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Abstract: We examine the problem of variable selection for high-dimensional sparse

Cox models. We propose using a computationally efficient procedure, the Cheby-

shev greedy algorithm (CGA), to sequentially include variables, and derive its con-

vergence rate under a weak sparsity condition. When we assume a strong sparsity

condition, we use a high-dimensional information criterion (HDIC) and the CGA

to achieve variable selection consistency. We further devise a greedier version of

the CGA (gCGA). With the help of the HDIC, the gCGA not only enjoys selec-

tion consistency, but also exhibits superior finite-sample performance in detecting

marginally weak, but jointly strong signals over that of the original CGA and other

related high-dimensional methods, such as conditional sure independence screen-

ing. We demonstrate the proposed methods using real data from a cytogenetically

normal acute myeloid leukaemia (CN-AML) data set.

Key words and phrases: Chebyshev greedy algorithm, high-dimensional information

criterion, sure screening, variable selection consistency.

1. Introduction

In modern biomedical studies, the excessive number of biomarkers presents

technical challenges when trying to apply existing statistical methods. For ex-

ample, in the context of genomic research of acute myeloid leukaemia, tens of

thousands of gene signatures are measured to predict cancer patients’ overall

survival (Metzeler et al. (2008)). Typically, only a small portion of biomarkers

are relevant to the clinical outcome; thus, a tailored procedure that effectively

identifies relevant biomarkers is essential for analyses of high-dimensional survival

data.

Fan and Lv (2008) introduced a two-step procedure for high-dimensional

variable selection. In the first step, sure independence screening (SIS) is used

to reduce the number of candidate variables to a scalable size. Then, the non-

concave penalized likelihood method is exploited to achieve the oracle property

(Fan and Li (2001)). Since the seminal work of Fan and Lv (2008), numerous
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marginal screening methods have been developed and extended to various survival

models (Fan, Feng and Wu (2010); Song et al. (2014)). Nevertheless, most exist-

ing marginal screening methods hinge on the assumption that jointly important

variables should also have strong marginal associations with the outcome. Con-

sequently, marginally weak, but jointly strong signals are unlikely to be detected

by these methods.

Barut, Fan and Verhasselt (2016) and Hong, Kang and Li (2018) address this

problem by implementing SIS after conditioning on a known variable set C, which

is referred to as conditional SIS (CSIS). They argue that CSIS asymptotically

detects marginally weak, but jointly strong signals (variables), provided that C
satisfies some technical assumptions (see Theorem 3 of Barut, Fan and Verhasselt

(2016)). However, it seems difficult to show that these assumptions are fulfilled

by the commonly used C, which is determined either from biological knowledge

or from other variable screening methods, such as (unconditional) SIS.

To gain further insight into how C affects the performance of CSIS, we con-

duct a simulation study based on data generated from a sparse Cox model with

the hazard function λ(t|Z) = exp(Z ′β). The censoring time is generated from

the Uniform(0, c) distribution, and the censoring rate is controlled around 30%

by using the constant c. The sample size is set to 400, β = (β1, . . . , β10000)
′ is the

coefficient vector satisfying β1 = β2 = β3 = 3 and βj = 0 for 4 ≤ j ≤ 10000, and

Z = (Z1, . . . , Z10000)
′ is the covariate vector obeying Z1 = W1 −W2 −W3, Z2 =

W2 −W3, Z3 = 2W3, and Zj = Wj for 4 ≤ j ≤ 10000, with {Wj}10000j=1 being

independent and identically distributed (i.i.d.) as the standard normal distribu-

tion. Given this specification, the relevant variables Z2 and Z3 are marginally

weak, and so are rarely selected by SIS. Moreover, Z2 cannot be selected even by

CSIS with some commonly used data-driven variable set C. To see this, denote

ZJ = (Zj , j ∈ J) with J ⊆ {1, . . . , 10000}, and let LC,j , for j = 1, . . . , 10000

be the maximum partial likelihood values obtained under Cox models with co-

variates ZC
⋃
{j}, j /∈ C. Define LC,4:10000 = max4≤j≤10000 LC,j , which is used to

represent the conditional marginal utility of irrelevant variables in the presence

of C. The box plots in Figure 1 show the empirical distributions of LC,j , for

j = 1, 2, 3, and LC,4:10000, based on 100 replicates. The left panel of Figure 1

shows that L∅,1 is much larger than the others, and that L∅,2 and L∅,3 are largely

indistinguishable from L∅,4:10000. Therefore, when SIS is used to determine C
for CSIS (as suggested by Barut, Fan and Verhasselt (2016)), {1} is likely to be

selected. The behavior of CSIS with C = {1} is illustrated in the middle panel of

Figure 1: Z3 is easily detected, but Z2 is not, because L{1},2 is indistinguishable

from L{1},4:10000. These two panels reflect the intrinsic difficulty of using SIS to
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Figure 1. Box plots of the empirical distributions of LC,j , for j = 1, 2, 3, and LC,4:10000,
based on 100 replicates, with C = ∅ (left panel), {1} (middle), and {1, 3} (right).

choose C.
On the other hand, when C is set to {1, 3}, the remaining relevant variable Z2

is readily detected by CSIS, because L{1,3},2 � L{1,3},4:10000, as shown in the right

panel of Figure 1. Note that if we select one variable at a time using CSIS, and

update C (initialized with C = ∅) iteratively by adding the newly selected variable,

then all relevant variables can be included at the third iteration, as illustrated in

Figure 1. This procedure is the forward regression (FR) with partial likelihood

pursuit (Hong, Zheng and Li (2019)).

Despite the advantages of FR in terms of selection accuracy, the method

has been criticized for its prohibitive computational complexity when the num-

ber of candidate variables, p, is large. Greedy algorithms, such as L2-boosting

(Bühlmann (2006)), the orthogonal greedy algorithm (OGA) (Ing and Lai (2011)),

and orthogonal matching pursuit (Tropp and Gilbert (2007)) have been proposed

to alleviate this difficulty by sequentially choosing variables to enter a linear model

with much less computational effort, but with the desired accuracy of prediction

and selection. Greedy algorithms also have satisfying statistical properties in

high-dimensional generalized linear models (Elenberg et al. (2018)). However,

not much is known about these algorithms when applied to high-dimensional

survival models.

We attempt to fill this gap by investigating the Chebyshev greedy algorithm

(CGA) (Temlyakov (2015)) in a high-dimensional sparse Cox model in which the

number of candidate variables, p = pn, is much larger than the sample size, n.
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We first derive a uniform error bound for the CGA that holds uniformly for the

number of iterations, and can be explained by a bias–variance trade-off between

the approximation error and the estimation error. When the model coefficients

satisfy a weak sparsity condition, the best compromise between these two errors

is achieved by suitably choosing the iteration number, leading to a convergence

rate of (log pn/n)1/2, which coincides with the “minimax-optimal” rate obtained

in linear regression models (Raskutti, Wainwright and Yu (2011)).

Moreover, in Section 4, we show that the finite-sample performance of the

CGA in finding the relevant covariates is quite satisfactory in the example with

two marginally weak, but jointly strong signals, Z2 and Z3. However, the al-

gorithm’s performance deteriorates when the relevant covariates, Z1, . . . , Z3, be-

come correlated with the irrelevant ones, Z4, . . . , Z10000; see Section 3.1. In con-

trast, FR remains robust, albeit time consuming. This observation motivates us

to develop a greedier variant of CGA (gCGA) that combines the strengths of the

CGA and FR. We show that the gCGA not only shares the same computational

efficiency as that of the CGA, but it also boasts exceptional finite-sample perfor-

mance in terms of correctness of selection, in particular, in the difficult case just

mentioned. In addition, under a strong sparsity condition, we establish the sure

screening property of the gCGA (defined in Theorem 2) and its selection con-

sistency when it is used together with a high-dimensional information criterion

(HDIC) that removes all irrelevant covariates included by the algorithm. To the

best of our knowledge, no previous research examines the selection consistency

of greedy-type algorithms in high-dimensional Cox models.

The rest of this paper is organized as follows. We describe the CGA and

introduce its uniform convergence rate in Section 2. In Section 3, we propose

the gCGA, present its sure screening property, and establish its selection consis-

tency when used together with an HDIC. In Sections 4 and 5, we compare the

performance of the proposed methods and those based on CSIS or LASSO using

simulated data and a CN-AML data set. We conclude the paper in Section 6.

All technical proofs and additional simulations are deferred to the Supplementary

Material.

We end this section with some notation that we use throughout the paper.

For u = (u1, . . . , up)
′ ∈ Rp, u⊗0 = 1,u⊗1 = u, u⊗2 = uu′, supp(u) = {j :

uj 6= 0}, ‖u‖q = {
∑p

j=1 |ui|q}1/q for 1 ≤ q < ∞, and ‖u‖0 =
∑p

j=1 I(uj 6= 0),

‖u‖∞ = max1≤j≤p |uj |. For J ⊆ {1, . . . , p}, uJ ∈ Rp denotes the vector satisfying

ui = 0, for i ∈ Jc, Jc = {1, . . . , p}−J is the complement of J , and |J | denotes the

cardinality of J . We denote the minimum eigenvalues of a matrix A by λmin[A],

and bac (dae) denotes the largest (smallest) integer ≤ a (≥ a).
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2. CGA for Selecting High-Dimensional Cox Models

2.1. Preliminaries

There are three popular greedy algorithms for high-dimensional linear re-

gression models: FR (Wang (2009)), L2-boosting, and the OGA. Although FR

has desirable theoretical properties, it is very time consuming. This weakness

becomes more prominent when the method is generalized to high-dimensional

Cox models; see Section 4 and Section S3 of the Supplementary Material for

details. In contrast, while having great computational efficiency, L2-boosting

suffers from very slow convergence (to the true model), resulting in unsatisfac-

tory performance in terms of estimation and variable selection. As a greedy

algorithm lying somewhere between FR and L2-boosting, the OGA adequately

shares their advantages. It gains computational efficiency by including variables

as in L2-boosting, and enjoys an excellent convergence rate and selection accu-

racy by updating parameters as in FR. The outstanding performance of the OGA

motivates us to use its nonlinear counterpart, the CGA, to choose variables in

high-dimensional Cox models.

Let the failure time, censoring time, and p-dimensional covariate vector be

denoted by T , C, and Z = (Z1, . . . , Zp)
′, respectively. Assume that T and C are

independent given Z, and T follows the Cox model

λ(t|Z) = λ0(t) exp(Z ′β∗), (2.1)

where λ0(t) is the unspecified baseline hazard function, and β∗ ∈ Rp is the true

coefficient vector. Because of right censorship, we observe only {(Zi, Xi, δi)}, for

i = 1, . . . , n, where Zi = (Zi,1, . . . , Zi,p)
′ is the observed covariate vector, Xi =

min(Ti, Ci) is the observed event time, and δi = I(Ti ≤ Ci) is the censoring

indicator. For r = 0, 1, 2, define

S(r)(β, t) = n−1
n∑
i=1

Z⊗ri Yi(t) exp{Z ′iβ},

where Yi(t) = I(Xi ≥ t) is referred to as the at-risk process, β ∈ Rp, and

Z̄n(β, t) = S(1)(β, t)/S(0)(β, t). For a prespecified τ , the negative log-partial

likelihood is given by

ln(β) = − 1

n

n∑
i=1

∫ τ

0

(
Z ′iβ − logS(0)(β, t)

)
dNi(t),

where Ni(t) = I(Xi ≤ t, δi = 1) is a counting process. Straightforward calcula-
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tions yield

∇ln(β) = −n−1
n∑
i=1

∫ τ

0

[
Zi − Z̄n(β, t)

]
dNi(t) and ∇2ln(β) =

∫ τ

0
Vn(β, t)dN̄(t),

where N̄(t) = n−1
∑n

i=1Ni(t).

Denote ∇ln(β) by (∇1ln(β), . . . ,∇pln(β))′. For J ⊆ {1, . . . , p}, define

β̂J = argmin
β∈B,supp(β)=J

ln(β),

where B ⊆ Rp is the parameter space of interest. The CGA is an iterative

algorithm that generates a sequence of nested sets {Ĵ1, . . . , ĴK} in {1, . . . , p},
where K is a prescribed upper bound for the iteration number and

Ĵk = Ĵk−1
⋃
{ĵk}, k = 1, . . . ,K, (2.2)

with Ĵ0 = ∅, ĵk = argmax1≤j≤p,j∈Ĵck−1

∣∣∇jln(β̂Ĵk−1
)
∣∣, and β̂∅ = 0. The selection

criterion (2.2) can be interpreted as choosing the variable with the strongest

correlation with the current functional gradient (He et al. (2016)), and resembles

the variable inclusion method used in L2-boosting and the OGA for linear models.

2.2. Convergence analysis of the CGA

Our asymptotic results are built mainly on assumptions about the population

counterparts of ln(β), ∇ln(β), and ∇2ln(β):

l(β) =−
∫ τ

0

(
s(1)(β∗, t)′β − [log s(0)(β, t)]s(0)(β∗, t)

)
λ0(t)dt,

∇l(β) =−
∫ τ

0

{
s(1)(β∗, t)− s(1)(β, t)

s(0)(β, t)
s(0)(β∗, t)

}
λ0(t)dt,

∇2l(β) =

∫ τ

0

{
s(2)(β, t)

s(0)(β, t)
−
(
s(1)(β, t)

s(0)(β, t)

)⊗2}
s(0)(β∗, t)λ0(t)dt,

where s(r)(β, t) = E{S(r)(β, t)}, for r = 0, 1, 2. Let b0 be a large constant. The

parameter space that we are interested in is the l1-ball of radius b0, B = {β :

β ∈ Rp, ‖β‖1 ≤ b0}, where p = pn is allowed to approach infinity faster than

n. For J, J
′ ⊆ {1, . . . , p}, define βJ = argminβ∈B,supp(β)=J l(β) and ∇2

JJ ′
l(β) =

[∇2
kll(β)]k∈J,l∈J ′ , where ∇2

kll(β) is the (k, l)th element of ∇2l(β). The assump-

tions required in our analysis are listed below:
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(C1) β∗ is an interior point of B; moreover, there exists a positive constant D̄

such that for any |J | ≤ Dn = dD̄(n/ log pn)1/2e, βJ is an interior point of

B.

(C2) There exists a constant η > 0, such that P (max1≤j≤pn |Zj | > η) = 0.

(C3) There exists a constant 0 < ρ < 1, such that ρ := P (Y1(τ) = 1).

(C4) log pn = O(nκ), for some 0 ≤ κ < 1.

(C5) There exists a constant δ0 > 0, such that

δ0 ≤ min
|J |≤Dn

λmin[∇2
JJ l(βJ)].

(C6) There is an arbitrarily small ε > 0, such that for some 0 < M <∞,

max
|J |≤Dn,i∈Jc

sup
β∈Bε(βJ )

supp(β)=J

∥∥∥∥{∫ 1

0
∇2
iJ l((1− t)βJ + tβ)dt

}
{∫ 1

0
∇2
JJ l((1− t)βJ + tβ)dt

}−1∥∥∥∥
1

< M. (2.3)

(C7) Let N := supp(β∗); there exist 0 ≤ θ < (1− κ)/4 and C0 > 0, such that

min
|J |≤Dn,N−J 6=∅

max
j∈N−J

|∇jl(βJ)| > C0n
−θ,

where ∇jl(β) denotes the jth component of ∇l(β).

A few comments are in order related to (C1)–(C7). The first part of (C1)

is often referred to as the weak sparsity condition. It allows all components

in β∗ to be nonzero, but requires that they are absolutely summable. The second

part of (C1), together with (C5), ensures that for any j ∈ J and |J | ≤ Dn,

βJ is unique and ∇jl(βJ) = 0, which is crucial in our analysis of the CGA. To

ensure that these two properties hold during the iterations, the iteration number

is restricted to K = Kn < Dn; see Theorem 1. Conditions (C2) and (C3) are

commonly assumed in the literature on high-dimensional survival analysis; see

Kong and Nan (2014), Hong, Kang and Li (2018), and Hong, Zheng and Li

(2019). Condition (C4) allows pn to grow exponentially with n. Condition (C5)

imposes a lower bound for the minimum eigenvalue of the Hessian matrix of l(·),
evaluated at the local minimizer, βJ , over BJ := B

⋂
{β : β ∈ Rp, supp(β) = J}
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with |J | ≤ Dn. The condition is flexible in the sense that it does not introduce

any restrictions on the maximum eigenvalue of the matrix. Conditions such as

(C6) are frequently used in derivations of the convergence rates of greedy-type

algorithms under weak sparsity conditions; see Ing and Lai (2011) and Ing (2020).

Because the ε in (2.3) can be arbitrarily small, (2.3) is almost equivalent to

max
|J |≤Dn,i∈Jc

∥∥∥{∇2
iJ l(βJ)

}{
∇2
JJ l(βJ)

}−1∥∥∥
1
< M,

which further simplifies to

max|J |≤Dn,i∈Jc
∥∥∥cov(zi,ZJ)var−1(ZJ)

∥∥∥
1
< M (2.4)

in the case of the linear model. As argued in Ing and Lai (2011) and Ing (2020),

(2.4) holds even when the components in Z are highly correlated. Condition

(C7) is closely related to the so-called “beta-min” condition (which requires that

the nonzero coefficients are sufficiently large) and the signal strength condition in

Barut, Fan and Verhasselt (2016). Moreover, (C7) together with (C1) is referred

to as the strong sparsity condition, which stipulates that the number of nonzero

coefficients be much smaller than n. In fact, it can be shown (see Section S2 of

the Supplementary Materials) that

min
j∈N
|β∗j | ≥

C0

4η2
n−θ and |N | ≤ 4η2C−10 b0n

θ, (2.5)

provided that (C1)–(C3) and (C7) hold. For an additional discussion of (C7), see

Section 3.1.

We can now state the main result of this section.

Theorem 1. Assume (C1)–(C5) and (C6) or (C7). Let Kn = δ̄(n/ log pn)1/2,

where 0 < δ̄ < D̄ and may depend on b0, η, ρ, δ0, or M . Then,

max
1≤k≤Kn

l(β̂Ĵk)− l(β
∗)

k−1 + kn−1 log pn
= Op(1). (2.6)

Note that l(β̂Ĵk)−l(β
∗) is the sum of the approximation error, l(βĴk)−l(β

∗),

and the estimation error, l(β̂Ĵk)− l(βĴk). For the approximation error, we show

in the proof of Theorem 1 that

max
1≤k≤Kn

l(βĴk)− l(β
∗)

k−1
= Op(1), (2.7)

which plays a role similar to (6.17) of Bühlmann (2006) or (3.12) of Ing and Lai



GREEDY VARIABLE SELECTION 1705

(2011) in high-dimensional linear models, in which weak greedy algorithms or the

OGA are used in place of the CGA. Equation (2.7), together with the uniform

bound established for the estimation error,

max
1≤k≤Kn

l(β̂Ĵk)− l(βĴk)
kn−1 log pn

= Op(1) (2.8)

(which is also given in the proof of Theorem 1), suggests that k∗n = c0(n/ log pn)1/2,

for c0 > 0, is an optimal choice of k that achieves the best compromise (up to a

constant factor) between the approximation and the estimation errors, and leads

to the the following error bound:

l(β̂Ĵk∗n
)− l(β∗) = Op

((
log pn
n

)1/2)
. (2.9)

Note that (log pn/n)1/2 is also the “minimax-optimal” rate for linear models

(Raskutti, Wainwright and Yu (2011)). To better understand (2.9), we provide

a numerical illustration of the equation at different sparsity levels in the Supple-

mentary Material.

When β̂Ĵk∗n
on the left-hand side of (2.9) is replaced with the LASSO es-

timate, Kong and Nan (2014) derive an error bound that achieves the optimal

balance between the approximation and the estimation errors. However, it may be

difficult to recover the (log pn/n)1/2 convergence rate using their bound when the

weak sparsity condition described in (C1) holds. Note that establishing the sure

screening property appears to be more relevant than pursuing the (log pn/n)1/2

rate when (C7) is assumed. As discussed in the next section, (2.7) plays an

indispensable role in developing such a property for the CGA and its variants.

3. A Greedier Variant of the CGA and Consistent Variable Selection

Throughout the rest of the paper, we assume that (C7) holds. Motivated

by an example in Section 3.1, we first introduce the gCGA, which combines

the advantages of CGA and FR, and then state its sure screening property. In

Section 3.2, we establish the selection consistency of the gCGA when it is used

together with an HDIC.

3.1. A greedier variant of the CGA and its sure screening property

A salient feature of the CGA is that it reduces computational costs by us-

ing only the gradient information, while maintaining the desired convergence

rate. In addition, the CGA efficiently identifies the relevant covariates in the



1706 LIN, CHENG AND ING

0

250

500

750

1,000

1,250

0 0.5 1 1.5 2

r

Figure 2. Box plots for the empirical distributions of kc(r) (left) and kf (r) (right) based
on 100 simulations, where r ∈ A.

example of Section 1, which contains two marginally weak, but jointly strong

signals. For more details, see Section 4. However, the performance of the CGA

deteriorates in the same example when the relevant covariates, Z1, . . . , Z3, be-

come correlated with the irrelevant ones, Z4, . . . , Z10000. More specifically, let

Z1, . . . , Z3 and W1, . . . ,W10000 be defined as in Section 1. Set Zj = rW3+Wj , 4 ≤
j ≤ 10000, where r ∈ A ≡ {0, 0.5, 1, 1.5, 2}. The values of r indicate the correla-

tions between the relevant and irrelevant variables. Note that r = 0 corresponds

to the example of Section 1, in which {Z1, . . . , Z3} and {Zj , 4 ≤ j ≤ 10000} are

independent. Let C = {1}, {|∇ci ln(β̂C)|, i = 1, . . . , p − 1} be a nonincreasing

rearrangement of {|∇iln(β̂C)|, i = 2, . . . , p}, and {ln(β̂C∪{fi}), i = 1, . . . , p− 1} be

a nondecreasing rearrangement of {ln(β̂C∪{i}), i = 2, . . . , p}. Define

kc(r) = argmin
1≤j≤p−1

{j : {2, 3} ∩ {c1, . . . , cj} 6= ∅},

kf (r) = argmin
1≤j≤p−1

{j : {2, 3} ∩ {f1, . . . , fj} 6= ∅},

where r ∈ A. Box plots of the empirical distributions of kc(r) and kf (r), based

on 100 simulations, are presented in Figure 2. The figure shows that for each

r, all values of kf (r) are equal to one, suggesting that regardless of whether

the correlations between {Z1, . . . , Z3} and {Zj , 4 ≤ j ≤ 10000} are high or low,

Z2 or Z3 is chosen easily by FR at the second iteration, once Z1 has been included

at the first iteration. On the other hand, although kc(r) behaves like kf (r)

when r ≤ 0.5, the value of kc(r) is larger than one when r ≥ 1, and grows
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rapidly as r increases. Therefore, when r is relatively large, it is difficult for the

CGA to find Z2 or Z3, given that Z1 has been chosen by the algorithm at the

first iteration. This numerical experiment reveals that although FR is very time

consuming, it substantially outperforms the CGA in terms of selection accuracy

in the difficult case where the relevant covariates contain some marginally weak,

but jointly strong signals, and are highly correlated with the irrelevant covariates.

This observation motivates us to combine the strengths of the CGA and FR using

a greedier variant of CGA, which we call the gCGA.

The gCGA, initiated with J̃0 = ∅, is sequentially updated using

J̃k+1 = J̃k
⋃
{j̃k+1},

where

j̃k+1 = argmin
j∈M̃k

ln(β̂J̃k
⋃
{j})

and, for some 0 ≤ t ≤ 1,

M̃k := {j ∈ J̃ck : |∇jln(β̂J̃k)| ≥ t‖∇ln(β̂J̃k)‖∞}.

The gCGA clearly includes the CGA (t = 1) and FR (t = 0) as special cases.

Because at each iteration k, the gCGA implements FR within a “promising”

subset, M̃k, of J̃ck, and because this promising subset is determined solely based

on gradient information, the algorithm preserves FR’s selection accuracy without

much computational effort, provided the t in M̃k is chosen to be close to one.

A practical guideline for determining M̃k is provided in Section 4. The next

corollary shows that the CGA, the gCGA, and FR all share the same convergence

rate.

Corollary 1. Assume (C1)–(C5) and (C7). Then, for any t ∈ [0, 1] and Kn =

δ̄(n/ log pn)1/2, where δ̄ is defined as in Theorem 1, (2.6) holds, with Ĵk replaced

with J̃k.

With the help of Corollary 1, Theorem 2 establishes the sure screening prop-

erty of the gCGA (the CGA and FR).

Theorem 2. Assume (C1)–(C5) and (C7). Then, for any t ∈ [0, 1] and Kn ≥
dC1n

2θe, with C1 being a constant depending on η, b0, and C0,

lim
n→∞

P (N ⊂ J̃Kn) = 1, (3.1)

which is referred to as the sure screening property.
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Theorem 2 asserts that the gCGA (the CGA and FR) enjoys the sure screen-

ing property, as long as the number of iterations approaches dC1n
2θe.

3.2. Variable selection consistency

Although the gCGA has the sure screening property when Kn > C1n
2θ, the

model J̃Kn determined by the algorithm at the end of iteration Kn suffers from

severe overfitting, because, as indicated in (2.5), |N | = O(nθ) � Kn. In this

section, we propose using an HDIC to overcome this difficulty. Define

HDIC(J) =ln(β̂J) + |J |wn
log pn
n

, (3.2)

where wn is some positive constant depending on n. We first restrict our attention

to the set of nested models, JKn = {J̃1, . . . , J̃Kn}, generated during the gCGA

iterations. Then, we find the model J̃k̃n = {j̃1, . . . , j̃k̃n} with the smallest HDIC

value among JKn , where

k̃n = argmin
1≤k≤Kn

HDIC(J̃k). (3.3)

We further construct a subset of J̃k̃n ,

J̃Trim = {j̃i : 1 ≤ i ≤ k̃n, HDIC(J̃k̃n − {j̃i}) > HDIC(J̃k̃n)}, (3.4)

to exclude (possibly) redundant variables in J̃k̃n by examining the “marginal”

contribution of each Zj̃i , for 1 ≤ i ≤ k̃n, to the HDIC. The asymptotic perfor-

mance of J̃Trim is reported in the following theorem.

Theorem 3.

(i) Assume (C1)–(C7). Suppose that Kn = δ̄(n/ log pn)1/2, wn →∞, and wn =

o(Kn). Then,

lim
n→∞

P{J̃Trim = Nn} = 1. (3.5)

(ii) Assume (C1)–(C5) and (C7), with θ strengthened to 0 ≤ θ < (1 − κ)/6.

Suppose that dC1n
2θe ≤ Kn ≤ C2n

−θ+(1−κ)/2, wn → ∞, and wn = o(Kn),

where C2 depends on C0, η, and δ0. Then, (3.5) holds.

It would be of interest to compare Theorem 3 with Theorem 4.5 of Bradic,

Fan and Jiang (2011), which extends the consistency of the smoothly clipped ab-

solute deviation (SCAD) from fixed-dimensional Cox models (Fan and Li (2002))

to high-dimensional models. Note first that instead of imposing high-level as-
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sumptions that require S(r)(β, t), for r = 0, 1, 2, to have probability limits (see

Condition 2 (i) of Bradic, Fan and Jiang (2011)), we derive the concentration

inequalities directly for S(r)(β, t) (see Lemma 2 in the Supplementary Material)

under conditions that can be easily justified. Moreover, Theorem 4.5 of Bradic,

Fan and Jiang (2011) demands a maximum eigenvalue condition on the Hessian

matrix of l(·), whereas there is no such restriction in Theorem 3. Finally, while

Condition (C6) in Theorem 3 (i) is similar, but somewhat stronger than Condi-

tion 8 in Bradic, Fan and Jiang (2011), Theorem 3 (ii) drops (C6) at the cost of

slightly stronger limitations on Kn and θ. Generally speaking, neither of the sets

of assumptions used in Theorem 3 (i) (or Theorem 3 (ii)) and Theorem 4.5 of

Bradic, Fan and Jiang (2011) is more restrictive than the other. However, the for-

mer set of assumptions allows us to build the selection consistency of greedy-type

algorithms in high-dimensional Cox models, which, to the best of our knowledge,

is not reported in the existing literature.

4. Simulations

In this section, we use four simulation scenarios to assess the variable screen-

ing performance of the gCGA and the variable selection accuracy of J̃Trim. Note

that for a given t, there exists an integer, say m, such that M̃k consists of the vari-

ables with the largest m absolute gradients among {|∇jln(β̂J̃k)|, j = 1, . . . , p}. To

facilitate the implementation of the gCGA, in the rest of this section, we change

its tuning parameter from t to m, and denote the algorithm by gCGA(m), for

a given m. In our simulation study, m is set to 1, 10, 30, and 50, noting that

gCGA(1) reduces to the CGA. In addition, Kn, the number of iterations, and wn,

a penalty term of the HDIC, are given by b5(n/ log pn)1/2c and log log n, respec-

tively. We suggest using the following data-driven method to select m:

m̂ = argmin
m∈Q

HDIC(J̃Kn(m)),

where J̃Kn(m) denotes the model chosen by gCGA(m) at the end of an itera-

tion, and Q, a user-chosen subset of {1, . . . , p}, is set to {1, 10, 30, 50} in our

simulation. In the rest of this section, the variable sets J̃Trim (see (3.4)) de-

rived from gCGA(m) and gCGA(m̂) are referred to as gCGA(m)+Trim and

gCGA(m̂)+Trim, respectively,

For the purpose of comparison, we consider three marginal methods:

(a) SIS+SCAD: Uses SIS (Fan, Feng and Wu (2010)) to screen variables and

then selects variables, using SCAD (Fan and Li (2002)) together with an
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extended BIC (Luo, Xu and Chen (2015)).

(b) CSIS+SCAD: Screens variables using CSIS, with the conditioning set given

by the set of variables chosen in (a), and then selects variables using SCAD

together with an extended BIC.

(c) ISIS+SCAD: Performs the same procedure as in (b), except that the con-

ditioning set is replaced by C10, where C1 is the set of variables chosen in

(a) and, for t ≥ 2, Ct is that chosen by CSIS+SCAD using conditioning set

Ct−1.

Note that all screening methods in the above procedures are implemented based

on the partial likelihood. In addition, the number of variables included at the

screening stage is restricted to dn/ log ne, and the tuning constant in the extended

BIC is set to 1− log n/(3 log p), as suggested by Hong, Zheng and Li (2019).

For the sake of completeness, we also consider a regularization method, the

adaptive LASSO (ALASSO) (Zhang and Lu (2007)), for the Cox model. Because

ALASSO uses the LASSO (Tibshirani (1997)) as an initial estimator to determine

the weights for a second-stage weighted LASSO, we treat the LASSO as the

screening step of ALASSO, and compare it with the aforementioned screening

methods. The tuning parameters of the LASSO and ALASSO are chosen using

five-fold cross-validation and the extended BIC, respectively.

We conducted 100 replications for (n, p) = (200, 10000) and (n, p) = (400,

10000). For each subject, we generated the survival time T from the Cox model

λ(t|Z) = exp(Z ′β∗), the censoring time from the Uniform(0, c) distribution, the

observed time Y = min{T,C}, and the censoring indicator δ = I(T ≤ C). The

constant c was controlled so that the corresponding censoring rates were around

20% and 50%. Detailed settings for the covariate vector Z and the coefficient

vector β∗ are given below.

Scenario 1. (AR(1) correlation). The covariate vector Z follows a multivariate

normal distribution with zero mean and covariance matrix Σ, where Σjj =

1 and Σjk = 0.5|j−k|, for j 6= k. The coefficients {β∗j }, for j ∈ {1, 2, 3, 6, 12},
are generated from (4 log n/

√
n+ |W |/4)U , in which W follows the standard

normal distribution and P (U = 1) = P (U = −1) = 1/2, and the other

components of β∗ are fixed to be zero.

Scenario 2. (Equi-correlation). The covariate vector Z follows a multivariate

normal distribution with zero mean and covariance matrix Σ, where Σjj = 1

and Σjk = 0.5, for j 6= k. The coefficients {β∗j }, for j ∈ {1, . . . , 15}, are
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generated from (4 log n/
√
n + |W |/4)U , in which W follows the standard

normal distribution and P (U = 1) = P (U = −1) = 1/2, and β∗j are fixed to

be zero for j > 15.

Scenario 3. (Marginally weak, but jointly strong signals I). The covariate vec-

tor Z satisfies Z1 = W1−W2−W3, Z2 = W2−W3, Z3 = 2W3, and Zj = Wj ,

for j ≥ 4, where W1 ∼ N(0, 2) and {Wk}k≥2 are from i.i.d. standard normal

distributions. In addition, β∗j = 3 for j = 1, 2, 3, and β∗j = 0 for j ≥ 4.

Scenario 4. (Marginally weak, but jointly strong signals II). The covariate

vector Z satisfies Z1 = W1−W2−W3, Z2 = W2−W3, Z3 = 2W3, and Zj =

W3 + Gj , for j ≥ 4, where W1 ∼ N(0, 2) and {W2,W3, Gj}j≥4 are from

i.i.d. standard normal distributions, and the coefficient vector is the same

as that in Scenario 3.

In Scenarios 1 and 2, an AR(1) correlation structure and an equi-correlation

structure, respectively, are imposed on the candidate variables and the number of

the relevant variables in Scenario 2 is considerably larger than that in Scenario 1.

In Scenario 3, all candidate variables are uncorrelated with each other, except for

the relevant ones Z1, Z2, and Z3, of which only Z1 is correlated with the survival

outcome, and Z2 is more difficult to detect than Z3, as illustrated in Figure 1.

The setting of Scenario 4 is the same as that of Scenario 3, except that {Zj}3j=1

becomes correlated with {Zk}pk=4 through W3. Additional scenarios and their

corresponding simulation results are provided in the Supplementary Material.

For a given screening method in {gCGA(m), gCGA(m̂), SIS, CSIS, ISIS,

LASSO} and the corresponding model selection method in {gCGA(m)+Trim,

gCGA(m̂)+Trim, SIS+SCAD, CSIS+SCAD, ISIS+SCAD, ALASSO}, define Ŝb
and T̂b as the sets of variables determined by the former and the latter, respec-

tively, in the bth replication, where 1 ≤ b ≤ 100. We evaluated the performance

of the screening method using its true positive rate (TPR) and the frequency of

sure screening (Sure):

TPR = 100−1
100∑
b=1

|N
⋂
Ŝb|

|N |
, Sure = 100−1

100∑
b=1

I{N ⊆ Ŝb}.

We evaluated the performance of the variable selection method using its false

discovery rate (FDR), frequency of exactly selecting the true model (Exact), and

average model size (AMS):
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FDR = 100−1
100∑
b=1

|N c
⋂
T̂b|

|T̂b|
, Exact = 100−1

100∑
b=1

I{N = T̂b},

AMS = 100−1
100∑
b=1

|T̂b|.

These performance measures are summarized in Table 1 for the case of (n, p) =

(200, 10000), and in Table 2 for the case of (n, p) = (400, 10000).

As shown in Tables 1 and 2, the performance of gCGA(m), for m ∈ {1, 10, 30,

50}, is quite satisfactory in Scenarios 1 and 3, because their TPR and Sure values

are close to one. These methods have TPR and Sure values distant from one in

Scenario 2 with n = 200, but equal to one as n increases to 400. In Scenario 4, the

TPR and Sure values for gCGA(1) are much less than one in the case of n = 200,

and cannot be improved by increasing n. Although the performance of gCGA(m)

is also unsatisfactory for m ∈ {10, 30, 50, 60} in Scenario 4 with n = 200, it

improves significantly when n grows to 400. This shows that gCGA(m), with

m ≥ 10, borrows from the strengths of FR to enhance its screening performance

in difficult situations, such as Scenario 4, where gCGA(1) does not work well.

Moreover, the performance of gCGA(m) tends to increase with m in all scenarios,

and gCGA(m̂) performs equally well as gCGA(50). The screening performance

of the marginal methods SIS, CSIS, and ISIS is, in general, inferior to that of

gCGA(m̂). Their performance, however, improves when t in Ct increases (see

item (c) in Section 4). In other words, ISIS is better than CSIS, and CSIS

is better than SIS. We therefore compare gCGA(m̂) and ISIS. Note first that

when n = 200, the two methods are largely comparable in Scenarios 1 and 4,

and in Scenario 2 at a censoring rate of 50%, but that the former significantly

outperforms the latter in all other scenarios. When n = 400, ISIS is comparable

with gCGA(m̂) in Scenarios 1 and 3, but its performance is obviously poorer

than that of gCGA(m̂) in Scenarios 2 and 4. The TPR and Sure values of the

LASSO are close to those of gCGA(m̂) in Scenarios 1, 2, and 4 with n = 200,

but are much lower than the latter in Scenario 3, with the same sample size.

When n increases to 400, the LASSO improves substantially in Scenario 3, and

both methods exhibit almost perfect performance in the first three scenarios. In

Scenario 4, however, the TPR and Sure values of the LASSO do not increase

with the sample size, resulting in screening performance that is worse than that

of gCGA(m̂) when n = 400.

The selection accuracy of gCGA(m̂)+HDIC depends mainly on the screening

performance of gCGA(m̂), and on whether the HDIC can successfully remove the
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redundant variables from those included by gCGA(m̂), while retaining the rele-

vant ones. The result shown in Tables 1 and 2 suggest that the HDIC can indeed

perform well, because the Exact value of gCGA(m̂)+Trim is almost equivalent

to the Sure values of gCGA(m̂). Note that this Sure–Exact equivalence does

not occur in any other screening-selection pairs considered in this section. When

n = 400, the Exact value of gCGA(m̂)+Trim is equal (or close) to one in Scenar-

ios 1–3. The selection performance of the marginal methods is obviously inferior

to that of gCGA(m̂)+Trim. Their Exact values are high only in cases such as

CSIS+SCAD and ISIS+SCAD in Scenario 1 at a censoring rate of 20%, and

ISIS+SCAD in Scenario 3. ALASSO’s selection performance lies between that

of gCGA(m̂)+Trim and that of the marginal methods in the first three scenar-

ios. Its Exact value, however, falls to zero in Scenario 4, which partly because

of the equally low Sure value of the LASSO. The Exact values of all methods in

the case of n = 200 are, in general, smaller than those in the case of n = 400.

However, gCGA(m̂)+Trim still performs satisfactorily in Scenarios 1 and 3, even

at a censoring rate of 50%.

The proposed gCGA(m) seems applicable to the case when marginal weak,

but jointly strong signals appear in the interaction term. To see this, we explore

the performance of gCGA(m) on the Cox model involving two-way interaction

terms. Denote Z ′β∗ in (2.1) as

β∗1Z1 + · · ·+ β∗pZp + β∗1,2Z1,2 + · · ·+ β∗p,p−1Zp,p−1,

with Zi,j = ZiZj . Under (n, p) = (400, 200) and properly designed β∗ and

Z, there are three (out of 20100) relevant variables, Z1, Z1,2, and Z1,3, in the

above Cox model, where the main effect Z1 and the interaction term Z1,3 are

marginal weak, but jointly strong signals. The details of the setting and the

results are provided in Supplementary Material. Note that the true model follows

the so-called weak heredity principle, because at least one of the main effects is

present when an interaction term is included in the model. The result shows

that gCGA(m̂)+Trim can offer satisfying variable selection results, and that it

outperforms the other methods in high-dimensional Cox models with interaction

terms, in which some marginally weak, but jointly strong main and interaction

effects appear.

To conclude this section, note that gCGA(m̂) and gCGA(m̂)+Trim exhibit

excellent performance in terms of screening and selection that surpasses that of

all other methods under consideration. In particular, when (n, p) = (400, 10000),

they perform almost perfectly over Scenarios 1–4, some of which seem very chal-
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lenging, owing to the high correlations between the relevant and the irrelevant

variables. Furthermore, as discussed in the Supplementary Material, the com-

puting time for gCGA(m) grows linearly with m, indicating that our proposed

method gCGA(m̂), with m̂ chosen from Q ⊆ {1, . . . , 50}, offers a substantial

improvement in terms of speed over gCGA(10000), which is equivalent to FR.

5. Data Analysis

We apply our proposed method to data from the study of Metzeler et al.

(2008). The primary concern here is to identify the gene signatures relevant

to overall survival in patients who are diagnosed with cytogenetically normal

acute myeloid leukaemia. In this study, the training cohort consisted of 163

adult patients, from whom a total of 44,754 gene signatures were recorded us-

ing Affymetrix HG-U133 A+B microarrays. The median survival time in the

training cohort is 9.4 months, with a censoring rate of 37%. In addition, an

independent sample consisting of 79 patients on Affymetrix HG-U133 Plus 2.0

microarrays is used as the test cohort, which has a median survival time of 15.7

months, with a censoring rate of 41%. Following Metzeler et al. (2008), all gene

expressions are centered and rescaled. This data set is publicly available on the

gene expression omnibus website (http://www.ncbi.nlm.nih.gov/geo/) under

the accession number GSE12417.

We consider gCGA(m̂)+Trim, with Q = {1, 10, 30, 50}, and the other four

variable selection methods introduced in Section 4; all methods are applied to the

training cohort to select relevant genes. To validate the results, we calculate the

concordance statistics (C-statistics) and the area under the curve (AUC) devel-

oped by Uno et al. (2011), based on the test cohort. The prediction performance

is reported in Table 3, revealing that the resultant 19 gene signatures selected by

our method possess greater predictive power. In particular, the first three genes

(SOSC2, AXL, and NCR3LG1) that survive the screening and selection stages

of gCGA(m̂)+Trim deserve further inspection. The first gene signature (SOSC2)

is known to be associated with patients’ overall survival in CN-AML (Metzeler

et al. (2008)), but is not discovered by any other methods under consideration.

On the other hand, the second gene (AXL) and the third gene (NCR3LG1) are

identified by CSIS+SCAD, ISIS+SCAD, and ALASSO. Therefore, we conclude

that gCGA(m̂)+Trim yields reliable importance ranking for gene signatures, and

leads to an interpretative sparse model with competitive prediction power.

http://www.ncbi.nlm.nih.gov/geo/
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Table 1. Results for (n, p) = (200, 10000) under Scenarios 1–4.

Censor Rate 20% 50%
TPR Sure FDR Exact AMS TPR Sure FDR Exact AMS

AR(1) correlation
gCGA(1)+Trim 1.00 1.00 0.00 1.00 5.00 0.96 0.91 0.00 0.90 4.79
gCGA(10)+Trim 1.00 1.00 0.00 0.99 4.97 0.99 0.97 0.00 0.95 4.90
gCGA(30)+Trim 1.00 1.00 0.00 0.99 4.97 0.99 0.97 0.00 0.95 4.90
gCGA(50)+Trim 1.00 1.00 0.00 0.99 4.97 0.99 0.97 0.00 0.95 4.90
gCGA(m̂)+Trim 1.00 1.00 0.00 1.00 5.00 0.99 0.98 0.00 0.96 4.92
SIS+SCAD 0.86 0.30 0.10 0.29 4.70 0.81 0.17 0.14 0.11 4.12
CSIS+SCAD 0.99 0.94 0.15 0.42 6.08 0.94 0.72 0.22 0.11 5.89
ISIS+SCAD 1.00 0.99 0.33 0.15 8.15 0.95 0.77 0.22 0.09 5.87
ALASSO 1.00 0.98 0.00 0.97 4.97 0.97 0.83 0.03 0.65 4.86

Equi-correlation
gCGA(1)+Trim 0.75 0.55 0.16 0.31 5.92 0.28 0.00 0.35 0.00 1.59
gCGA(10)+Trim 0.78 0.63 0.14 0.44 7.81 0.29 0.02 0.39 0.00 1.68
gCGA(30)+Trim 0.78 0.64 0.15 0.43 7.71 0.30 0.03 0.38 0.00 1.70
gCGA(50)+Trim 0.79 0.65 0.15 0.43 7.70 0.30 0.03 0.37 0.00 1.70
gCGA(m̂)+Trim 0.87 0.78 0.12 0.51 8.75 0.32 0.03 0.36 0.00 1.68
SIS+SCAD 0.34 0.00 0.17 0.00 2.84 0.29 0.00 0.25 0.00 3.04
CSIS+SCAD 0.41 0.00 0.13 0.00 3.06 0.32 0.00 0.23 0.00 3.24
ISIS+SCAD 0.46 0.12 0.14 0.00 4.40 0.32 0.00 0.23 0.00 3.24
ALASSO 0.87 0.55 0.08 0.22 10.96 0.54 0.00 0.17 0.00 2.69

Marginally weak but jointly strong signals I
gCGA(1)+Trim 0.99 0.99 0.00 0.99 2.98 0.96 0.94 0.00 0.94 2.88
gCGA(10)+Trim 1.00 1.00 0.00 1.00 3.00 0.99 0.99 0.00 0.99 2.98
gCGA(30)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(50)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(m̂)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
SIS+SCAD 0.34 0.00 0.04 0.00 1.12 0.34 0.01 0.03 0.01 1.08
CSIS+SCAD 0.67 0.02 0.12 0.02 1.97 0.67 0.02 0.06 0.00 1.50
ISIS+SCAD 0.82 0.45 0.17 0.12 3.14 0.74 0.22 0.11 0.01 2.26
ALASSO 0.63 0.02 0.08 0.02 1.86 0.57 0.00 0.07 0.00 1.48

Marginally weak but jointly strong signals II
gCGA(1)+Trim 0.67 0.00 0.72 0.00 7.23 0.67 0.00 0.61 0.00 4.98
gCGA(10)+Trim 0.68 0.03 0.71 0.03 7.33 0.67 0.01 0.64 0.01 5.60
gCGA(30)+Trim 0.70 0.11 0.65 0.11 6.90 0.67 0.02 0.64 0.02 5.68
gCGA(50)+Trim 0.72 0.17 0.60 0.17 6.69 0.68 0.05 0.62 0.05 5.57
gCGA(m̂)+Trim 0.72 0.17 0.61 0.17 6.74 0.68 0.05 0.62 0.05 5.58
SIS+SCAD 0.33 0.00 0.24 0.00 2.25 0.33 0.00 0.20 0.00 1.80
CSIS+SCAD 0.64 0.01 0.30 0.00 4.44 0.57 0.00 0.22 0.00 3.18
ISIS+SCAD 0.71 0.18 0.24 0.11 6.58 0.60 0.06 0.20 0.04 4.68
ALASSO 0.67 0.00 0.06 0.00 1.18 0.67 0.00 0.12 0.00 1.47
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Table 2. Results for (n, p) = (400, 10000) under Scenarios 1–4.

Censor Rate 20% 50%
TPR Sure FDR Exact AMS TPR Sure FDR Exact AMS

AR(1) correlation
gCGA(1)+Trim 1.00 1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00 5.00
gCGA(10)+Trim 1.00 1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00 5.00
gCGA(30)+Trim 1.00 1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00 5.00
gCGA(50)+Trim 1.00 1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00 5.00
gCGA(m̂)+Trim 1.00 1.00 0.00 1.00 5.00 1.00 1.00 0.00 1.00 5.00
SIS+SCAD 0.88 0.41 0.03 0.41 4.53 0.86 0.33 0.07 0.33 4.54
CSIS+SCAD 1.00 1.00 0.01 0.94 5.06 0.99 0.97 0.09 0.59 5.58
ISIS+SCAD 1.00 1.00 0.02 0.90 5.10 1.00 1.00 0.15 0.46 6.28
ALASSO 1.00 1.00 0.00 1.00 5.00 1.00 1.00 0.00 0.97 5.01

Equi-correlation
gCGA(1)+Trim 1.00 1.00 0.00 1.00 15.00 1.00 1.00 0.02 0.94 14.34
gCGA(10)+Trim 1.00 1.00 0.00 1.00 15.00 1.00 1.00 0.01 0.98 14.78
gCGA(30)+Trim 1.00 1.00 0.00 1.00 15.00 1.00 1.00 0.00 0.99 14.89
gCGA(50)+Trim 1.00 1.00 0.00 1.00 15.00 1.00 1.00 0.00 0.99 14.89
gCGA(m̂)+Trim 1.00 1.00 0.00 1.00 15.00 1.00 1.00 0.00 0.98 14.79
SIS+SCAD 0.54 0.00 0.10 0.00 7.14 0.51 0.00 0.14 0.00 5.90
CSIS+SCAD 0.80 0.07 0.03 0.05 10.93 0.69 0.02 0.09 0.02 8.88
ISIS+SCAD 0.91 0.82 0.05 0.38 13.18 0.86 0.69 0.12 0.09 12.74
ALASSO 1.00 1.00 0.00 0.99 15.01 1.00 0.96 0.02 0.65 15.18

Marginally weak but jointly strong signals I
gCGA(1)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(10)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(30)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(50)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
gCGA(m̂)+Trim 1.00 1.00 0.00 1.00 3.00 1.00 1.00 0.00 1.00 3.00
SIS+SCAD 0.34 0.00 0.01 0.00 1.04 0.34 0.00 0.00 0.00 1.02
CSIS+SCAD 0.68 0.05 0.03 0.05 2.14 0.67 0.01 0.04 0.01 2.13
ISIS+SCAD 1.00 1.00 0.00 0.98 3.02 1.00 1.00 0.07 0.76 3.30
ALASSO 1.00 1.00 0.00 1.00 3.00 0.96 0.87 0.00 0.83 2.84

Marginally weak but jointly strong signals II
gCGA(1)+Trim 0.74 0.21 0.64 0.21 9.09 0.70 0.11 0.67 0.11 7.47
gCGA(10)+Trim 0.94 0.82 0.15 0.82 4.38 0.83 0.50 0.38 0.50 5.69
gCGA(30)+Trim 0.99 0.97 0.02 0.97 3.21 0.89 0.67 0.25 0.67 4.82
gCGA(50)+Trim 1.00 0.99 0.01 0.99 3.07 0.92 0.75 0.19 0.75 4.37
gCGA(m̂)+Trim 1.00 0.99 0.01 0.99 3.07 0.91 0.74 0.20 0.74 4.44
SIS+SCAD 0.34 0.00 0.32 0.00 3.80 0.34 0.00 0.19 0.00 2.28
CSIS+SCAD 0.72 0.15 0.25 0.15 7.05 0.68 0.05 0.21 0.05 4.91
ISIS+SCAD 0.81 0.43 0.01 0.43 1.88 0.72 0.18 0.10 0.17 3.86
ALASSO 0.67 0.00 0.00 0.00 1.03 0.67 0.00 0.02 0.00 1.06



GREEDY VARIABLE SELECTION 1717

Table 3. Summary of prediction performance for gene signatures selected from different
methods in CN-AML data.

gCGA(m̂)+Trim SIS+SCAD CSIS+SCAD ISIS+SCAD ALASSO

C-statistic 0.618 0.610 0.579 0.618 0.582

AUC 0.626 0.603 0.544 0.592 0.552

Model size 19 7 10 32 10

6. Conclusion

We have proposed using the CGA, the gCGA, and an HDIC to select vari-

ables for high-dimensional Cox models. This study contributees to the literature

in the three ways. First, under a weak sparsity condition, we show that the con-

vergence rate of the CGA is coincident with the “minimax-optimal” rate obtained

in high-dimensional linear models. Note that although this rate is not necessarily

minimax-optimal for high-dimensional Cox models, the coincidence suggests that

the CGA works reasonably well in such models. Second, under a strong sparsity

condition, we show that we can use the gCGA and an HDIC to achieve vari-

able selection consistency, a property that has not been established previously

for greedy-type algorithms in high-dimensional Cox models. Third, the proposed

gCGA combines the computational efficiency of the CGA and finite-sample accu-

racy of FR. In particular, our experimental results show that gCGA(m̂)+HDIC

outperforms ALASSO and marginal methods, and exhibits excellent selection

accuracy, even in challenging situations in which marginally weak, but jointly

strong signals are present and highly correlated with the irrelevant variables.

We have yet to explore the performance of the proposed methods in high-

dimensional Cox models with interaction terms. Model selection for such models

can be applied to identify gene-gene interactions associated with patients’ overall

survival in lung adenocarcinoma (Wu, Huang and Ma (2018)), and thus merits

future research.

Supplementary Material

The online Supplementary Material contains detailed proofs of the theoretical

results, and additional simulations for various settings and that demonstrate the

time cost of gCGA(m).
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