ‖1 + λ2,n

kn∑
i=1

∥∥∥∥∥∥
i∑

j=1

Θj

∥∥∥∥∥∥
1

 , (3.2)

which uses a fused lasso penalty to control the number of change points, and a

lasso penalty to control the sparsity of the coefficient parameter in the model.

Denote the sets of indices of blocks with nonzero jumps and estimated change

points obtained from solving (3.2) by

În =
{̂
i1, î2, . . . , îm̂

}
=
{
i :
∥∥∥Θ̂i

∥∥∥
F
6= 0, i = 2, . . . , kn

}
and

Ân =
{
t̂1, . . . , t̂m̂

}
=
{
ri−1 : i ∈ În

}
,

where m̂ =
∣∣∣Ân∣∣∣ and Ân ⊂ {r1, . . . , rkn−1}. A data-driven method for selecting

the optimal block size is provided in Section 6.
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Step II. Hard-thresholding Procedure. The estimated change points esti-

mated from (3.2) in the block-fused lasso step include all block-end points with

nonzero Θ̂, leading to an over-estimation of the number of true change points in

the model. To remedy this, we include a hard-thresholding step to “thin out”

redundant change points with small changes in the estimated coefficients. Intu-

itively, we keep estimated change points from the first step that have jumps that

are sufficiently large (above a threshold). Specifically, denote the sets of indices

of candidate blocks and estimated change points after hard-thresholding by

Ĩn =
{
i :
∥∥∥Θ̂i

∥∥∥
F
> ωn, i = 2, . . . , kn

}
and Ãn =

{
t̃1, . . . , t̃m̃

}
=
{
ri−1 : i ∈ Ĩn

}
,

where ωn is proportional to the minimum jump sizes νn = min1≤j≤m0
‖B?

j+1 −
B?
j ‖F . Given that νn is unknown, we introduce a data-driven procedure to select

a threshold value ωn (see the Supplementary Material S2.1).

Step III. Exhaustive Search Procedure. After hard thresholding, the can-

didate change points located far from any true change points have been removed.

However, there may be more than one change point remaining in the set Ãn in

the neighborhood of each true change point. Thus, we cluster the remaining es-

timated change points based on how close they are to each other, assuming that

the number of clusters is a reasonable estimate for m0, the number of true change

points. We consider a block clustering step based on a data-driven procedure to

partition the m̃ candidate change points into m̃f clusters. In particular, we se-

lect the optimal number of clusters using gap statistics (Tibshirani, Walther and

Hastie (2001)) (see Supplementary Material S2.2). For a set A, define the cluster

(A) as the partition of A based on the clustering algorithm. Denote the subset in

cluster(Ãn) by cluster(Ãn) = {R1, . . . , Rm̃f}, where m̃f = |cluster(Ãn)|. Denote

the set of corresponding indices by cluster(Ĩn) = {J1, J2 . . . , Jm̃f}.
Next, we describe the local exhaustive search procedure for estimating the lo-

cation of the change points. First, define the following local coefficient parameter

estimates for each segment:

B̂j =

b(1/2)(max(Jj−1)+min(Jj))c∑
i=1

Θ̂i, for j = 1, . . . , m̃f + 1, (3.3)

where J0 = {1}, Jm̃f+1 = {kn}, and {Θ̂i, i = 1, . . . , kn} are matrix-form parame-

ters estimated from (3.2). Define lj = (min(Rj)− bn)1{|Rj |=1}+min(Rj)1{|Rj |>1}
and uj = (max(Rj)+bn)1{|Rj |=1}+max(Rj)1{|Rj |>1}. Now, given a subset Rj , we

apply the exhaustive search method for each time point s in the interval (lj , uj)
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to the data set truncated by the two end points in time, that is, we consider only

data within the interval [min(Rj) − bn,max(Rj) + bn). Specifically, define the

final estimated change point t̃j as

t̃fj = argmin
s∈(lj ,uj)

{
s−1∑

t=min(Rj)−bn

∥∥∥yt − B̂jxt

∥∥∥2

2
+

max(Rj)+bn−1∑
t=s

∥∥∥yt − B̂j+1xt

∥∥∥2

2

}
,

(3.4)

for j = 1, . . . , m̃f . Denote the set of final estimated change points from (3.4) by

Ãfn = {t̃f1 , . . . , t̃
f
m̃f}. Note that the local model parameter estimates B̂j defined

in (3.3) can serve as estimations for the parameters B?
j . Thus, as mentioned

in Section 1, the TBFL can estimate the model parameters together with the

change-point detection, without any refitting. To enhance the variable selection

properties of the model parameter estimates, we propose hard-thresholding B̂j .

Specifically, define the thresholded estimate B̃j as

B̃j = B̂j1{|B̂j |>ηn,j}, for j = 1, . . . , m̃f + 1, (3.5)

which is element-wise thresholding such that B̂j,hl = 0 if |B̂j,hl| ≤ ηn,j , and is

unchanged otherwise, for all j = 1, . . . , m̃f + 1, h = 1, . . . , py, l = 1, . . . , px. The

thresholding parameter ηn,j is selected using the BIC (see the Supplementary

Material S2.4).

Remark 1. Note that the hard-thresholding (Step II) is used only to select po-

tential change-point locations with large changes in their estimated coefficients.

To guarantee a consistent estimation of the segment-specific model parameters

Bj , those Θ̂i with smaller norm values are still kept in the local coefficient pa-

rameter estimates (3.3); see the Supplementary Material S2.3.

Remark 2. The approximate computational complexity of the TBFL method is

O (n/bn + bn) for fixed py, px, and finite m0. The computational time is O (n/bn)

in the first step (Bleakley and Vert (2011)), and O (2bn) in the exhaustive search

step. Note that bn can be selected as nε such that 0 ≤ ε < 1. Setting ε = 0

(i.e., selecting bn as a constant) yields to linear computational complexity (which

matches the complexity of the fused lasso). When 0 < ε < 1, the computational

complexity is O
(
nmax(ε,1−ε)), which is sub-linear with respect to the sample size.

4. Theoretical Properties

In this section, we provide the asymptotic properties of the TBFL in terms

of both detection accuracy and model parameter estimation consistency. The
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following assumptions are needed:

A1. Lower restricted eigenvalue condition (Lower-RE condition). There exist

constants c1, c2 > 0, a sequence δn → +∞, an = Ω(log(pxpy ∨ n)), and

parameters α1 > 0 and τ = c0α1(an)−1 log(pxpy ∨ n) > 0 such that, with

probability at least 1− c1 exp(−c2δn), for all v ∈ Rpxpy ,

inf
1≤j≤m0+1,tj>u>l≥tj−1,|u−l|>an

v′Ipy⊗

(
(l − u)−1

u−1∑
t=l

xtx
′
t

)
v ≥ α1‖v‖22−τ‖v‖21.

(4.1)

Upper restricted eigenvalue condition (Upper-RE condition). There exist

constants c1, c2 > 0, a sequence δn → +∞, an = Ω(log(pxpy ∨ n)), and

parameters α2 > 0 and τ = c0α2(an)−1log(pxpy ∨ n) > 0 such that, with

probability at least 1− c1 exp(−c2δn), for all v ∈ Rpxpy ,

sup
1≤j≤m0+1,tj>u>l≥tj−1,|u−l|>an

v′Ipy⊗

(
(l − u)−1

u−1∑
t=l

xtx
′
t

)
v ≤ α2‖v‖22+τ‖v‖21.

(4.2)

A2. Deviation bound condition. There exist constants c1, c2 > 0 and a sequence

δn → +∞ such that, with probability at least 1 − c1 exp(−δn), for any

sequence an,

sup
1≤j≤m0+1,tj>u>l≥tj−1,|u−l|>an

∣∣∣∣∣
∣∣∣∣∣(l − u)−1

u−1∑
t=l

xtε
′
t

∣∣∣∣∣
∣∣∣∣∣
∞

≤ c2

√
log(pxpy ∨ n)

an
.

(4.3)

A3. The matrices B?
j are dj-sparse. More specifically, for all j = 1, . . . ,m0 + 1,

dj � pxpy, that is, dj/(pxpy) = o(1). Moreover, there exists a positive

constant MB > 0 such that

max
1≤j≤m0+1

∥∥B?
j

∥∥
∞ ≤MB.

A4. Let νn = min1≤j≤m0
‖B?

j+1−B?
j ‖F and ∆n = min1≤j≤m0

|tj+1− tj |. There

exists a positive sequence bn such that, as n→∞,

∆n

bn
→ +∞, d?n

log(pxpy ∨ n)

bn
→ 0, νn = Ω

√d?n log(pxpy ∨ n)

bn

 .
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A5. The regularization parameters λ1,n and λ2,n satisfy λ1,n = C1√
log(pxpy ∨ n)/n

√
bn/n and λ2,n = C2

√
log(pxpy ∨ n)/n

√
bn/n, for some

large constants C1, C2 > 0.

Assumptions A1 and A2 are common in high-dimensional linear regression

models (Loh and Wainwright (2012)) and hold for a wide range of models with

possible temporal dependence (Basu and Michailidis (2015)). These assumptions

should hold uniformly over all (m0 + 1) segments, owing to changes in the model

parameters. Assumption A3 is related to the sparsity of the model which we

need because of the high dimensionality of the model (i.e., px � n and py � n).

Furthermore, it puts an upper bound on the entries of the coefficient matrices,

which is a common assumption in the change-point detection literature (e.g.,

see Assumption A2 in Safikhani and Shojaie (2022)). Assumption A4 connects

several important quantities, including the minimum jump size required for the

coefficient matrices to make the change point detectable, the block size used in

the TBFL algorithm, the total sparsity allowed in the model, and the minimum

spacing between consecutive change points. Specifically, the block size should

be selected to be significantly smaller than ∆n so that the TBFL does not miss

any true break points (i.e., to ensure there is at most one true change point

in each block). The method can also handle the case of a diverging number of

change points (i.e., m0 →∞) as the sample size n diverges. On the other hand,

the total sparsity allowed in the model, d∗n, can increase proportionally with the

block size bn. Note that in the case of no change points, we can set bn = n;

thus, the constraint on the model sparsity becomes similar to that for high-

dimensional linear regression models with no change points (Loh and Wainwright

(2012)). Furthermore, a higher bn allows the jump size νn to be smaller, while

still allowing the TBFL to detect all change points in the model consistently.

Finally, Assumption A5 specifies the rate of the tuning parameters λ1,n and λ2,n

in the block-fused lasso problem in (3.2). Note that in the case of no change

points, we can set bn = n, in which case, the rates in Assumption A5 become

the typical rates of the tuning parameters in high-dimensional regression models

(Loh and Wainwright (2012)).

The first theorem is one of our main results about the false positive rate of

the first step of the TBFL, and the consistency of the number of change points

in the second step of the TBFL.

Theorem 1. Suppose A1–A5 hold. Then, as n→ +∞,

P
(
dH

(
Ãn,An

)
< bn,m0 ≤

∣∣∣Ãn∣∣∣ ≤ 2m0 and m̃f = m0

)
→ 1.
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Theorem 1 states that the number of clusters obtained in the second step

of the TBFL is a consistent estimator for the number of true change points m0,

despite the fact that the total number of estimated change points in this step can

be larger than m0. Note that although the number of candidate change points

in the second step of the TBFL can be larger than m0, Theorem 1 states that

it can be at most 2m0, with high probability. Moreover, all candidate change

points in the second step of the TBFL are within a bn-radius neighborhood of a

true change point, with high probability. In other words, none of the candidate

change points are far from true change points, which is not true for the fused

lasso (Safikhani and Shojaie (2022)).

The exhaustive search procedure (third step of the TBFL) removes additional

candidate break points from the clusters estimated in the second step of the

TBFL. The next theorem states our main result on the accuracy of locating

break points in the TBFL.

Theorem 2. Suppose Assumptions A1–A5 hold. Then, as n→ +∞, there exists

a large enough constant K > 0 such that

P

(
max

1≤j≤m0

∣∣∣t̃fj − tj∣∣∣ ≤ Kd?n log(pxpy ∨ n)

ν2
n

)
→ 1.

Theorem 2 states the localization error of the TBFL algorithm uniformly

over all m0 change points. It scales logarithmically with respect to the model

dimensions px and py. Moreover, small jump sizes can potentially worsen the

consistency rate for locating break points because the localization error scales

proportionally with respect to the reciprocal of ν2
n. Note that the rate stated in

Theorem 2 is optimal up to a logarithm factor (Csörgö and Horváth (1997)).

Finally, we can achieve consistent estimations of segment-specific model pa-

rameters, as stated in the following theorem.

Theorem 3. Suppose Assumptions A1–A5 hold. Then, solution B̂j from (3.3)

satisfies

max
1≤j≤m0+1

∥∥∥B̂j −B?
j

∥∥∥
F

= Op

√d?nlog(pxpy ∨ n)

bn

 .

Further, if ηn,j = Cj
√

log(pxpy ∨ n)/bn, for some positive constant Cj, then the

thresholded variant B̃j in (3.5) satisfies

max
1≤j≤m0+1

∣∣∣supp(B̃j)\supp(B?
j )
∣∣∣ = Op (d?n) .
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Theorem 3 states that the estimator B̂j of a model parameter exhibits proper

consistency, whereas its thresholded version B̃j satisfies the variable selection

property. Note that in the case of no break points, by selecting bn = n, the rates

stated in Theorem 3 match the typical consistency rates in high-dimensional

regression models (Loh and Wainwright (2012); Basu and Michailidis (2015)).

Thus, the bn in the denominator of the consistency rate in Theorem 3 serves as

a proxy for the sample size in each segment.

5. Examples of Models

In this section, we discuss two examples of well-known models that fit into

the modeling framework (2.1). A third example based on a high-dimensional

regression model is presented in the Supplementary Material, Section S3.

5.1. Mean shift model

We consider a simple regression model in which the value of the mean changes

over time. In this case, setting the parameters xt = 1, B?
j = µ?j , px = 1, and

py = p in the model representation in (2.1), the structural break mean shift model

is given by

yt =

m0+1∑
j=1

(
µ?j + εj,t

)
1{tj−1≤t<tj}, t = 1, . . . , n, (5.1)

where yt ∈ Rp is the observation vector at time t, µ?j ∈ Rp is the sparse mean

vector during the jth segment, and εj,t ∈ Rp is multivariate white noise during

the jth segment at time t. Define Θ1 = µ?1, Θi = µ?j+1 −µ?j when tj ∈ [ri−1, ri),

and Θi = 0 otherwise, for i = 2, 3, . . . , kn. In this case, the linear regression

model in terms of Θ can be written as
y(1:r1−1)

y(r1:r2−1)
...

y(rkn−1:rkn−1)


︸ ︷︷ ︸

Y

=


1(1:r1−1) 0 . . . 0

1(r1:r2−1) 1(r1:r2−1) . . . 0
...

...
. . .

...

1(rkn−1:rkn−1) 1(rkn−1:rkn−1) . . . 1(rkn−1:rkn−1)


︸ ︷︷ ︸

X


Θ1
′

Θ2
′

...

Θkn
′


︸ ︷︷ ︸

Θ

+


ζ(1:r1−1)

ζ(r1:r2−1)
...

ζ(rkn−1:rkn−1)


︸ ︷︷ ︸

E

, (5.2)
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where y(a:b) := (ya, . . . ,yb)
′, ζ(a:b) := (ζa, . . . , ζb)

′, 1(a:b) ∈ Rb−a+1 is an all-ones

vector, Y ∈ Rn×p, X ∈ Rn×kn , Θ ∈ Rkn×p, and E ∈ Rn×p. Applying the TFBL

algorithm to this model, the estimated coefficient parameters are given by

µ̂j =

b(1/2)(max(Jj−1)+min(Jj))c∑
i=1

Θ̂i, for j = 1, . . . , m̃f + 1, (5.3)

and its thresholded variant estimate µ̃j is defined as

µ̃j = µ̂j1{|µ̂j |>ηn,j}, for j = 1, . . . , m̃f + 1. (5.4)

To establish the consistency properties of the detection/estimation proce-

dure, the following assumptions are needed:

B1. For the jth segment, where j = 1, 2, . . . ,m0 +1, the process can be written

as yj,t = µ?j + εj,t, where the error {εj,t} is a subGaussian random vector

with parameter (Σj , σ
2
j ) (see the subGaussian definition in Appendix S1).

Furthermore,

1/C1 ≤ min
1≤j≤m0+1

Λmin(Σj) ≤ max
1≤j≤m0+1

Λmax(Σj) ≤ C1, and

1/C2 < min
1≤j≤m0+1

σ2
j ≤ max

1≤j≤m0+1
σ2
j < C2,

where C1 and C2 are positive constants.

B2. The mean vectors µ?j are sparse. More specifically, for all j = 1, 2, . . . ,m0+

1, dj � p, that is, dj/p = o(1). Moreover, there exists a positive constant

Mµ > 0 such that

max1≤j≤m0+1‖µ?j‖∞ ≤Mµ.

B3. Let νn = min1≤j≤m0
‖µ?j+1−µ?j‖2. There exists a positive sequence bn such

that, as n→∞,

min1≤j≤m0+1 |tj − tj−1|
bn

→ +∞, d?n
log(p ∨ n)

bn
→ 0 and

νn = Ω

√d?n log(p ∨ n)

bn

 .

B4. The regularization parameters λ1,n and λ2,n satisfy λ1,n = C1

√
log(p ∨ n)/n√

bn/n and λ2,n = C2

√
log(p ∨ n)/n

√
bn/n, for some large constants

C1, C2 > 0.
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Assumption B1 is a standard assumption in mean shift models that allows us

to obtain the concentration inequalities needed in high dimensions, including the

restricted eigenvalue and deviation bound conditions (see Loh and Wainwright

(2012)). Assumptions B2–B4 are special cases of Assumptions A3–A5 in Sec-

tion 4. The next theorem states the detection and estimation consistency of the

TBFL in a mean shift model.

Theorem 4 (Results for mean shift model). Suppose Assumptions B1–B4 hold.

Then, there exists a large enough constant K > 0 such that, as n→ +∞,

P

(
m̃f = m0, max

1≤j≤m0

∣∣t̃j − tj∣∣ ≤ Kd?nlog(p ∨ n)

ν2
n

)
→ 1.

In addition, the solution µ̂j from (5.3) satisfies

max
1≤j≤m0+1

∥∥µ̂j − µ?j∥∥F = Op

√d?nlog(p ∨ n)

bn

 .

Furthermore, if ηn,j = Cj
√

log(p ∨ n)/bn for some positive constant Cj, the

thresholded variant µ̃j from (5.4) satisfies

max
1≤j≤m0+1

∣∣supp(µ̃j)\supp(µ?j )
∣∣ = Op (d?n) .

The localization error rate obtained in Theorem 4 for the mean shift model

is superior to those of the sparsified binary segmentation (SBS) algorithm of Cho

and Fryzlewicz (2015) and the Inspect algorithm (Wang and Samworth (2016)).

Note that our rate of consistency for estimating the break point locations is

of order d?n log(p ∨ n)/ν2
n, which could be as low as (log(p ∨ n))1+v if we set a

constant νn and d?n = (log(p ∨ n))ν . Cho and Fryzlewicz (2015) achieve a sim-

ilar rate when ∆n is of order n. However, when ∆n is smaller and is of order

nψ, for some ψ ∈ (6/7, 1), their rate of consistency is of order n2−2ψ, which is

larger than our logarithmic rate. Moreover, Wang and Samworth (2016) pro-

posed a two-stage procedure called “Inspect” for estimating change points that

guarantees the recovery of the correct number of change points, with high proba-

bility. Translating to our notation, their best localization error is at least of order

m4
0(log n+ log p)/ν2

n (see Theorem 5 in Wang and Samworth (2016)), where m0

is the number of change points. This rate can be larger than the rate stated in

Theorem 4, especially when m0 is large. We also compared the performance of

the three methods (TBFL, SBS, and Inspect) numerically; see Section 7.
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5.2. Gaussian graphical model

In this section, we consider a Gaussian graphical model with possible changes

in its covariance (precision) matrix. Specifically, suppose there exist m0 change

points {t1, . . . , tm0
} such that 1 = t0 < t1 < · · · < tm0

< tm0+1 = n+ 1. Then,

xt ∼
m0+1∑
j=1

Np (0,Σj) 1{tj−1≤t<tj}, t = 1, . . . , n, (5.5)

such that the observations xt ∈ Rp are p-dimensional realizations of a multivari-

ate normal distribution with zero mean and covariance matrix Σj during the jth

segment. Let Ωj := Σ−1
j denote the precision matrix during the jth segment,

with elements (Ωj(l, k)), for 1 ≤ l, k ≤ p. We estimate the change points and

the nonzero elements of the precision matrices. Setting the parameters xt = yt
and px = py = p in the model representation in (2.1), the model (5.5) can be ex-

pressed equivalently as the following regression equation (using the neighborhood

selection method of Meinshausen and Bühlmann (2006)):

xt =

m0+1∑
j=1

(
A?
jxt + εj,t

)
1{tj−1≤t<tj}, t = 1, . . . , n, (5.6)

where xt is the p-vector of the observation at time t; A?
j ∈ Rp×p is a sparse

coefficient matrix with a zero diagonal during the jth segment, such that the off-

diagonal elements A?
j (l,−l) = Σj(l,−l) (Σj(−l,−l))−1 = − (Ωj(l, l))

−1 Ωj(l,−l),
where Σ(−l,−k) is the sub-matrix of Σ with its lth row and kth column re-

moved; Σ(l, k) is the entry of matrix Σ that lies in the lth row and kth col-

umn; and εj,t is a multivariate Gaussian white noise, such that εj,t ∼ N (0, (Ip −
A?
j )Σj(Ip − A?

j )
′), where the variance of the lth component in the error term

Var(εj,t(l)) = Σj(l, l) − Σj(l,−l)(Σj(−l,−l))−1Σj(−l, l). Therefore, we have

Ωj(l, l) = (Var(εj,t(l)))
−1 and Ωj(l,−l) = −(Var(εj,t(l)))

−1A?
j (l,−l), where l =

1, . . . , p, j = 1, . . . ,m0 + 1, t = 1, . . . , n. The sparsity in the entries of Ωj can be

translated into sparsity in the regression coefficient matrix A?
j .

Define Θ1 = A?
j , Θi = A?

j+1−A?
j when tj ∈ [ri−1, ri) for some j, and Θi = 0

otherwise, for i = 2, 3, . . . , kn. In this case, the linear regression model in terms

of Θ can be written as
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x(1:r1−1)

x(r1:r2−1)
...

x(rkn−1:rkn−1)


︸ ︷︷ ︸

Y

=


x(1:r1−1) 0 . . . 0

x(r1:r2−1) x(r1:r2−1) . . . 0
...

...
. . .

...

x(rkn−1:rkn−1) x(rkn−1:rkn−1) . . . x(rkn−1:rkn−1)


︸ ︷︷ ︸

X


Θ1
′

Θ2
′

...

Θkn
′


︸ ︷︷ ︸

Θ

+


ζ(1:r1−1)

ζ(r1:r2−1)
...

ζ(rkn−1:rkn−1)


︸ ︷︷ ︸

E

, (5.7)

where x(a:b) := (xa, . . . ,xb)
′, ζ(a:b) := (ζa, . . . , ζb)

′, Y ∈ Rn×p, X ∈ Rn×knp, Θ ∈
Rknp×p, and E ∈ Rn×p. The TBFL algorithm can be applied to detect the change

points, with the estimated coefficient parameters given by

Âj =

b(1/2)(max(Jj−1)+min(Jj))c∑
i=1

Θ̂i, for j = 1, . . . , m̃f + 1, (5.8)

and its thresholded variant estimate Ãi given by

Ãj = Âj1{|Âj |>ηn,j}, for j = 1, . . . , m̃f + 1. (5.9)

To establish the consistency properties of the detection/estimation proce-

dure, the following assumptions are needed:

C1. For each j = 1, 2, . . . ,m0 + 1, the process follows (5.6) such that xj,t ∼
N (0,Σj) and εj,t ∼ N (0, (Ip −A?

j )Σj(Ip −A?
j )
′). Furthermore,

1/C1 ≤ min
1≤j≤m0+1

Λmin(Σj) ≤ max
1≤j≤m0+1

Λmax(Σj) ≤ C1, and

1/C2 ≤ min
1≤j≤m0+1,1≤l≤p

(Ωj(l, l))
−1,

where C1 and C2 are positive constants.

C2. The coefficient vectors A?
j are sparse. More specifically, for all j = 1, 2, . . . ,

m0 + 1, dj � p2, that is, dj/p
2 = o(1). Moreover, there exists a positive

constant MA > 0 such that

max1≤j≤m0+1‖A?
j‖∞ ≤MA.
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C3. Let νn = min1≤j≤m0
‖A?

j+1 − A?
j‖F . There exists a positive sequence bn

such that, as n→∞,

min1≤j≤m0+1 |tj − tj−1|
bn

→ +∞, d?n
log(p ∨ n)

bn
→ 0 and

νn = Ω

√d?n log(p ∨ n)

bn

 .

C4. The regularization parameters λ1,n and λ2,n satisfy λ1,n=C1

√
log(p ∨ n)/n√

bn/n and λ2,n = C2

√
log(p ∨ n)/n

√
bn/n, for some large constants

C1, C2 > 0.

We can exclude singular or nearly singular covariance matrices, based on

Assumption C1, thus guaranteeing the uniqueness of Θ (Wang, Ren and Gu

(2016); Meinshausen and Bühlmann (2006)). The RE condition (A1) and the

deviation bound (A2) hold under Assumption C1 (see Section 4 in Bickel et al.

(2009) and Lemma 12 in Zhou et al. (2011)). Assumptions C2–C4 are special

cases of Assumptions A3–A5 in Section 4.

The next theorem is about the detection and estimation consistency of the

TBFL when applied to Gaussian graphical model with breaks.

Theorem 5 (Results for Gaussian graphical model). Suppose Assumptions C1–

C4 hold. Then, there exists a large enough constant K > 0 such that, as n→ +∞,

P

(
m̃f = m0, max

1≤j≤m0

∣∣t̃j − tj∣∣ ≤ Kd?nlog(p ∨ n)

ν2
n

)
→ 1.

In addition, the solution Âj from (5.8) satisfies

max
1≤j≤m0+1

∥∥∥Âj −A?
j

∥∥∥
F

= Op

√d?nlog(p ∨ n)

bn

 .

Furthermore, if ηn,j = Cj
√

log(p ∨ n)/bn, for some positive constant Cj, the

thresholded variant Ãj from (5.9) satisfies

max
1≤j≤m0+1

∣∣∣supp
(
Ãj

)
\supp

(
A?
j

)∣∣∣ = Op (d?n) .

The localization error stated in Theorem 5 is optimal up to a logarithmic

factor. This rate is an improvement over the consistency rate of the group-

fused graphical lasso (GFGL) method of Gibberd and Roy (2017), in which the
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localization error is of order O(p2 log p/v2
n) (as shown in Theorem 3.2 in Gibberd

and Roy (2017)). Moreover, the TBFL achieves a better consistency rate than

the O(p log n/v2
n) localization error rate established in Kolar and Xing (2012).

Finally, it achieves a similar consistency rate in terms of the localization error

to that of the method of Bybee and Atchadé (2018) for a single change point,

although they provide no theoretical results for the consistency of the number of

change points detected using their method. We perform a numerical comparison

between the TBFL and the method of Bybee and Atchadé (2018) finding that the

TBFL outperforms the other method both in terms of the estimated number of

change points and their location accuracy; see Section S10 of the Supplementary

Material.

6. Optimal Block Size Selection

In this section, we develop a data-driven method to select the optimal block

size. If the true number of change points m0 is relatively small, the proposed

TBFL algorithm is robust to changes in the block size bn (see Section S9). How-

ever, for a large m0, we propose selecting the optimal block size by minimizing

the high-dimensional Bayesian information criterion (HBIC) of Wang and Zhu

(2011) over a grid search domain. Specifically, we select the optimal bn as

b̂n = argmin
bn∈S

HBIC(bn) = argmin
bn∈S

(
n log

(
1

n
RSS(bn)

)
+ 2γ log(pxpy) |M(bn)|

)
,

where RSS(bn) =
∑m̃f (bn)+1

j=1

∑t̃fj (bn)−1

t=t̃fj−1(bn)
‖yt − B̃j(bn)xt‖22 is the residual sum

of squares; B̃j(bn), m̃f (bn) and t̃fj (bn) are the estimated parameters, number of

change points, and locations of the change points using block size bn, respectively;

|M(bn)| =
∑m̃f (bn)+1

j=1 d̃j(bn), where d̃j(bn) is the number of nonzero elements in

the coefficient parameter B̃j in (3.5) while using the block size bn. We follow

the suggestion of Wang and Zhu (2011) for selecting γ. Note that the detection

and estimation results are robust with respect to changes in γ, as investigated

in Section S8 in the Supplementary Material. The details of the selection of the

search domain S are provided in Section S2.5 in the Supplementary Material.

7. Numerical Performance Evaluation

In this section, we compare the empirical performance of our method

(TBFL) with that of several competing methods. For the mean shift model,

we compare our method with SBS (Cho and Fryzlewicz (2015)) and Inspect
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Figure 2. (a) Hausdorff distance dH(Ãf
n,An) for the TBFL, SBS, and Inspect methods;

(b) median number of detected change points for the three methods; (c) F1 score.

(Wang and Samworth (2016)). For the Gaussian graphical model, we compare

our method with the SA algorithm (Bybee and Atchadé (2018)). We also evalu-

ate the performance of the TBFL method with respect to both structural break

detection and parameter estimation over several simulation scenarios. Owing to

space limitations, we report only the comparison between the performance of

the proposed method with that of SBS and Inspect; details on thecomparison

with the method of (Bybee and Atchadé (2018)) and empirical performance of

the TBFL over several simulation scenarios are provided in the Supplementary

Material, Sections S10 and S9, respectively.

Before describing the simulation settings, we need to define how we measure

the detection performance of the methods. First, we use the Hausdorff distance

dH(Ãfn,An) to measure the estimation accuracy of the locations of the break

points. Moreover, following Hushchyn, Arzymatov and Derkach (2020), we define

a set of correctly detected change points as true positive change points (TPCP):

TPCP =

{
tj

∣∣∣∃t̃fj′ such that t̃fj′ ∈
[
tj −

tj − tj−1

5
, tj +

tj+1 − tj
5

]
, j = 1, . . . ,m0

}
.

In addition, the precision, recall, and F1-score are calculated as follows:

Precision =
|TPCP|
m̃f

, Recall =
|TPCP|
m0

, F1 =
2 · Precision · Recall

Precision + Recall
,

where |TPCP| is the cardinality of the set TPCP. The highest possible value

of an F1 score is one, indicating perfect precision and recall, and the lowest

possible value is zero, indicating that either the precision or the recall is zero.

We select the F1 score as another quantitative measurement to evaluate the

detection performance. The simulation setting are as follows.

Setting A (Mean Shift Model). In setting A, n = 5000 and p = 20,

with the number of nonzero elements in the jth segments dj = 2, for all j =
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Table 1. Results of the difference between m̃f and m0 for the TBFL, SBS, and Inspect
methods in simulation scenario A.

method
∣∣m̃f −m0

∣∣ m0 = 2 m0 = 4 m0 = 6 m0 = 8 m0 = 10 m0 = 12 m0 = 14 m0 = 16

TBFL

0 94 98 93 93 99 97 95 74

1 4 2 7 7 1 3 5 16

2 2 0 0 0 0 0 0 6

> 2 0 0 0 0 0 0 0 4

SBS

0 100 96 30 57 45 8 1 0

1 0 3 60 40 28 25 11 2

2 0 0 10 3 26 40 18 1

> 2 0 1 0 0 1 27 70 97

Inspect

0 95 56 64 38 31 3 7 11

1 5 35 24 37 41 28 22 32

2 0 8 9 19 18 36 42 30

> 2 0 1 3 6 10 33 29 27

1, . . . ,m0 + 1. The mean coefficient µ is chosen to be multivariate with a random

sparse structure and random entries sampled from Uniform(−1,−0.5)1{j is odd}+

Uniform(0.5, 1)1{j is even}, for each j = 1, . . . ,m0+1. We consider different setting

of m0, from 2 to 16.

The detection results of the TBFL, SBS, and Inspect methods are summa-

rized in Figure 2 and Table 1. As shown in Figure 2 (left panel), the Hausdorff

distance between the set of estimated change points and true change points in-

creases significantly for the SBS method when m0 increases, whereas the TBFL

and Inspect seem to be more stable. The middle panel shows the median of the

number of detected change points for all three methods, indicating that Inspect

(SBS) overestimates (underestimates) the true number of change points, whereas

the TBFL correctly identifies m0. The right panel of Figure 2 depicts the F1

score, showing that for small m0, all models perform reasonably well, but that

the TBFL outperforms SBS and Inspect for larger m0. Overall, the TBFL out-

performs these two competing methods in terms of estimating both the number

of change points and their locations. Finally, as shown in Table 1, among 100

replicates, our method correctly estimates m0 over 90% replicates when m0 = 2

to 14, whereas SBS (Inspect) tends to underestimate (overestimate) m0 starting

from m0 = 6. Note that for m0 = 16, the TBFL selects the true number of

change points in 74% replicates, which implies that with model specifications in

this simulation setting, the TBFL has reached its detection limit.
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8. An Application to EEG Data

In this section, we apply the TBFL method and SA method (Bybee and

Atchadé (2018)) to an EEG data set analyzed in Trujillo (2019). In this database,

EEG signals from active electrodes for 72 channels are recorded at a sampling

frequency of 256 Hz, for approximately three minutes. The stimulus procedure

tested on the selected subject comprised three one-min interleaved sessions with

eyes open and closed. To speed up the computations, we construct a subset of the

EEG data observations by selecting one record in every 16. After detrending and

scaling the data, the total time points is reduced to n = 2922. The data are also

preprocessed to remove the temporal structure pattern (see the Supplementary

Material S11).

We considered the Gaussian graphical model with breaks for this data set,

and applied the TBFL with an optimal block size procedure under the search

domain bn = 80, 90, 100, 110, 120 to detect the change points and estimate the

model parameters. The selected optimal block size is bn = 90. As shown in

left panel of Figure 3, our method detects two break points at t̃f1 = 1077 and

t̃f2 = 1980, which are close to the open-eye and closed-eye times identified by

neurologists (t1 = 947 and t2 = 1963). We also applied the SA method (Bybee

and Atchadé (2018)) to this EEG data set. The SA method detects only one

change point close to the boundaries (30), for which there are no recorded stimuli,

but no estimated change points close to the true change points. To demonstrate

the changes between the eye-open and eye-closed segments, we focus on the first

two segments, and estimate the model parameters in both segments using the

thresholded estimator defined in (5.9), that is, Ã1 (segment 1, open-eye) and Ã2

(segment 2, closed-eye). Network edges corresponding to nonzero coefficients in

these two estimated parameters are depicted in the middle and right panels of

Figure 3. During the second segment (the eyes-closed state), the overall network

connectivity increased. Specifically, the total number of edges in the eyes-open

(EO) state is 724, whereas the total number of edges in the eyes-closed (EC)

state is 857. Among the channels with the most connectivity changes, that is,

the degree (number of edges) between the two segments changed the most, there

are six EEG channels, namely PO4, POz, PO3, Pz, P3, and CP2, which are

located in the visual cortex in the brain (Nezamfar et al. (2011)). This result

confirms the satisfactory variable selection performance of the model parameter

estimation, as stated in Theorem 3, after detecting break points in the TBFL

procedure. Such estimations can produce insights into which channels have been

most affected by the stimulus procedure.
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Figure 3. (top) The detrended EEG data with 72 channels. The blue dashed line indicates
the detected change point, and the red vertical line indicates the true change point. The
first and third parts correspond to eyes open status, and the second part corresponds to
eyes closed status; (bottom) Directed graph of EEG channels connectivity before (bottom
left) and after (bottom right) the first change point.

9. Conclusion

We have introduced a novel unified framework that can consistently identify

structural breaks and estimate model parameters for general sparse multivariate

linear models with high-dimensional covariates. We have developed a regularized

estimation procedure to simultaneously detect the structural break points and

estimate the model parameters. Key technical developments include the calibra-

tion of the block size and the introduction of hard-thresholding for screening out

redundant candidate change points. Note that our method can also handle the

VAR model. An extension of the current framework to nonlinear models would

be an interesting future research direction.
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Supplementary Material

In Section S1 of the online Supplementary Material, we define a sub-Gaussian

random variable and a sub-Gaussian random vector, and in Section S2, we discuss

the algorithm and the data-driven procedures. Section S3 presents an example of

a high-dimensional multiple linear regression model, and additional details about

the Gaussian graphical model are provided in Section S4. Section S5 contains the

technical lemmas needed to prove the main results. The proofs of the main results

are given in Section S6. Finally, Sections S8 and S9 and S10 present additional

results for simulation scenario A, additional simulation results for several different

settings, and a comparison with the simulated annealing method (Bybee and

Atchadé (2018)), respectively.
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