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Abstract: Data sharpening for kernel regression and density estimation was intro-

duced by the late Peter Hall. We review briefly his enormous contribution to the

literature in this area and then propose a data sharpening procedure arising from

imposition of a soft global functional constraint in local regression analysis. Instead

of enforcing the constraint everywhere, the procedure guides the data in directions

which enable satisfaction or near-satisfaction of the given property globally through

the use of a penalty. It results in a modified local regression estimator which pos-

sesses a closed functional form and which includes a conventional local regression

estimator as a special case. The approach can accommodate various constraints,

most of which in practice are motivated by expert prior knowledge. We demonstrate

theoretically and numerically that the proposed estimator is an improved variant

of the corresponding local regression estimator. It achieves a reduction in variance

while maintaining the bias at the same level. Although the focus in the paper is

on local polynomial regression, the technique can be applied, in principle, to any

linear nonparametric estimator, including regression splines, smoothing and penal-

ized splines and other recently proposed kernel estimators. We exhibit usefulness

of the proposed approach with an analysis of a collection of temperatures at the

airport of Vancouver. The analysis reveals a possible monotonic trend underlying

the conventional supposition of a periodic (seasonal) temporal structure.

Key words and phrases: Bias-variance trade-off, functional constraint, kernel smooth-

ing, quadratic penalty.

1. Introduction

Local regression has benefited different fields (Wand and Jones (1995); Fan

and Gijbels (1996); Loader (1999)), and its popularity will likely continue to

grow because of the relative ease with which it can be applied. Employing local

fitting by conventional parametric regression procedures, the approach confers a

large degree of robustness to functional misspecification of the systematic com-

ponent. However, imposing a global constraint on the resulting curve is not
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always straightforward. This may explain why most published research on non-

parametric/semiparametric regression subject to a global (or shape) constraint is

usually based on other approaches, such as smoothing splines (Ramsay and Sil-

verman (2005)) or nonparametric regression with Bernstein polynomials (Wang

and Ghosh (2012)). Notable exceptions include the weighted kernel estimator

(otherwise, known as “tilting”) proposed by Hall and Huang (2001) and its ex-

tension provided in Du, Parmeter and Racine (2013), where the weights are

chosen according to the primary constraint and a few other requirements. Their

weights are determined implicitly by certain equations as opposed to closed-form

expressions, resulting in the loss of computational simplicity enjoyed by local

regression. This motivated our research presented in this paper. We propose

an alternative approach to imposing a global constraint on a local regression

estimator via a penalized data sharpening procedure.

Data sharpening perturbs observations prior to application of a conventional

estimator; the goal is to achieve improved performance of the estimator in terms

of some criterion, while retaining most or all of the attractive characteristics of

the original estimator. The contributions of the late Peter Hall to the relatively

new field of data sharpening are extensive. (Cheng and Fan (2016), Sect. 6) re-

views Hall’s contributions to the general field of shape-constrained nonparametric

estimation. Here, we review briefly his specific contributions to data sharpening.

As far as we can tell, Hall’s first contribution appeared in the context of den-

sity estimation (Choi and Hall (1999)) where the mean-shift clustering algorithm

was cleverly exploited to move points towards local modes in order to reduce

bias. Hall and Minnotte (2002) describe a different way to sharpen the data, ex-

ploiting earlier transformation approaches of Samiuddin and El-Sayyad (1990).

Claeskens and Hall (2002) extend the approaches of both of these papers to the

context of hazard estimation, showing among other things that the same data

perturbation can be applied to hazard estimation as to density estimation. Choi

and Hall (2001) apply data sharpening to nonparametric point process intensity

estimation with specific attention to earthquake data. Hall and Kang (2005)

provide theoretical support for the constrained sharpening approach to density

estimation described in Braun and Hall (2001), which proposed data sharpening

to satisfy shape-constraints in both density estimation and nonparametric re-

gression. Choi, Hall and Rousson (2000) presents a simple, but effective, method

of sharpening data to reduce bias in nonparametric regression. Doosti and Hall

(2016) demonstrate the benefits to be accrued when sharpening and tilting are

applied in combination yielding improved “perturbed” density estimates, both
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qualitatively and in terms of accuracy; theoretical results supplied there show

that uniform consistency is attained for a large class of densities.

The data sharpening procedure proposed in the present paper amounts to

translating the constraint into an L2 type of penalty on the data points, perturb-

ing them so that they almost satisfy or completely satisfy the given property,

upon application of the local regression estimator. Thus, the estimator is sub-

ject to a soft constraint. The proposed penalized data sharpening approach has

common features with penalized splines (Eilers and Marx (1996)). The proce-

dure can easily accommodate various functional properties which arise in practice

to represent certain qualitative characteristics, including those that can only be

handled by the original data sharpening method with a nonlinear programming

algorithm. The resulting estimator can be presented analytically as a function

of a tuning parameter, explicitly including the conventional local regression es-

timator as a special case. The analytic form allows the estimator to be easily

computable. In fact, it permits exploration of theoretical properties of the pro-

posed estimator and guides selection of the tuning parameter, conditional on the

design points. It also leads to insights into the effects of imposing the constraints

globally. We also point out that the technique is not only applicable to classical

local polynomial regression estimation but also to recently developed extensions

such as the double-smoothing estimator of He and Huang (2009), and the ap-

proach could be applied to spline smoothers as well although, in that context,

other functional data analysis techniques may be preferable.

We organize this paper as follows. After introducing the framework, Sec-

tion 2 describes the proposed approach to data sharpening in local regression via

a quadratic penalty. Some candidate local regression estimators and quadratic

penalities are surveyed. We compare the new estimator to its local regression

counterpart theoretically in Section 3. We present a systematic procedure for se-

lecting the tuning parameter based on the mean integrated squared error (MISE)

of the estimator in Section 4. Section 5 reports two numerical studies, a simu-

lation study to investigate finite sample performance of the proposed procedure

and a data analysis to exemplify its applications to studies exploring possible

connections to global warming. A few final remarks are given in Section 6.

2. Data Sharpening Subject to Quadratic Penalty

Consider the regression model Y = g(X)+ε with E(ε
∣∣X) = 0 and Var(ε

∣∣X) =

σ2. Suppose that there is a collection of i.i.d. observations on (Y,X): {(yi, xi) :
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i = 1, . . . , n}. Our primary objective is to estimate the function g(·) without

(fully) specifying its functional form.

Let x = (x1, . . . , xn)ᵀ and y = (y1, . . . , yn)ᵀ, and a local estimator of

g(·) with the data be g̃(z) =
∑n

i=1 ai(z;h)yi = a(z;h)ᵀy, where the band-

width h is constant and a(z;h) is the n-dim column vector with components

ai(z;h). We aim to achieve an improved estimator ĝ(z) using the construction

of g̃(z) with y replaced by sharpened response observations y? = (y?1, . . . , y
?
n)ᵀ:

ĝ(z) = a(z;h)ᵀy?. Rooted in the original response observations y, the sharpened

response observations y? result from imposing a penalty on violation of a global

constraint, to encourage certain qualitative characteristics based on possible prior

knowledge about g(·).

2.1. Proposed estimator

Assume that the constraint (based on prior knowledge) is in the form of a

functional equation of g(·):
[
b ◦ g

]
(z) = 0 for z over an interval Z, where b is

a linear operator. Let the components of z = (z1, . . . , zm)ᵀ be the chosen grid

points in Z. We encourage the constraint with g(·) by controlling the length of

the vector b ◦ ĝz = (
[
b ◦ ĝ

]
(z1), . . . ,

[
b ◦ ĝ

]
(zm))ᵀ = B(z;h)ᵀy?, where B(z;h) is

the n×m matrix with the jth column b(zj ;h) =
[
b ◦a

]
(z;h)|z=zj . This yields a

proposed objective function adjoining the constraint as a quadratic penalty to the

squared Euclidean distance between y and its sharpened version y?. Specifically,

we choose the y? to minimize

O(y?;λ,B,y) = (y − y?)ᵀ(y − y?) + λy?ᵀB(z;h)B(z;h)ᵀy? (2.1)

with a fixed tuning parameter λ > 0.

Let I be the identity matrix with an appropriate order depending on the con-

text. Here B(z;h)B(z;h)ᵀ is positive semi-definite, and thus I+λB(z;h)B(z;h)ᵀ

is positive definite when λ ≥ 0. The objective function (2.1) achieves its minimum

at the unique point y? = argminall ỹ?O(ỹ?;λ,B,y) =
{
I+λB(z;h)B(z;h)ᵀ

}−1
y.

This yields the new estimator of g(·), a penalized local regression estimator,

ĝ(z) = a(z;h)ᵀy? = a(z;h)ᵀ
{
I + λB(z;h)B(z;h)ᵀ

}−1
y. (2.2)

The new estimator reduces to the local regression estimator g̃(z) = a(z;h)ᵀy

when the tuning parameter λ = 0. Denote
{
I + λB(z;h)B(z;h)ᵀ

}−1
a(z;h) by

a?(z;h, λ). Thus ĝ(z) = a?(z;h, λ)ᵀy may also be viewed as a weighted kernel

estimator when the matrix
{
I + λB(z;h)B(z;h)ᵀ

}−1
is diagonal.

The proposed estimation procedure does not strictly enforce the constraint.

Instead, it guides the local regression estimator g̃(z) through a shape-related
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penalty to ĝ(z), to better approximate the qualitative feature. We verify this

notion theoretically and numerically in the rest of this paper.

2.2. Candidates for the base estimator and functional constraint

Possible candidates for the unsharpened estimator g̃(z) to which our pro-

posed penalty method can be applied require the linearity property in the re-

sponse vector y. This is clearly true of spline regression estimators. We demon-

strate the property in Local polynomial regression (LPR) (Wand and Jones (1995);

Fan and Gijbels (1996); Loader (1999)) and Double-Smoothing (He and Huang

(2009)) with kernel methods in Section S1.1 of the Supplementary Material.

The desired functional constraint on g(·) in many applications may be for-

mulated as a linear transform-based equation, such as the constant coefficient

linear homogeneous differential equation
[
b ◦ g

]
(z) = 0, with b =

∑L?

l=L?
αlD

l,

where αl are constants, D is the differential operator, and 0 < L? < L? < ∞.

This class has been employed in the literature (Heckman and Ramsay (2000)).

It includes many desirable functional constraints such as the roughness penality

with
[
b ◦ g

]
(z) = D2g(z) = 0 and the periodicity constraint with the functional

constraint
[
b ◦ g

]
(z) = D4g(z) + γD2g(z) = 0, which encourages the resulting

estimator to pick up both linear and periodic trends. More discussion is provided

in Section S1.1 of the Supplementary Material.

3. Theoretical Verification

The sharpened estimator ĝ(z) = a(z;h)ᵀy? = a?(z;h, λ)ᵀy depends on the

response observations linearly as does the conventional local regression estimator

g̃(z) = a(z;h)ᵀy, the unsharpened one. In the following, we derive theoretical

properties of ĝ(·) based on its analytic form (2.2) and its connection to g̃(·). In

the rest of this paper, 1 and 0 are the vectors (1, . . . , 1)ᵀ and (0, . . . , 0)ᵀ with

appropriate dimensions, respectively, and (x− z1)l is the n-dim vector with the

components (xi − z) to the power l.

By a general result for the inverse of a sum of matrices (Henderson and Searle

(1981)), we have
{
I+λB(z;h)B(z;h)ᵀ

}−1
= I−B(z;h)

{
I
/
λ+B(z;h)ᵀB(z;h)

}−1
B(z;h)ᵀ. This yields that

ĝ(z)− g̃(z) = −a(z;h)ᵀB(z;h)

{
I

λ
+ B(z;h)ᵀB(z;h)

}−1
b ◦ g̃z, (3.1)

where b ◦ g̃z = B(z;h)ᵀy is the m-dim vector with components b ◦ a(zj ;h)ᵀy =[
b ◦ g̃

]
(zj) for j = 1, . . . ,m.
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The display at (3.1) reveals that, with a fixed value of the tuning parameter λ,

the adjustment to achieve ĝ(·) from g̃(·) is proportional to b◦ g̃z, the components

of which are the departures of g̃(·) at the grid points from the constraint. In the

extreme case that g̃(·) satisfies the constraint
[
b ◦ g̃

]
(z) = 0, and thus b ◦ g̃z = 0,

and ĝ(z) is the same as g̃(z).

3.1. Conditional variance and bias

Conditional on the design points x = (x1, . . . , xn)ᵀ and with fixed h and

λ, the expectation of the sharpened response y? is {I + λB(z;h)B(z;h)ᵀ}−1g
with g =

{
g(x1), . . . , g(xn)

}ᵀ
. Thus the conditional expectation and conditional

variance of ĝ(z) at a fixed z are

E
(
ĝ(z)

∣∣x, z;h, λ
)

= a(z;h)ᵀ
{
I + λB(z;h)B(z;h)ᵀ

}−1
g = a?(z;h, λ)ᵀg, and

(3.2)

Var
(
ĝ(z)

∣∣x, z;h, λ
)

= σ2a(z;h)ᵀ
{
I + λB(z;h)B(z;h)ᵀ

}−2
a(z;h)

= σ2a?(z;h, λ)ᵀa?(z;h, λ). (3.3)

Recall that Var
(
g̃(z)

∣∣x;h
)∣∣
z=xi

≤ σ2 for i = 1, . . . , n if the kernel function

is symmetric and decreasing on [0,∞) (Loader (1999)). The propositions below

establish an improvement of ĝ(·) in terms of variance reduction while its bias

remains at the same order as g̃(·)’s. We outline their proofs in Section S1.2 of

the Supplementary Material.

Proposition 1. Given g̃(z) = a(z;h)ᵀy, a local regression estimator with inde-

pendent observations
{

(yi, xi) : i = 1, . . . , n
}

and fixed h, Var
(
ĝ(z)

∣∣x, z;h, λ
)
≤

Var
(
g̃(z)

∣∣x;h
)

with z ∈ Z for all z, where the equal sign holds only when either

λ = 0 or B(z;h)ᵀa?(z;h, λ) = 0.

Proposition 2. Suppose g̃(z) = a(z;h)ᵀy in Proposition 1 is the local regression

estimator of order q (≥ 0), and that g(xi) can be expanded in a Taylor series

around z ∈ Z as g(xi) =
∑∞

l=0 g
(l)(z)(xi−z)l

/
l!. When the functional constraint

is based on a constant coefficient linear homogeneous differential equation,
[
b ◦

g
]
(z) = 0 with b =

∑L?

l=L?
αlD

l with q < L? < L? < ∞, the conditional bias of

ĝ(z) is

a(z;h)ᵀ
∞∑

l=q+1

1

l!

[
g(l)(z)(x−z1)l−λB(z;h)

{
I+λB(z;h)ᵀB(z;h)

}−1
g̃l(x, z;h)

]
,

(3.4)

where g̃l(x, z;h) is the m-dim vector with the kth component g(l)(zk)b(zk;h)ᵀ(x−
zk1)l.
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Proposition 2 shows that, when the constraint is specified as above, the bias

of the proposed estimator depends only on the (q+1)th or higher order derivatives

of g(·), the same order as without penalty. Therefore, it is unbiased when g(·)
is polynomial of order q or less. It is easy to see from (3.4) that the difference

between the two biases in general reduces to zero with λ = 0 and converges to

−a(z;h)ᵀB(z;h)
{
B(z;h)ᵀB(z;h)

}−1{∑∞
l=q+1 g̃l(x, z;h)

/
l!
}

when λ→∞.

3.2. Sum of squared residuals

The variance σ2 can be estimated using the normalized sum of residual

squares with a local regression estimator g̃(z) = a(z;h)ᵀy based on the i.i.d.

observations
{

(yi, xi) : i = 1, . . .
}

: σ̃2 =
∑n

i=1{yi − g̃(xi)}2
/

(n − 2ν1 + ν2)

with ν1 = tr{A(x;h)} and ν2 = tr
{
A(x;h)A(x;h)ᵀ

}
, where ν1 and ν2 are two

most commonly used generalizations of the degrees of freedom in local regres-

sion Loader (1999). A small bandwidth is often used to obtain a local regression

estimator with small bias and then an approximately unbiased variance estima-

tor. The sharpened estimator ĝ(z) = a(z;h)ᵀy? = a?(z;h, λ)ᵀy has a property

analogous to that of the local regression estimator.

Proposition 3. The expectation of the sum of squared residuals is

E

[
n∑
i=1

{
Yi−ĝ(xi)

}2∣∣∣x;h, λ

]
= σ2(n−2ν?1 +ν?2)+

n∑
i=1

Bias2
{
ĝ(xi)

∣∣x;h, λ
}
, (3.5)

where ν?1 = tr{A?(x, z;h, λ)} and ν?2 = tr
{
A?(x, z;h, λ)A?(x, z;h, λ)ᵀ

}
.

A proof for the proposition is outlined in Section S1.2 of the Supplementary

Material. The proposition indicates that the normalized sum of residual squares

with the sharpened estimator ĝ(z) can also estimate the variance σ2:

σ̂2 =
1

n− 2ν?1 + ν?2

n∑
i=1

{yi − ĝ(xi)}2. (3.6)

The variance estimator σ̂2 is approximately unbiased if the bias of ĝ(·) is small

in terms of 1/(n− 2ν?1 + ν?2)
∑n

i=1 Bias2
{
ĝ(xi)

∣∣x;h, λ
}

being close to zero.

4. Selection of Tuning Parameter λ

When evaluating a realization of ĝ(·), the Asymptotic Integrated Squared

Error, AISE(ĝ) =
∑m

j=1{ĝ(zj) − g(zj)}2/m, is often used to approximate the

integrated square error
∫∞
−∞{ĝ(z)− g(z)}2p(z)dz if the grid points z1, . . . , zm are

generated from a distribution p(·). We consider evaluation of the estimator ĝ(·)’s
overall performance using the approximation to the conditional mean integrated
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squared error (MISE), which is the conditional expectation of AISE(ĝ):

MAISEz(ĝ|x;h, λ)=
1

m

m∑
j=1

Var
{
ĝ(zj)

∣∣x;h, λ
}
+

1

m

m∑
j=1

Bias2
{
ĝ(zj)

∣∣x;h, λ
}

(4.1)

Plugging (3.2) and (3.3) in (4.1) gives MAISEz(ĝ|x;h, λ) as the sum of two terms:

σ2

m
tr
[
A(z;h)ᵀ

{
I + λB(z;h)B(z;h)ᵀ

}−2
A(z;h)

]
,

and

1

m

∥∥A(z;h)ᵀ
{
I + λB(z;h)B(z;h)ᵀ

}−1
g − gz

∥∥2,
where || · || is the l2-norm, A(z;h) is the n × m matrix with the jth column

a(zj ;h), gz is the m-dim vector with components g(zj), and tr(·) is the trace

operator. We employ this formula for MAISE to develop algorithms for selecting

the tuning parameter λ after examining it in two extreme scenarios.

4.1. Two extreme cases

First y? = y in case λ = 0. That is, no sharpening takes place. Then

MAISEz(ĝ|x;h, λ = 0) =
1

m

[
σ2tr

{
A(z;h)ᵀA(z;h)

}
+
∥∥A(z;h)ᵀg − gz

∥∥2]
is in fact MAISEz(g̃|x), the corresponding approximate to MISE of the conven-

tional estimator g̃(·). If λ is determined independently from A(z;h) and B(z;h),

as λ → ∞, MAISEz(ĝ|x;h, λ) → ||gz||2 and B(z;h)ᵀy? = Bᵀy − BᵀB(I/λ +

BᵀB)−1Bᵀy converges to 0. Thus, when using the roughness penalty, for ex-

ample, the penalty imposes a linear restriction and results in a reduction in the

degrees of freedom of g(·)’s estimator to the order 1.

Between these two extremes should lie a value of λ that leads to an estimator

as an improved version of g̃(·) with respect to the global constraint. It is desirable

to choose the tuning parameter λ > 0 according to A(z;h) and B(z;h) to achieve

a meaningful y?, a sharpened y, and thus to yield a welcome new estimator ĝ(·).
This motivates our procedure for determining the tuning parameter λ with a

fixed bandwidth h.

4.2. Procedure for determining λ

For a given g̃(·) and a predetermined constraint
[
b ◦ g

]
(z) = 0, we aim to

select the tuning parameter as λ? = argminall λ≥0MAISEz(ĝ
∣∣x;h, λ) with fixed h

and z based on the data. Theoretically speaking, the choice of λ = λ? secures the

resulting ĝ(·) a performance better than or at least the same as the conventional
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estimator g̃(·) in the sense of having small conditional MAISE. An algorithm to

determine λ? follows.

Algorithm A. Provided an estimate σ̃2,

Step A.1. Calculate A(z;h) and B(z;h).

Step A.2. Plug in A(z;h),B(z;h) and the estimate σ̃2 of σ2 into (4.1), and

substitute g(·) by g̃(·) to obtain MAISEz(ĝ
∣∣x;h, λ) as a function of λ.

Step A.3. Compute λ? = argminall λ≥0MAISEz(ĝ
∣∣x;h, λ).

We list a few remarks on the implementation of the algorithm.

Remark 1. The magnitudes of the two terms in O(y?;λ,B,y) of (2.1) can

be rather different in some applications. When that is of concern, we suggest

replacing λ in the second term of (2.1) by ληratio with ηratio fixed at the ratio∑
(yi − ȳ)2

/
yᵀB(z;h)B(z;h)ᵀy. This can narrow the search interval for λ?.

Remark 2. When implementing the algorithm, the bandwidth h may be deter-

mined with a standard bandwidth selection in local regression such as the direct

plug-in method to select the bandwidth of a local kernel regression estimate and

a cross-validation selection (Fan and Gijbels (1996)).

Remark 3. The normalized residual sum of squares, the ratio of
∑n

i=1{yi −
g̃(xi)}2 to (n − 2ν1 + ν2) with ν1 = tr{A(x;h)} and ν2 = tr{A(x;h)ᵀA(x;h)},
may be used as σ̃2 (Loader (1999)).

Remark 4. An alternative procedure is to adapt a cross-validation type of pro-

cedure to determine h and λ in the proposed approach. For example, con-

sider an extension of the classical cross-validation criterion in local regression:

CV (h, λ) = (1/n)
∑n

i=1 ê
2
i,−i, where êi,−i = yi − ĝ−i(xi) and ĝ−i(·) is the pro-

posed estimator using the available data with (xi, yi) excluded.

In Section S2 of the Supplementary Material, we present an iterative algo-

rithm, a naturally refined version of Algorithm A. Compared to Algorithm A,

this algorithm may provide a better selection of λ, but can be computationally

more intensive.

5. Numerical Performance

5.1. Simulation

We conducted a simulation study to assess the proposed approach numer-

ically with the software package R (R Development Core Team (2015)). The



2742 BRAUN, HU AND KANG

simulations considered the mean function g(x) = 6x + 3 sin(4πx) + 5 cos(4πx)

for x ∈ [0, 1], which has two cycles with period 1/2. We generated observations

(yi, xi) for i = 1, . . . , n, independently by yi = g(xi) + εi with εi ∼ N(0, σ2) and

design points xi from the uniform distribution U(0, 1). Grid points were taken

as the m equally spaced points over (0, 1): zj : j = 1, . . . ,m. The conventional

estimator g̃(·) was specified as either the local constant or local linear estimator,

denoted by g̃LC;h(·) or g̃LL;h(·) with bandwidth h, respectively.

Penalized local constant and local linear estimators, denoted by ĝLC;h,λ(·)
and ĝLL;h,λ(·) with bandwidth h and tuning parameter λ, were evaluated with

generated data together with their conventional counterparts. We determined

the bandwidth h of g̃LC;h(·) and g̃LL;h(·) by the plug-in method, cross-validation,

and generalized cross-validation at selected simulation settings. The resulting

penalized regression estimates appeared not to differ much from each other. We

thus focused on using the Gaussian kernel and choosing h by the plug-in method

in the simulation through the dpill function in the R library KernSmooth (Wand

(2015)). The global constraint was set as b = D4 + (4π)2D2, to allow the true

mean function to be a solution of
[
b ◦ g

]
(x) = 0.

We considered settings with n = 50 or 100, m = 50 or 100, and varied

σ = 0.3, 1, 2, or 3 to generate random errors with small to large (but constant)

variance. In each of the simulation settings, the two local regression estimators

g̃LC;h(·) and g̃LL;h(·) and their penalized variations ĝLC;h,λ(·) and ĝLL;h,λ(·) were

evaluated with simulated observations
{

(yi, xi) : i = 1, . . . , n
}

, where the band-

width was determined as h0 by the R-function dpill(). The tuning parameter λ

was chosen as (1) λ0 = ηratio defined in Remark 4.1, (2) λ∗ to minimize the AISE∑
j=1

{
ĝh,λ(zj)− g(zj)

}2
with h = h0, or (3) λ∗∗ = λ? determined by Algorithm

A. The selection of λ∗ in (2) requires the true function g(·). It is not practical

but it provides the best possible choice of the tuning parameter λ. We used it

as a reference to assess the convenient choice in (1) and the selection of λ∗∗ by

Algorithm A in (3). The AISE values of the resulting estimates were calculated

to measure the departure of the estimates from the true g(·). For illustration, we

present in Section S3.1 of the Supplementary Material the true mean function

and a set of generated observations (n = 100, m = 50, σ = 2.0) together with the

evaluations of the proposed penalized local constant/linear estimators ĝLC;h,λ(·)
and ĝLL;h,λ(·) together with their conventional counterparts g̃LC;h(·) and g̃LL;h(·).

The discussions below are based on 100 repetitions in each simulation set-

ting. Our findings from the simulation outcomes are rather similar with different

combinations of (n,m). The following focuses on the outcomes from the simu-
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Table 1. Summary statistics of the Approximate Integrated Squared Errors (AISE) in
simulation: associated with the local linear (LL) estimator.

Estimator ĝLL;h,λ(·)
g̃LL;h(·)a (1)b λ = λ0 (2)c λ = λ∗ (3)d λ = λ∗∗

Case A. n = 50, m = 50
σ = .3 AISEeSM 0.026 0.015 0.009 0.014

AISEfSD (0.009) (0.008) (0.006) (0.006)
σ = 1 AISESM 0.267 0.178 0.103 0.161

AISESD (0.103) (0.090) (0.069) (0.070)
σ = 3 AISESM 2.191 1.687 1.004 1.477

AISESD (0.860) (0.795) (0.573) (0.568)
Case B. n = 50, m = 100

σ = 1 AISESM 0.186 0.120 0.070 0.112
AISESD (0.062) (0.047) (0.033) (0.035)

Case C. n = 100, m = 50
σ = 1 AISESM 0.272 0.181 0.105 0.166

AISESD (0.097) (0.085) (0.063) (0.063)
a h = h0 determined by R-function dpill().
b (1) λ0 = λcoef as defined in Remark 4.1.
c (2) λ∗ = argminλMAISE(ĝλ) in §4.2.
d (3) λ∗∗ determined by Algorithm A in §4.2.
e,f AISESM , AISESD is the sample mean, sample standard deviation

of the evaluations of the approximate integrated squared error.

lation Case A. n = 50, m = 50, and exemplifies Case B. n = 50, m = 100 and

Case C. n = 100, m = 50 using the settings with σ = 1.0. Table 1 presents the

sample means and sample standard deviations of the AISE evaluations associ-

ated with the procedures based on the local linear (LL) estimator in the different

simulation settings. A summary of the simulation outcomes associated with the

procedures based on the local constant (LC) estimator is given in Section S3.1

of the Supplementary Material.

The smaller AISE values are in general associated with the estimates us-

ing the proposed approach compared to their corresponding conventional local

regression estimates. The AISE values of the proposed estimates with the tun-

ing parameter determined by Algorithm A are smaller than the ones with the

tuning parameter chosen by simply standardizing the two terms in the objective

function (2.1). The similarity in the sample standard derivation of the different

variations of the sharpened estimator to their corresponding local estimator in

each simulation setting indicates that improvement is rather stable. The sharp-

ened estimates with the convenient choice λ = λ0 of (1) reduce the AISEs of their



2744 BRAUN, HU AND KANG

Figure 1. Density curves of the AISE (Asymptotic Integrated Squared Error) realizations
in the setting of n = 50, m = 50, and σ = 1.0: LocalL, PenLocalL, and PenLocalL2
label the curves associated with g̃LL;h(·) (solid), ĝLL;h,λ0(·) (dashed), ĝLL;h,λ∗∗(·) (dash-
dotted), with h = h0 determined by R-function dpill(), λ0 = ηratio defined in Remark
4.1, and λ∗∗ by Algorithm A.

corresponding conventional estimates in all the settings. It gives further reduced

AISEs using the tuning parameter λ∗∗ determined by Algorithm A in sharpening

the estimates. As expected, the optimal tuning parameter λ∗ of (2) leads to the

sharpened estimates with the lowest AISE sample means. Figure 1 displays the

findings graphically by the density curves of the AISE values associated with the

local linear ones with σ = 1 in Case A. n = 50, m = 50.

5.2. Data example

We downloaded the collection of weekly minimum and maximum tempera-

tures at the Vancouver airport from the official web site of Environment Canada

(http://www.ec.gc.ca/). See the dotted points in Figure S3 of the Supplemen-

tary Material for the recorded weekly min/max-temperatures during the periods

1937-1939, 1967-1969, and 1997-1999.

Assuming the regression model specified in Section 2, the average min/max-

temperatures over time in each of the three time periods were estimated by (i) the

local linear regression estimator (LocalReg) with the bandwidth h determined by

R-function dpill(), and (ii) the penalized local linear regression estimator (Pen-

LocalReg) guided by the differential equation b◦g = D4g+(2π/52)2D2g = 0 and

the tuning parameter λ selected according to Algorithm A. We used (ii) to impose

http://www.ec.gc.ca/
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(b) by Penalized Local Linear Estimator

Figure 2. Change in Minimum-Temperature at Vancouver Airport: 1937-1939, 1967-1969
and 1997-1999 label the estimate curves for the periods of 1937-1939 (solid), 1967-1969
(dashed) and 1997-1999 (dash-dotted).

the one-year periodic pattern in temperature. Here the constant γ = (2π/52)2

was chosen due to the time scale in weeks and each year approximated by 52

weeks. The figure in Section S3.2 of the Supplementary Material displays the lo-

cal linear and penalized local linear estimate curves in red and blue, respectively.

The sharpened estimates appear smoother than their local linear counterparts.

We plot separately the estimated average min-temperature functions for the three

three-year periods using the two approaches in Figure 2. Both sets of estimates

reveal a clear increase in min-temperature over time.

6. Final Remarks

This paper is premised on the situation where an expert has provided ad-

vice about a possible functional or differential form that could underlie the given

data. An equally important scenario would involve a trial of possible constraints

to see how far the data must be perturbed in order for the constraints to be

satisfied; thus, the approach could also be useful as an exploratory data analysis

tool. We have considered penalties arising from functional equations based on

linear transforms, such as homogeneous differential equations with known coef-

ficients. When there are unknown coefficients, following Heckman and Ramsay

(2000), we suggest first estimating the parameters using nonlinear least squares

techniques. Exceptions to those in this large class include penalties to encourage
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non-negativity and monotonicity. Ramsay and Silverman (2005) provide presen-

tations of a positive function and a monotone function by differential equations.

These equations are not homogeneous and thus not based on linear transforms.

The penalty approach proposed here is more general; nonlinear operators can

be handled, in principle, but the computations become more complicated, and

convenience of closed-form expressions for the sharpened data and the resulting

estimators is lost.

Some practical situations involve random errors with non-constant variance.

We can adapt the proposed approach using a variance function estimate ob-

tained by, for example, the method presented in Fan and Yao (1998). We can

accommodate correlated observations similarly with an estimate of the covari-

ance function. Further, it is straightforward, in principle, to extend the proposed

procedure to higher-dimensional data. It would be of interest to see if the form

of data sharpening can alleviate the “curse of dimensionality”, which makes it

difficult to apply kernel estimators without resorting to additive models.

Supplementary Materials

The online supplementary materials provide (i) technical details of Sections

2 and 3, (ii) an alternative algorithm to Algorithm A for selecting the tuning

parameter, and (iii) additional numerical results from the simulation study and

the data analysis.
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