
Statistica Sinica 27 (2017), 1879-1902
doi:https://doi.org/10.5705/ss.202016.0210

D-OPTIMAL DESIGNS WITH ORDERED CATEGORICAL DATA

Jie Yang, Liping Tong and Abhyuday Mandal

University of Illinois at Chicago, Advocate Health Care

and University of Georgia

Abstract: Cumulative link models have been widely used for ordered categorical

responses. Uniform allocation of experimental units is commonly used in practice,

but often suffers from a lack of efficiency. We consider D-optimal designs with

ordered categorical responses and cumulative link models. For a predetermined set

of design points, we derive the necessary and sufficient conditions for an allocation

to be locally D-optimal and develop efficient algorithms for obtaining approximate

and exact designs. We prove that the number of support points in a minimally

supported design only depends on the number of predictors, which can be much

less than the number of parameters in the model. We show that a D-optimal

minimally supported allocation in this case is usually not uniform on its support

points. In addition, we provide EW D-optimal designs as a highly efficient surrogate

to Bayesian D-optimal designs. Both of them can be much more robust than

uniform designs.

Key words and phrases: Approximate design, cumulative link model, exact design,

minimally supported design, multinomial response, ordinal data.

1. Introduction

In this paper we determine optimal and efficient designs for factorial ex-

periments with qualitative factors and ordered categorical responses, or simply

ordinal data. Design of experiment with multinomial response, and ordered cate-

gories in particular, is becoming increasingly popular in a rich variety of scientific

disciplines, especially when human evaluations are involved (Christensen (2015)).

Examples include a wine bitterness study (Randall (1989)), potato pathogen ex-

periments (Omer, Johnson and Rowe (2000)), a radish seedling’s damping-off

study (Krause, Madden and Hoitink (2001)), a polysilicon deposition study (Wu

(2008)), beef cattle research (Osterstock et al. (2010)), and a toxicity study

(Agresti (2013)).

This research is motivated by an odor removal study conducted by the textile

engineers at the University of Georgia. The scientists studied the manufacture
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Table 1. Pilot study of odor removal study.

Experimental Factor level Summarized responses (Y , odor)
setting Algae Resin Serious Medium No odor

i x1 x2 yi1 yi2 yi3
1 + + 2 6 2
2 + − 7 2 1
3 − + 0 0 10
4 − − 0 2 8

of bio-plastics containing odorous volatiles, that need to be removed before com-

mercialization. For that purpose, a 22 factorial experiment was conducted using

algae and synthetic plastic resin blends. The factors were types of algae (x1:

raffinated or solvent extracted algae (−), catfish pond algae (+)) and synthetic

resins (x2: polyethylene (−), polypropylene (+)). The response Y had three

ordered categories: serious odor (j = 1), medium odor (j = 2), and almost no

odor (j = 3). Following traditional factorial design theory, a pilot study with

equal numbers (10 in this case) of replicates at each experimental setting was

conducted, a uniform design. The results are summarized in Table 1, where yij
represents the number of responses falling into the jth category under the ith ex-

perimental setting. As demonstrated later (Section 4), the best design identified

by our research could improve the efficiency by 25% with only three experimental

settings involved.

For such kind of ordinal response Y with J categories and d predictors x =

(x1, . . . , xd)
T , the most popular model in practice was first the proportional odds

model (also known as cumulative logit model, see Liu and Agresti (2005) for a

detailed review). McCullagh (1980) extended it to the cumulative link model

(also known as ordinal regression model)

g (P (Y ≤ j | x)) = θj − βTx, j = 1, . . . , J − 1, (1.1)

where g is a general link function, with the proportional odds model as a special

case when g is the logit link. Examples include the complementary log-log link

for the polysilicon deposition study (see Example 6) and the cauchit link for the

toxicity study (see Example 9). We adopt the cumulative link model (1.1).

When there are only two categories (J = 2), the cumulative link model (1.1)

is essentially a generalized linear model for binary data (McCullagh and Nelder

(1989); Dobson and Barnett (2008)). For optimal designs under generalized

linear models, there is a growing body of literature (see Khuri et al. (2006),

Atkinson, Donev and Tobias (2007), Stufken and Yang (2012), and references
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therein). In this case, it is known that the minimum number of experimental

settings required by a nondegenerate Fisher information matrix is d + 1, which

equals the number of parameters (Fedorov (1972); Yang and Mandal (2015)).

A design with the least number of experimental settings, known as a minimally

supported design, is of practical significance with a specified regression model

due to the cost of changing settings. It is also known that the experimental units

should be uniformly assigned when a minimally supported design is adopted

for binary response, or under a univariate generalized linear model (Yang and

Mandal (2015)).

When J ≥ 3, the cumulative link model is a special case of the multivariate

generalized linear model (McCullagh (1980)). The relevant results in the optimal

design literature are meagre and restricted to the logit link function (Zocchi and

Atkinson (1999); Perevozskaya, Rosenberger and Haines (2003)). Here we obtain

theoretical results and efficient algorithms for general link functions and reveal

that the optimal designs with J ≥ 3 are quite different from the cases with J = 2.

We prove that the minimum number of experimental settings is still d + 1, but

strictly less than the number of parameters d+ J − 1 (Theorems 3 and 4). This

counter-intuitive result is due to the multinomial-type responses: from a single

experimental setup, the summarized responses have J − 1 degrees of freedom,

requiring fewer distinct experimental settings in a minimally supported design.

For the same reason, the allocation of replicates in a minimally supported design

is usually not uniform (Section 5), which differs from the traditional factorial

design theory.

As with generalized linear models, the information matrix under cumula-

tive link models depends on unknown parameters. Different approaches have

been proposed to solve the dependence of optimal designs on unknown parame-

ters, including local optimality (Chernoff (1953)), Bayesian approach (Chaloner

and Verdinelli (1995)), a maximin approach (Pronzato and Walter (1988); Imhof

(2001)), and a sequential procedure (Ford, Titterington and Kitsos (1989)). As

pointed out by Ford, Torsney and Wu (1992), locally optimal designs are not

only important when good initial parameters are available from previous exper-

iments, but can also be a benchmark for designs chosen to satisfy experimental

constraints. We mainly focus on locally optimal designs. For situations where

local values of the parameters are difficult to obtain, but the experimenter has an

idea of the range of parameters with or without a prior distribution, we recom-

mend EW optimal designs, where the Fisher information matrix is replaced by its
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expected values (Atkinson, Donev and Tobias (2007); Yang, Mandal and Majum-

dar (2016)). We compare Bayesian D-optimal designs (Chaloner and Verdinelli

(1995)) with EW D-optimal designs for ordinal data. As a surrogate for Bayesian

designs, an EW design is much easier to find and retains high efficiency with re-

spect to Bayesian criterion (Section 6).

Among various optimal design criteria, D-optimality, which maximizes the

determinant of Fisher information matrix, is the most frequently used (Zocchi and

Atkinson (1999)) and often performs well according to other criteria (Atkinson,

Donev and Tobias (2007)). We study D-optimal designs.

In the design literature, one type of experiment deals with quantitative or

continuous factors only. Such a design problem includes the identification of

a set of design points {xi}i=1,...,m and the corresponding weights {pi}i=1,...,m

(see, for example, Atkinson, Donev and Tobias (2007) and Stufken and Yang

(2012)). Numerical algorithms are typically used for cases with two or more

factors (see, for example, Woods et al. (2006)). Another type of experiment

employs qualitative or discrete factors, where the set of design points {xi}i=1,...,m

is predetermined and only the weights {pi}i=1,...,m are to be optimized (see, for

example, Yang and Mandal (2015)). One can pick grid points of continuous

factors and turn the first kind of problem into the second. Tong, Volkmer and

Yang (2014, Sec. 5) also bridged the gap between the two types of problems in

a way that results involving discrete factors can be applied to the cases with

continuous factors. We concentrate on the second kind of design problems and

assume that {xi}i=1,...,m are given and fixed.

This paper is organized as follows. In Section 2, we describe the preliminary

setup and obtain the Fisher information matrix for the cumulative link model

with a general link, generalizing Perevozskaya, Rosenberger and Haines (2003).

We also identify a necessary and sufficient condition for the Fisher information

matrix to be positive definite, which determines the minimum number of exper-

imental settings required. In Sections 3 and 4, we provide theoretical results

and numerical algorithms for searching locally D-optimal approximate or exact

designs. In Section 5, we identify analytic D-optimal designs for special cases

to illustrate that a D-optimal minimally supported design is usually not uniform

on its support points. In Section 6, we illustrate by examples that the EW D-

optimal design can be highly efficient with respect to Bayesian D-optimality. We

make concluding remarks in Section 7 and relegate additional proofs and results

to the supplementary materials.
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2. Fisher Information Matrix and Its Determinant

Suppose there are m (m ≥ 2) predetermined experimental settings. For

the ith experimental setting with corresponding predictors xi = (xi1, . . . , xid)
T

∈ Rd (d ≥ 1), there are ni experimental units assigned to it. Among the ni
experimental units, the kth one generates a response Vik which belongs to one

of J (J ≥ 2) ordered categories. As shown in Example 2, the dimension d of the

predictors can be significantly larger than the number of factors considered in

the experiment, which allows more flexible models.

2.1. General setup

In many applications, Vi1, . . . , Vini
are regarded as i.i.d. discrete random

variables. Let πij = P (Vik = j), where i = 1, . . . ,m; j = 1, . . . , J ; and k =

1, . . . , ni. Let Yij = #{k | Vik = j} be the number of Vik’s falling into the jth

category. Then (Yi1, . . . , YiJ) ∼ Multinomial(ni;πi1, . . . , πiJ).

Assumption 1. 0 < πij < 1, i = 1, . . . ,m; j = 1, . . . , J .

Let γij = P (Vik ≤ j) = πi1 + · · ·+πij , j = 1, . . . , J. Based on Assumption 1,

0 < γi1 < γi2 < · · · < γi,J−1 < γiJ = 1 for each i = 1, . . . ,m. Consider indepen-

dent multinomial observations (Yi1, . . . , YiJ), i = 1, . . . , m with corresponding

predictors x1, . . . ,xm. Under a cumulative link model or ordinal regression model

(McCullagh (1980); Agresti (2013); Christensen (2015)), there exists a link func-

tion g and parameters of interest θ1, . . . , θJ−1,β = (β1, . . . , βd)
T , such that

g(γij) = θj − xTi β, j = 1, . . . , J − 1. (2.1)

This leads to m(J − 1) equations in d + J − 1 parameters (β1, . . . , βd, θ1, . . . ,

θJ−1).

Assumption 2. The link g is differentiable and its derivative g′ > 0.

Assumption 2 is satisfied for commonly used link functions including logit

(log(γ/(1 − γ)), probit (Φ−1(γ)), log-log (− log(− log(γ))), complementary

log-log (log(− log(1 − γ))), and cauchit (tan(π(γ − 1/2))) (McCullagh and

Nelder (1989); Christensen (2015)). Some relevant formulas of these link func-

tions are provided in the supplementary materials (Section S.1). According to

Assumption 2, g is strictly increasing, and then θ1 < θ2 < · · · < θJ−1.

Example 1. Consider the logit link g(γ) = log(γ/(1 − γ)) with two predictors

and three ordered categories. Model (2.1) consists of 2m equations g(γij) =

θj − xi1β1 − xi2β2, i = 1, . . . ,m; j = 1, 2 and parameters (β1, β2, θ1, θ2). Under

Assumptions 1 and 2, θ1 < θ2.
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Example 2. Suppose the model consists of three covariates x1, x2, x3 and a few

second-order predictors, g(γij) = θj−xi1β1−xi2β2−xi3β3−xi1xi2β12−x2i1β11−
x2i2β22, where i = 1, . . . ,m; j = 1, . . . , J − 1. Then the number of predictors is

d = 6.

Under the cumulative link model (2.1), the log-likelihood function (up to

a constant) is l(β1, . . . , βd, θ1, . . . , θJ−1) =
∑m

i=1

∑J
j=1 Yij log(πij), where πij =

γij − γi,j−1 with γij = g−1(θj − xTi β) for j = 1, . . . , J − 1 and γi0 = 0, γiJ = 1.

Perevozskaya, Rosenberger and Haines (2003) obtained a detailed form of

the Fisher information matrix for logit link and one predictor. Our result is

for general link and d predictors; its proof is relegated to the supplementary

materials (Section S.3).

Theorem 1. Under Assumptions 1 and 2, the Fisher information matrix can be

written as

F =

m∑
i=1

niAi, (2.2)

where Ai is the (d+ J − 1)× (d+ J − 1) matrix(
Ai1 Ai2

AT
i2 Ai3

)
=

(
(eixisxit)s=1,...d;t=1,...,d (−xiscit)s=1,...,d;t=1,...,J−1

(−cisxit)s=1,...,J−1;t=1,...,d Ai3

)
and Ai3 is the (J − 1) × (J − 1) symmetric tri-diagonal matrix with diagonal

entries ui1, . . . , ui,J−1, and off-diagonal entries −bi2, . . . ,−bi,J−1 when J ≥ 3,

where ei =
∑J

j=1 π
−1
ij (gij − gi,j−1)

2 > 0 with gij = (g−1)′(θj − xTi β) > 0 for

j = 1, . . . , J −1 and gi0 = giJ = 0; cit = git[π
−1
it (git− gi,t−1)−π−1i,t+1(gi,t+1− git)];

uit = g2it(π
−1
it + π−1i,t+1) > 0; and bit = gi,t−1gitπ

−1
it > 0. Ai3 contains only one

entry ui1 when J = 2.

As the Fisher information matrix, F is always positive semi-definite, |F| ≥ 0

(Fedorov (1972)). As a special case, Ai is the Fisher information at the exper-

imental setting xi (also known as a design point or support point) and thus is

positive semi-definite.

2.2. Determinant of Fisher information matrix

Among different criteria for optimal designs, D-criterion looks for the allo-

cation maximizing |F|, the determinant of F. Here, a D-optimal design with m

predetermined design points x1, . . . ,xm could either be an integer-valued alloca-

tion (n1, n2, . . . , nm) maximizing |F| with fixed n =
∑m

i=1 ni > 0, known as an

exact design; or a real-valued allocation (p1, p2, . . . , pm) maximizing |n−1F| with
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pi = ni/n ≥ 0 and
∑m

i=1 pi = 1, known as an approximate design.

Theorem 2. The determinant of the Fisher information matrix,

|F| =
∑

α1+···+αm=d+J−1
cα1,...,αm

· nα1

1 · · ·n
αm
m ,

is an order-(d+ J − 1) homogeneous polynomial of (n1, . . . , nm) and

cα1,...,αm
=

∑
τ∈(α1,...,αm)

|Aτ | . (2.3)

The proof of Theorem 2 is relegated to the supplementary materials (Sec-

tion S.3). Given a map τ : {1, 2, . . . , d + J − 1} → {1, . . . ,m}, Aτ in (2.3) is a

(d + J − 1) × (d + J − 1) matrix whose kth row is the same as the kth row of

Aτ(k), k = 1, . . . , d+J−1. We take τ ∈ (α1, . . . , αm) where αi = #{j : τ(j) = i}
for each i = 1, . . . ,m.

In order to obtain analytic properties of |F|, we need some lemmas. The first

of them covers Lemma 1 in Perevozskaya, Rosenberger and Haines (2003) as a

special case:

Lemma 1. Rank(Ai) = Rank(Ai3) = J − 1. Furthermore, Ai3 is positive

definite and

|Ai3| =
J−1∏
s=1

g2is ·
J∏
t=1

π−1it > 0,

where gis = (g−1)′(θs − xTi β) > 0 for s = 1, . . . , J − 1.

Example 3. Suppose d = 2, J = 3, with link function g. According to The-

orem 2, |F| is then an order-4 homogeneous polynomial of (n1, . . . , nm). Based

on Lemma S.4 and Lemma S.5 in the supplementary materials (Section S.2), we

can remove all the terms of the form n4i , n
3
inj , or n2in

2
j from |F|. Therefore,

|F| =
m∑
i=1

∑
j<k,j 6=i,k 6=i

cijk · n2injnk +
∑

i<j<k<l

cijkl · ninjnknl

for some coefficients cijk and cijkl.

Based on Lemmas S.4 and S.5, in order to keep cα1,...,αm
6= 0, the largest

possible αi is J − 1 and the fewest possible number of positive αi’s is d+ 1.

Theorem 3. |F| > 0 only if m ≥ d+ 1.

To determine whether d + 1 experimental settings or support points are

enough to keep the Fisher information matrix positive definite, we study the
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leading term of |F| with max1≤i≤m αi = J−1. For example, ai0 = J−1 for some

1 ≤ i0 ≤ m. From Lemma S.5 and
∑m

i=1 αi = d + J − 1, to have cα1,...,αm
6= 0,

there must exist 1 ≤ i1 < i2 < · · · < id ≤ m which are different from i0, such

that, αi1 = · · · = αid = 1. A lemma provides an explicit formula for such a

coefficient cα1,...,αm
:

Lemma 2. Suppose αi0 = J − 1 and αi1 = · · · = αid = 1. Then

cα1,...,αm
=

d∏
s=1

eis · |Ai03| · |X1[i0, i1, . . . , id]|2,

where X1 = (1 X) is an m× (d+ 1) matrix with 1 = (1, . . . , 1)T , X = (x1, . . . ,

xm)T , and X1[i0, i1, . . . , id] is the sub-matrix consisting of the i0th, i1th, . . . , idth

rows of X1.

The proof of Lemma 2 is in the supplementary materials (Section S.3). To

find D-optimal allocations, we write |F| = f(n1, . . . , nm) for an order-(d+J−1)

homogeneous polynomial function f . The D-optimal exact design problem is to

find an integer-valued allocation (n1, . . . , nm) maximizing f(n1, . . . , nm) subject

to ni ∈ {0, 1, . . . , n}, i = 1, . . . ,m and n1 + · · · + nm = n with given positive

integer n. Denote pi = ni/n, i = 1, . . . ,m. According to Theorem 1,

f(n1, . . . , nm) =

∣∣∣∣∣
m∑
i=1

niAi

∣∣∣∣∣ =

∣∣∣∣∣n
m∑
i=1

piAi

∣∣∣∣∣ = nd+J−1f(p1, . . . , pm). (2.4)

Due to (2.4), Theorems 2 and 3 can be directly applied to approximate design

problems too: find a real-valued allocation (p1, . . . , pm) maximizing f(p1, p2, . . . ,

pm) subject to 0 ≤ pi ≤ 1, i = 1, . . . ,m and p1 + · · ·+ pm = 1.

According to Lemma 1, |Ai03| > 0. Thus cα1,...,αm
in Lemma 2 is positive

as long as X1[i0, . . . , id] is of full rank. Theorem 3 implies that a minimally

supported design contains at least d + 1 support points, while the following

theorem states a necessary and sufficient condition for the minimum number of

support points to be exactly d+ 1:

Theorem 4. f(p) > 0 for some p = (p1, . . . , pm)T if and only if the extended

design matrix X1 = (1 X) is of full rank d+ 1.

The minimal number of experimental settings required can thus be strictly

less than the number of parameters. In the odor removal study, for example, the

main-effects cumulative link model (2.1) involves four independent parameters –

two β’s for the covariates (d = 2) and two θ’s for the intercepts (J−1 = 2) – while

a minimally supported design could involve only three experimental settings. For
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multinomial responses with J = 3 categories, we get two degrees of freedom from

each experimental setting. Here the optimal allocation of experimental units is

often not uniform (see Section 4), contrary to the case of binary responses (Yang,

Mandal and Majumdar (2016); Yang and Mandal (2015)).

3. D-Optimal Approximate Design

A (locally) D-optimal approximate design is a real-valued allocation p =

(p1, . . . , pm)T maximizing f(p) = f(p1, . . . , pm) with pre-specified values of pa-

rameters. The solution always exists since f is continuous and the set of feasible

allocations S := {(p1, . . . , pm)T ∈ Rm | pi ≥ 0, i = 1, . . . ,m;
∑m

i=1 pi = 1} is con-

vex and compact. A nontrivial D-optimal approximate design problem requires

an assumption.

Assumption 3. m ≥ d+ 1 and Rank(X1) = d+ 1.

Assumption 3 is adopted throughout. With it, the set of valid allocations

S+ := {p = (p1, . . . , pm)T ∈ S | f(p) > 0} is nonempty. Since F =
∑m

i=1 niAi =

n
∑m

i=1 piAi is linear in p and φ(·) = log | · | is concave on positive semi-definite

matrices, f(p) = n1−d−J |F| is log-concave (Silvey (1980)) and thus S+ is also

convex.

Theorem 5. A feasible allocation p = (p1, . . . , pm)T satisfies f(p) > 0 if and

only if Rank(X1[{i | pi > 0}]) = d + 1, where X1[{i | pi > 0}] is the sub-matrix

consisting of the {i | pi > 0}th rows of X1.

As a direct conclusion of Theorem 5, S+ contains all p whose coordinates are

all strictly positive. A special case is the uniform allocation pu = (1/m, . . . , 1/m)T .

A necessary and sufficient condition for an approximate design to be D-

optimal is of the general-equivalence-theorem type (Kiefer (1974); Pukelsheim

(1993); Atkinson, Donev and Tobias (2007); Stufken and Yang (2012); Fedorov

and Leonov (2014); Yang, Mandal and Majumdar (2016)), which is convenient

when searching for numerical solutions. Following Yang, Mandal and Majumdar

(2016), for a given p = (p1, . . . , pm)T ∈ S+ and i ∈ {1, . . . ,m}, we set

fi(z) = f

(
1− z
1− pi

p1, . . . ,
1− z
1− pi

pi−1, z,
1− z
1− pi

pi+1, . . . ,
1− z
1− pi

pm

)
(3.1)

with 0 ≤ z ≤ 1. Here fi(z) is well defined as long as pi < 1.

Theorem 6. Suppose p = (p1, . . . , pm)T ∈ S+ and i ∈ {1, . . . ,m}. For 0 ≤ z≤1,
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fi(z) = (1− z)d
J−1∑
j=0

ajz
j(1− z)J−1−j , (3.2)

where a0 = fi(0), (aJ−1, . . . , a1)
T = B−1J−1c, BJ−1 = (st−1)s,t=1,...,J−1, and c =

(c1, . . . , cJ−1)
T with cj = (j + 1)d+J−1j−dfi(1/(j + 1))− jJ−1fi(0).

Following the lift-one algorithm proposed in Yang, Mandal and Majumdar

(2016), we have parallel results and an algorithm for our case. For simplicity, we

also call it the lift-one algorithm.

Theorem 7. Given an allocation p = (p∗1, . . . , p
∗
m)T ∈ S+, p is D-optimal if and

only if for each i = 1, . . . ,m, fi(z), 0 ≤ z ≤ 1 attains its maximum at z = p∗i .

A lift-one algorithm

1◦ Start with an allocation p0 = (p1, . . . , pm)T satisfying f (p0) > 0.

2◦ Set up a random order of i going through {1, 2, . . . ,m}.

3◦ For each i, determine fi(z) according to Theorem 6, with J determinants

fi(0), fi(1/2), fi(1/3), . . . , fi(1/J) calculated according to (3.1).

4◦ Use the quasi-Newton method with gradient defined in (S.13) to find z∗
maximizing fi(z) with 0 ≤ z ≤ 1. If fi(z∗) ≤ fi(0), let z∗ = 0. Take

p
(i)
∗ = (p1(1 − z∗)/(1 − pi), . . . , pi−1(1 − z∗)/(1 − pi), z∗, pi+1(1 − z∗)/(1 −
pi), . . . , pm(1− z∗)/(1− pi))T , so f(p

(i)
∗ ) = fi(z∗).

5◦ Replace p0 with p
(i)
∗ , and f (p0) with f(p

(i)
∗ ).

6◦ Repeat 2◦ ∼ 5◦ until f(p0) = f(p
(i)
∗ ) for each i.

Theorem 8. When the lift-one algorithm converges, the resulting p maximizes

f(p).

Example 4. Odor removal study Here the response was ordinal in na-

ture, serious odor, medium odor, and no odor. We fit the cumulative link

model (2.1) to the data presented in Table 1. The estimated values of the model

parameters are (β̂1, β̂2, θ̂1, θ̂2)
T = (−2.44, 1.09,−2.67,−0.21)T . If a follow-up ex-

periment is planned and the estimated parameter values are regarded as the true

values, the D-optimal approximate allocation found by the lift-one algorithm is

po = (0.4449, 0.2871, 0, 0.2680)T . The efficiency of the uniform pu = (1/4, 1/4,

1/4, 1/4)T is (f(pu)/f(po))
1/4 = 79.7%, which is far from satisfactory.



D-OPTIMAL DESIGNS WITH ORDERED CATEGORICAL DATA 1889

− −

−
−

β

β

− −

−
−

β

β

Figure 1. Wine bitterness study with assumed true parameter values (β1, β2, −3.36,
−0.76, 1.45, 2.99)T : (a) contour plot of efficiency of the original design; (b) regions for a
D-optimal design to be minimally supported.

Example 5. Wine bitterness study (Christensen, 2015, Table 1) aggre-

gated the wine data from Randall (1989). It contains the output of a facto-

rial experiment with two treatment factors each at two levels (Temperature x1:

cold (−) or warm (+); Contact x2: no (−) or yes (+)) affecting wine bitter-

ness. The response was ordinal with five levels (from “1” being least bitter

to “5” being most bitter). The original design employed a uniform allocation

pu = (1/4, 1/4, 1/4, 1/4)T . The estimated parameter values under the logit link

are (β̂1, β̂2, θ̂1, θ̂2, θ̂3, θ̂4)
T = (1.25, 0.76,−3.36,−0.76, 1.45, 2.99)T . If a follow-up

experiment is planned regarding the estimated values of the parameters as the

true values, then the D-optimal approximate allocation found by the lift-one al-

gorithm is po = (0.2694, 0.2643, 0.2333, 0.2330)T . The efficiency of the original

design pu is 99.9%. Nevertheless, the corresponding efficiency may drop to 80% if

|β1| and |β2| are both larger than 3 (see Figure 1(a)). In that case, the D-optimal

allocations are minimally supported, see Figure 1(b); this is discussed further in

Section 5.

In the examples we have studied, the lift-one algorithm often converges

within a few iterations. The Yang, Mandal and Majumdar (2016) lift-one al-

gorithm is guaranteed to converge and can be applied if the lift-one algorithm

here does not converge in a pre-specified number of iterations.
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4. D-Optimal Exact Design

In the design literature, different discretization methods have been proposed

to round an approximate design into an exact design for a given n, including

the quota method (Kiefer (1971); Pukelsheim (1993)) and the efficient rounding

procedure (Pukelsheim (1993); Pukelsheim and Rieder (1992)), which usually

work well for large enough n but with no guarantee for small sample size (Imhof,

Lopez-Fidalgo and Wong (2001)).

In this section, we provide a direct search for D-optimal exact designs. From

Theorem 5, we have the result as follows:

Corollary 1. |F| > 0 if and only if Rank(X1[{i | ni > 0}]) = d+ 1.

We assume n ≥ d + 1 throughout this section. To maximize f(n) = f(n1,

. . . , nm) = |F|, we adopt the exchange algorithm idea of Fedorov (1972). It is

used here to adjust ni and nj simultaneously for randomly chosen (i, j), while

keeping ni + nj = c as a constant.

We start with an n = (n1, . . . , nm)T satisfying f(n) > 0. Following Yang,

Mandal and Majumdar (2016), for 1 ≤ i < j ≤ m, let

fij(z) = f (n1, . . . , ni−1, z, ni+1, . . . , nj−1, c− z, nj+1, . . . , nm) , (4.1)

where c = ni + nj , z = 0, 1, . . . , c, so fij(ni) = f(n). From Theorem 2, Lem-

mas S.4 and S.5, we have the result as follows.

Theorem 9. Suppose n = (n1, . . . , nm)T satisfies f(n) > 0 and ni + nj ≥ J for

given 1 ≤ i < j ≤ m. For z = 0, 1, . . . , ni + nj,

fij(z) =

J∑
s=0

csz
s, (4.2)

where c0 = fij(0), and c1, . . . , cJ can be obtained using (c1, . . . , cJ)T = B−1J (d1,

. . . , dJ)T with BJ = (st−1)st as a J × J matrix and ds = (fij(s)− fij(0))/s.

The J × J matrix BJ in Theorem 9 shares the same form of BJ−1 in The-

orem 6. According to Theorem 9, in other to maximize fij(z) with z = 0, 1,

. . . , ni + nj , one can obtain the exact polynomial form of fij(z) by calculating

fij(0), fij(1), . . . , fij(J). There is no practical need to find out the exact form of

fij(z) if ni + nj < J since one can simply calculate fij(z) for each z. Following

Yang, Mandal and Majumdar (2016), an exchange algorithm (see the supple-

mentary materials, Section S.5) based on Theorem 9 could be used to search for

a D-optimal exact allocation.
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Table 2. D-optimal exact designs and the approximate design for the odor removal study.

n n1 n2 n3 n4 n−4|F| # iterations Time(sec.)
3 1 1 0 1 0.0002911 1 < 0.01

10 4 3 0 3 0.0003133 3 0.02
40 18 11 0 11 0.0003177 3 0.02

100 44 29 0 27 0.0003180 4 0.05
1,000 445 287 0 268 0.0003181 5 0.39

po 0.4449 0.2871 0 0.2680 0.0003181 5 0.03

Example 4 Odor removal study (continued) To conduct a follow-up ex-

periment with n experimental units using the exchange algorithm, we obtain

the D-optimal exact designs across different n’s (Table 2). As expected, the

D-optimal exact allocation (n1, . . . , n4)
T is consistent with the D-optimal ap-

proximate allocation po = (p1, . . . , p4)
T (last row of Table 2) for large n. The

time costs in seconds (last column of Table 2) are recorded on a PC with 2GHz

CPU and 8GB memory. If we rerun an experiment with n = 40, the D-optimal

exact design is no = (18, 11, 0, 11)T , and the efficiency of the uniform design

nu = (10, 10, 10, 10)T is (f(nu)/f(no))
1/4 = 79.7%.

Example 6. Polysilicon deposition study Wu (2008) considered an exper-

iment for studying the polysilicon deposition process with six 3-level factors,

described in details by Phadke (1989). Due to the inconvenience of counting the

number of surface defects, a major evaluating characteristic, they treated it as

a 5-category ordinal variable: 1 for 0 ∼ 3 defects, 2 for 4 ∼ 30, 3 for 31 ∼ 300,

4 for 301 ∼ 1,000, and 5 for 1,001 and more. The original design, denoted by

nu, includes 18 experimental settings based on an L18 orthogonal array. To

apply a cumulative link model, we represent each 3-level factor, say A, with

levels 1, 2, 3, by its linear component A1 taking values −1, 0, 1 and a quadratic

component A2 taking values 1,−2, 1 (Wu and Hamada (2009)). Then the fit-

ted model with complementary log-log link chosen by both AIC and BIC crite-

ria (see, for example, Agresti (2013)) involves four cut-points (α̂1, α̂2, α̂3, α̂4) =

(−1.59,−0.58, 0.41, 1.22), and twelve other coefficients (β̂11, β̂12, β̂21, β̂22, . . . , β̂62)

= (1.45,−0.22, 1.35, 0.02,−0.12,−0.34, 0.19, 0.00, 0.22, 0.08, 0.05, 0.17). When

the true parameter values were assumed to be the estimated ones, we use the

exchange algorithm to find a D-optimal 18-run design, denoted by no (see the

supplementary materials, Section S.6, for a list of the 18 experimental settings).

Compared with no, the efficiency of the original design nu is (f(nu)/f(no))
1/16 =

73.1%. In order to check the efficiency of a rounded design, we use the lift-one
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algorithm to find that the D-optimal approximate design contains 100 positive

pi’s out of the 729 distinct experimental settings. In this case, both the quota

method and the efficient rounding procedure end with the same rounded design

nr (see Section S.6). Its efficiency is (f(nr)/f(no))
1/16 = 86.1%.

5. Minimally Supported Design

It is of practical significance to have an experiment run with the minimal

number of different settings. For example, the 18 experimental settings in the

polysilicon deposition study (Example 6) had to be run in a sequential way and

only two settings were arranged on each day (Phadke (1989)). Less experimental

settings often indicate less time and less cost. Another practical application of

a minimally supported design is that an optimal allocation restricted to those

support points can be obtained more easily or even analytically.

According to Theorem 3, a minimally supported design contains at least d+1

support points. On the other hand, according to Theorem 5 and Corollary 1,

a minimally supported design could contain exactly d + 1 support points if the

extended design matrix X1 = (1 X) is of full rank.

Example 7. Let J = 2 with a binomial response. There are d + 1 parameters,

θ1, β1, . . . , βd. For a general link function g satisfying Assumptions 1 and 2,

gi0 = gi2 = 0, gi1 = (g−1)′(θ1 − xTi β) > 0, ei = ui1 = ci1 = g2i1/[πi1(1 − πi1)],
i = 1, . . . ,m. Then Ai3 in Theorem 1 contains only the entry ui1, and thus

|Ai3| = ui1, or simply ei (Lemma 1 still holds). Assume further that the m × d
design matrix X satisfies Assumption 3. According to Theorem 2, Lemmas S.4,

S.5, and 2, given p = (p1, . . . , pm)T ,

f(p) = n−(d+1)|F| =
∑

1≤i0<i1<···<id≤m
|X1[i0, i1, . . . , id]|2pi0ei0pi1ei1 · · · pideid .

(5.1)

Here (5.1) is essentially the same as Lemma 3.1 in Yang and Mandal (2015).

Then a minimally supported design can contain d + 1 support points and a D-

optimal one keeps equal weight 1/(d+1) on all support points (Yang and Mandal

(2015, Thm. 3.2)).

For univariate responses (including binomial ones) under a generalized linear

model, a minimally supported design must keep equal weights on all its support

points in order to keep D-optimality (Yang and Mandal (2015)). However, for

multinomial responses with J ≥ 3, this is usually not the case. In this section,

we use one-predictor (d = 1) and two-predictor (d = 2) cases for illustration.
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In order to check if a minimally supported design is D-optimal, we need

a Karush-Kuhn-Tucker-type condition. Since f(p) is log-concave, the Karush-

Kuhn-Tucker conditions (Karush (1939); Kuhn and Tucker (1951)) are also suf-

ficient.

Theorem 10. An allocation p = (p∗1, . . . , p
∗
m)T satisfying f(p) > 0 is D-optimal

if and only if there exists a λ ∈ R such that ∂f(p)/∂pi = λ if p∗i > 0 or ≤ λ if

p∗i = 0, i = 1, . . . ,m.

5.1. Minimally supported designs with one predictor

We start with d = 1 and J ≥ 3. The corresponding parameters here are β1
and θ1, . . . , θJ−1. Consider designs supported on two points (m = 2, minimally

supported), and invoke Theorem 2, Lemmas S.4 and S.5.

Theorem 11. If d = 1, J ≥ 3, and m = 2, the objective function is

f(p1, p2) = n−2|F| =
J−1∑
s=1

csp
J−s
1 ps2, (5.2)

where (c1, . . . , cJ−1)
T = B−1J−1(d1, . . . , dJ−1)

T , with BJ−1 = (st−1)st as a (J −
1)× (J − 1) matrix and ds = f(1/(s+ 1), s/(s+ 1)) · (s+ 1)J/s.

Actually, according to Lemma 2, c1 = e2
∏J−1
s=1 g

2
1s ·

∏J
t=1 π

−1
1t (x1 − x2)

2,

cJ−1 = e1
∏J−1
s=1 g

2
2s ·

∏J
t=1 π

−1
2t (x1 − x2)2, where x1, x2 are the predictor levels.

Theorem 11 provides a way to find the exact form of f(p1, p2) after calculating

|F| for J − 1 different allocations. Then the D-optimal problem is to maximize

an order-J polynomial f(z, 1− z) for z ∈ [0, 1]. As a special case, the D-optimal

allocation of J = 3 can be solved explicitly as follows:

Corollary 2. If d = 1, J = 3, and m = 2, the objective function is

f(p1, p2) = p1p2(c1p1 + c2p2), (5.3)

where c1 = e2g
2
11g

2
12(π11π12π13)

−1(x1 − x2)
2 > 0, c2 = e1g

2
21g

2
22(π21π22π23)

−1

(x1 − x2)2 > 0, and x1, x2 are the two levels of the predictor. The D-optimal

design p = (p∗1, p
∗
2) is

p∗1 =
c1 − c2 +

√
c21 − c1c2 + c22

2c1 − c2 +
√
c21 − c1c2 + c22

, p∗2 =
c1

2c1 − c2 +
√
c21 − c1c2 + c22

. (5.4)

Furthermore, p∗1 = p∗2 = 1/2 if and only if c1 = c2.

Under the setup of Corollary 2, p∗1 = p∗2 = 1/2 if β1 = 0. In general p∗1 6= p∗2,

and p∗1 > p∗2 if and only if c1 > c2. The following result provides conditions for
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D-optimality of such a minimally supported design. Its proof is relegated to the

supplementary materials (Section S.3).

Corollary 3. Suppose d = 1, J = 3, m ≥ 3, and let x1, . . . , xm be the m distinct

levels of the predictor. A minimally supported design p = (p∗1, p
∗
2, 0, . . . , 0)T is

D-optimal if and only if

(1) p∗1, p
∗
2 are defined as in (5.4),

(2) si3(p
∗
1)

2 + (si5 − 2c1)p
∗
1p
∗
2 + (si4 − c2)(p∗2)2 ≤ 0, i = 3, . . . ,m,

where c1, c2 are as in Corollary 2, si3 = eig
2
11g

2
12(π11π12π13)

−1(x1 − xi)
2 > 0,

si4 = eig
2
21g

2
22(π21π22π23)

−1(x2−xi)2 > 0, si5 = e1(u22ui1+u21ui2−2b22bi2)(x1−
x2)(x1−xi)+e2(u12ui1+u11ui2−2b12bi2)(x2−x1)(x2−xi)+ei(u12u21+u11u22−
2b12b22)(xi − x1)(xi − x2).

Example 8. Consider d = 1, J = 3, and m = 3 with factor levels {−1, 0, 1}.
Under the logit link g, the parameters β, θ1, θ2 satisfy g(γ1j) = θj+β, g(γ2j) = θj ,

g(γ3j) = θj − β, j = 1, 2. We investigate when a D-optimal design is minimally

supported. According to Theorem 11, a D-optimal deign satisfies p1 = p3 =

1/2 if β = 0. Figure 2 shows cases with more general parameter values. In

Figure 2(a), four regions in (θ1, θ2)-plane are occupied by minimally supported

designs (θ1 < θ2 is required). For example, regions labeled with p2 = 0 indicates

a minimally supported design satisfying p2 = 0 is D-optimal given such a triple

(θ1, θ2, β = −2). From Figure 2(b), a design supported on {−1, 1} (that is,

p2 = 0) is D-optimal if β is not far from 0.

Example 9. Toxicity study (Agresti, 2013, Table 8.7) reported data from a

developmental toxicity study with one factor (concentration of diEGdiME at five

levels: 0, 62.5, 125, 250, 500 mg/kg per day) and a 3-category ordinal response

(status of mouse fetus: nonlive, malformation, or normal). In this case, d = 1,

J = 3, and m = 5. We fit a cumulative link model with cauchit link chosen by

both AIC and BIC criteria. The estimated parameter values are (β̂1, θ̂1, θ̂2)
T =

(−0.0176,−8.80,−5.34). If (β̂1, θ̂1, θ̂2)
T is regarded as the true parameter value,

then the D-optimal approximate allocation found by the lift-one algorithm is

po = (0, 0, 0, 0.4285, 0.5715)T , which is minimally supported. Alternatively, for

each pair of indices (i, j), 1 ≤ i < j ≤ 5, we obtain the best design (p∗i , p
∗
j )

supported only on xi, xj according to Corollary 2, then check whether (p∗i , p
∗
j )

is D-optimal using Corollary 3. Here po is the only minimally supported design

that is also D-optimal. With respect to po, the efficiency of the original design

(roughly a uniform one) is 52.6%.
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Figure 2. Regions for a two-point design to be D-optimal with d = 1, J = 3, x ∈
{−1, 0, 1}, and logit link (note that θ1 < θ2 is required).

5.2. Minimally supported designs with two predictors

In this section, we consider experiments with two predictors (d = 2) and

a three-category response (J = 3). The parameters are β1, β2, θ1, θ2. For cases

with J ≥ 4, similar conclusions could be obtained, but with messier notation.

According to Theorem 3, a minimally supported design needs three support

points, for example, (xi1, xi2), i = 1, 2, 3. Under Assumption 3, the 3× 3 matrix

X1 = (1 X) is of full rank. Following Theorem 2, Lemmas S.4, S.5, and 2, the

objective function with (d, J,m) = (2, 3, 3) is

f(p1, p2, p3) = |X1|2e1e2e3 · p1p2p3(w1p1 + w2p2 + w3p3), (5.5)

where wi = e−1i g2i1g
2
i2(πi1πi2πi3)

−1 > 0. Since f(p1, p2, p3) = 0 if p1p2p3 = 0, we

need only consider p = (p1, p2, p3)
T satisfying 0 < p1, p2, p3 < 1.

According to Theorem 10, p maximizes f(p1, p2, p3) only if

∂f

∂p1
=

∂f

∂p2
=

∂f

∂p3
. (5.6)

Following Tong, Volkmer and Yang (2014), we obtain its analytic solution:

Theorem 12. Without loss of generality, w1 ≥ w2 ≥ w3 > 0. The allocation

p = (p∗1, p
∗
2, p
∗
3)
T maximizing f(p1, p2, p3) in (5.5) exists and is unique. It satisfies

0 < p∗3 ≤ p∗2 ≤ p∗1 < 1 and can be obtained analytically as follows:

(i) If w1 ≥ w2 = w3, then p∗1 = ∆1/(4w1 + ∆1), p
∗
2 = p∗3 = 2w1/(4w1 + ∆1),
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where ∆1 = 2w1−3w2 +
√

4w2
1 − 4w1w2 + 9w2

2. A special case is p∗1 = p∗2 =

p∗3 = 1/3 if w1 = w2 = w3.

(ii) If w1 = w2 > w3, then p∗1 = p∗2 = ∆2/[2(∆2 + 2w1)], p
∗
3 = 2w1/(∆2 + 2w1),

where ∆2 = 3w1 − 2w3 +
√

9w2
1 − 4w1w3 + 4w2

3.

(iii) If w1 > w2 > w3, then p∗1 = y1/(y1 + y2 + 1), p∗2 = y2/(y1 + y2 + 1),

p∗3 = 1/(y1 + y2 + 1), where

y1 = −b2
3
− 21/3(3b1 − b22)

3A1/3
+

A1/3

3× 21/3
, y2 =

(w1 − w3)y1
(w2 − w3) + (w1 − w2)y1

with A = −27b0 + 9b1b2−2b32 + 33/2(27b20 + 4b31−18b0b1b2− b21b22 + 4b0b
3
2)

1/2,

bi = ci/c3, i = 0, 1, 2, and c0 = w3(w2 − w3) > 0, c1 = 3w1w2 − w1w3 −
4w2w3+2w2

3 > 0, c2 = 2w2
1−4w1w2−w1w3+3w2w3, c3 = w1(w2−w1) < 0.

The proof of Theorem 12 is relegated to the supplementary materials (Sec-

tion S.3).

Corollary 4. Suppose d = 2, J = 3, and m = 3. Then p = (1/3, 1/3, 1/3)T is

D-optimal if and only if w1 = w2 = w3, where w1, w2, w3 are defined as in (5.5).

Example 10. Consider a 22 factorial design problem with a three-category

response and four design points (1, 1), (1,−1), (−1, 1), (−1,−1), denoted by

(xi1, xi2), i = 1, 2, 3, 4. Take wi = e−1i g2i1g
2
i2(πi1πi2πi3)

−1, i = 1, 2, 3, 4. There

are five special cases: (i) if β1 = β2 = 0, then w1 = w2 = w3 = w4; (ii) if

β1 = 0, β2 6= 0, then w1 = w3, w2 = w4, but w1 6= w2; (iii) if β1 6= 0, β2 = 0,

then w1 = w2, w3 = w4, but w1 6= w3; (iv) if β1 = β2 6= 0, then w2 = w3, but

w1, w2, w4 are distinct; (v) if β1 = −β2 6= 0, then w1 = w4, but w1, w2, w3 are

distinct.

Theorem 12 provides analytic forms of minimally supported designs with

d = 2 and J = 3.

Corollary 5. Suppose d = 2, J = 3, and m ≥ 4. Let (xi1, xi2), i = 1, . . . ,m be

m distinct level combinations of the two predictors. With X1 = (1 X) an m× 3

matrix, a minimally supported design p = (p∗1, p
∗
2, p
∗
3, 0, . . . , 0)T is D-optimal if

and only if p∗1, p
∗
2, p
∗
3 are obtained according to Theorem 12, and

|X1[1, 2, i]|2e1e2eip∗1p∗2(w1p
∗
1 + w2p

∗
2) + |X1[1, 3, i]|2e1e3eip∗1p∗3(w1p

∗
1 + w3p

∗
3)

+ |X1[2, 3, i]|2e2e3eip∗2p∗3(w2p
∗
2 + w3p

∗
3) +Dip

∗
1p
∗
2p
∗
3

≤ |X1[1, 2, 3]|2e1e2e3p∗2p∗3(2w1p
∗
1 + w2p

∗
2 + w3p

∗
3), for i = 4, . . . ,m,

where ej = uj1 + uj2 − 2bj2, wj = e−1j g2j1g
2
j2(πj1πj2πj3)

−1, j = 1, . . . ,m, Di =
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Figure 3. Boundary lines for a three-point design to be D-optimal with logit link: Region
of (β1, β2) for given (θ1, θ2) is outside the boundary lines in Panel (a); Region of (θ1, θ2)
(with θ1 < θ2) for given (β1, β2) is between the boundary lines and θ1 = θ2 in Panel (b).

∑
{j,k,s,t}∈Ei

ejek(us1ut2 +us2ut1− 2bs2bt2) · |X1[j, k, s]| · |X1[j, k, t]| with the sum

over Ei = {(1, 2, 3, i), (1, 3, 2, i), (1, i, 2, 3), (2, 3, 1, i), (2, i, 1, 3), (3, i, 1, 2)}.

Example 11. Consider experiments with d = 2, J = 3, m = 4, and design

points (1, 1), (1, −1), (−1, 1), (−1,−1). Figure 3 provides the boundary lines

of regions of parameters (β1, β2, θ1, θ2) for which the best three-point design is D-

optimal. In particular, Figure 3(a) shows the region of (β1, β2) for given θ1, θ2. It

clearly indicates that the best three-point design tends to be D-optimal when the

absolute values of β1, β2 are large. The region tends to be larger as the absolute

values of θ1, θ2 increase. On the other hand, Figure 3(b) displays the region of

(θ1, θ2) for given β1, β2. The symmetry of the boundary lines about θ1 +θ2 = 0 is

due to the logit link which is symmetric about 0. An interesting conclusion based

on Corollary 5 is that in this case a three-point design can never be D-optimal if

β1 = 0 or β2 = 0.

Remark 1. Extra degrees of freedom play an important role against the unifor-

mity of D-optimal allocation in a minimally supported design. For multinomial-

type responses with J categories, the total degrees of freedom from m dis-

tinct experimental settings is m(J − 1), while a cumulative link model con-

tains d + J − 1 parameters. For a minimally supported design, m = d + 1

and m(J − 1) = d + J − 1 if and only if J = 2 (see Example 7). Then the ob-

jective function f(p) ∝ pi0pi1 · · · pid and the D-optimal allocation is pi0 = pi1 =
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· · · = pid = 1/(d + 1). However, if J ≥ 3, the degrees of freedom is strictly

larger than the number of parameters and there are “extra” degrees of freedom.

In this case, distinct experimental settings may play different roles in estimating

the parameters values. For example, if d = 1, J = 3,m = 2, the objective func-

tion f(p) = p1p2(c1p1 + c2p2) according to Corollary 2; if d = 2, J = 3,m = 3,

f(p) ∝ p1p2p3(w1p1+w2p2+w3p3) according to equation (5.5). The D-optimality

of a uniform allocation requires c1 = c2 or w1 = w2 = w3, which is not true in

general.

6. EW D-Optimal Design

The previous sections mainly focus on locally D-optimal designs which re-

quire assumed parameter values, (β1, . . . , βd, θ1, . . . , θJ−1). For many applica-

tions, the experimenter may have little information about the values of parame-

ters. Then Bayes D-optimality (Chaloner and Verdinelli (1995)) which maximizes

E(log |F|) given a prior distribution on parameters provides a reasonable solu-

tion. An alternative is EW D-optimality (Yang, Mandal and Majumdar (2016);

Atkinson, Donev and Tobias (2007)) which essentially maximizes log |E(F)|. Ac-

cording to Yang, Mandal and Majumdar (2016)’s simulation study across dif-

ferent models and choices of priors, EW D-optimal designs are much easier to

calculate and still highly efficient compared with Bayes designs.

Based on Theorem 1, an EW D-optimal design that maximizes |E(F)| can

be viewed as a locally D-optimal design with ei, cit, uit and bit replaced by their

expectations. After the replacement, Lemma S.2 still holds. Therefore, almost all

results in the previous sections can be applied directly to EW D-optimal designs.

The only exception is Lemma 1 which provides the formula for |Ai3| in terms of

gij and πij . In order to find EW D-optimal designs, |Ai3| needs to be calculated

in terms of uit and bit. For example, |Ai3| = ui1 if J = 2, |Ai3| = ui1ui2 − b2i2 if

J = 3, and |Ai3| = ui1ui2ui3−ui1b2i3−ui3b2i2 if J = 4. Then the formulas of |Ai3|
in Lemma 2, c1, c2 in Corollary 2, si3, si4, si5 in Corollary 3, wi in (5.5), and wj
in Corollary 5 need to be written in terms of uit and bit.

According to Lemma S.2, we only need to calculate E(uit), i = 1, . . . ,m; t =

1, . . . , J − 1 and E(bit), i = 1, . . . ,m; t = 2, . . . , J − 1 (if J ≥ 3). Then E(cit) =

E(uit)−E(bit)−E(bi,t+1) and E(ei) =
∑J−1

t=1 E(cit). After that, we can use the

lift-one algorithm in Section 3 or the exchange algorithm in Section 4 to find EW

D-optimal designs.

Example 4: Odor Removal Study (continued) Instead of assuming the

parameter values (β1, β2, θ1, θ2) = (−2.44, 1.09,−2.67,−0.21), consider true val-
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Table 3. Summary of efficiency in odor removal study.

Design Min. 1st Quartile Median Mean 3rd Quartile Max.
Bayes pb 0.8464 0.9813 0.9915 0.9839 0.9964 1.0000
EW pe 0.8465 0.9802 0.9917 0.9838 0.9967 1.0000
Uniform pu 0.7423 0.8105 0.8622 0.8674 0.9249 0.9950

ues of parameters that satisfy β1 ∈ [−3,−1], β2 ∈ [0, 2], θ1 ∈ [−4,−2], and

θ2 ∈ [−1, 1]. We assume that the four parameters are independently and uni-

formly distributed within their intervals. We use R function constrOptim to

maximize φ(p) = E(log |F|) and find the Bayes D-optimal allocation pb =

(0.3879, 0.3264, 0.0000, 0.2857)T . The procedure costs 313 seconds computational

time using a PC with 2GHz CPU and 8GB memory. In order to get the EW

D-optimal design, we only need 5.43 seconds in total to calculate E(uit), E(bit),

and find pe = (0.3935, 0.3259, 0, 0.2806)T using the lift-one algorithm. Even

in terms of Bayes Optimality (Chaloner and Larntz (1989); Song and Wong

(1998); Abebe et al. (2014)), the relative efficiency of pe with respect to pb is

exp{(φ(pe) − φ(pb))/4} × 100% = 99.99%, while the relative efficiency of the

uniform allocation pu = (0.25, 0.25, 0.25, 0.25)T is 87.67%.

In order to check robustness towards misspecified parameter values, we let

θ = (β1, β2, θ1, θ2)
T run through all 0.1-grid points in [−3,−1]×[0, 2]×[−4,−2]×

[−1, 1]. For each θ, we use the lift-one algorithm to find the D-optimal allocation

pθ and the corresponding determinant f(pθ) = |F(pθ)|, and then calculate the

efficiency (f(p)/f(pθ))1/4 for p = pb,pe, and pu, respectively. Table 3 shows the

summary statistics of the efficiencies. It implies that pb and pe are comparable

and both of them are much better than pu in terms of robustness.

7. Discussion

In this paper, we use real experiments to illustrate how much improvements

the experimenter could make. Compared with our D-optimal designs, the efficien-

cies of the original designs are often far from satisfactory: 79.7% in Example 4,

73.1% in Example 6, and 52.6% in Example 9. More interestingly, our D-optimal

designs recommended for Example 4 and Example 9 are both minimally sup-

ported. We have two surprising findings that are different from the cases under

univariate generalized linear models (Yang and Mandal, 2015): (1) the minimum

number of experimental settings can be strictly less than the number of param-

eters, and (2) the allocation of experimental units on the support points of a

minimally supported design is usually not uniform.
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Cumulative link models are widely used for modeling ordinal data. Nev-

ertheless, there are other models used for multinomial-type responses, includ-

ing baseline-category logit model for nominal response, adjacent-categories logit

model for ordinal data, and continuation-ratio logit model for hierarchical re-

sponse (see Liu and Agresti (2005), Agresti (2013) for a review). The methods

developed in this paper could be extended for those models as well. For further

extensions, our approaches could be used for planning experiments with more

than one categorical response. For example, both the paper feeder experiment

and the PCB experiment analyzed by Joseph and Wu (2004) involved multiple

binomial responses.

Supplementary Materials

The proofs of Theorems 1, 2, 4, 5, and 12, Lemma 2, and Corollaries 3

and 5 are available at http://www3.stat.sinica.edu.tw/statistica/. There are also

tabularized formulas for commonly used link functions, additional lemmas for

Section 2 and Section 5.2, maximization of fi(z) in Section 3, exchange algorithm

for D-optimal exact allocation in Section 4, and more results for Example 4.6.
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