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Abstract: A general Cox-type partial likelihood score process for staggered entry data

with covariate adjustment is shown to be asymptotically equivalent to a Gaussian pro-

cess with independent increments, regardless of whether or not the covariates being

adjusted for are independent of the covariates of primary interest. The approximation

yields new and simple group sequential tests as well as repeated con�dence intervals

that e�ectively incorporate information from ancillary concomitant variables. A recur-

sive formula is derived for computing discrete boundary values when the parameter of

interest is multidimensional. A prostatic cancer data set is implemented to illustrate

usefulness of the new approach. Results of simulation studies with moderate sample

sizes are reported, showing that the group sequential tests with covariate adjustment

perform markedly well in terms of e�ciency improvement and bias reduction.
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1. Introduction

In his seminal work, Cox (1972, 1975) proposed the proportional hazards

regression model and its associated partial likelihood for the analyses of survival

data. He demonstrated that many basic identities, crucial to the asymptotic

theory for the usual maximum likelihood estimation, also hold for the partial

likelihood function. Rigorous theoretical developments of large sample properties

were subsequently provided by Tsiatis (1981) and Andersen and Gill (1982).

Parallel results for general relative risk models were due to Prentice and Self

(1983).

In many clinical trials and epidemiological studies, individuals are recruited

sequentially and interim analyses are conducted to monitor their progress. An

important step in applying Cox's model to these situations is to characterize

limiting behavior of the partial likelihood score process calculated over the entire

study period. Despite this seemingly complicated setup, Tsiatis (1982), Sellke

and Siegmund (1983), Slud (1984) and Gu and Lai (1991) were able to reveal, in
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increasing generality, a very simple underlying structure, i.e., the score process

so calculated with a univariate concomitant variable converges to a time-rescaled

Brownian motion process. This important characteristic of the limiting distri-

bution legitimates use of many available sequential boundaries. Furthermore,

these boundaries can easily be discretized to form more realistic group sequen-

tial boundaries with more or less the same operating characteristics; (cf. Pocock

(1977), O'Brien and Fleming (1979) and Lan and DeMets (1983)). These char-

acteristics also facilitate the use of repeated con�dence intervals; (cf. Jennison

and Turnbull (1989)).

Tsiatis, Rosner and Tritchler (1985) found that e�ciency in a group se-

quential test may be substantially increased when other prognostic factors are

available. Their idea to construct more e�cient tests was to �rst estimate param-

eters for those factors and then replace them in the sequential testing statistics

by their estimators. A key assumption in their paper is that the covariate com-

ponent being tested is independent of all other components being adjusted for.

They argued that under this assumption, the test statistics they considered are

asymptotically equivalent to the ones without replacements, thereby making the

Brownian approximations, developed by earlier authors cited in the preceding

paragraph, valid. A similar �nding for the accelerated life model under the same

independence assumption was obtained by Lin (1992). While it is reasonable

to assume the independence between the treatment variable and other baseline

variables in a randomized clinical trial, such an assumption does impose a seri-

ous limitation. In the words of Meier (1983), \A major exclusion is the common

situation in which allocation to treatment is not made at random, so that sta-

tistical comparability of treatment groups cannot be assumed. In such studies,

extensive adjustment for baseline variables is not simply an option with merits

and limitations to be weighed, but an absolute necessity."

We study, in this article, the partial likelihood score process adjusting for

ancillary covariate components, which may depend on the covariate components

of primary interest. A key result of our �ndings is that, when covariate adjust-

ment is made in a proper way, such a process can still be approximated by a

Gaussian process with independent increments. Thus, in the case that only one

covariate component is of primary interest, the process is approximately a time-

rescaled Brownian motion. In this regard, many available sequential and group

sequential boundaries may be used to construct desirable tests. We also demon-

strate how the property of independent increments can facilitate computation of

a general group sequential boundary, especially when the process is multidimen-

sional. Comparisons with tests that do not adjust for ancillary covariates are

made through a prostatic cancer data set as well as simulation studies.
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2. Notation and Main Theoretical Results

Consider a typical clinical trial with patients being recruited sequentially.

Suppose patient i enters the trial at calendar time �i and either dies at �i+Ti, or

is censored at �i + Ci. Associated with each i are two time-dependent covariate

processes. Denote Zi(p�1) to be the covariate vector of primary interest, usually

indicating the type of treatment patient i receives, and Wi(q � 1) to be other

measurements we intend to adjust. De�ne Xi(t) = maxfmin(Ti; Ci; t � �i); 0g
and �i(t) = IfTi � min(t� �i; Ci)g. Thus, the observed data at calendar time t

consist of Xi(t), �i(t) and fZi(u);Wi(u);u � Xi(t)g.
The proportional hazards model with a general relative risk form assumes

prfs � Ti � s+ dsjTi � s; Zi(u); Wi(u);u � sg = hf
0Zi(s); �
0Wi(s)g�0(s)ds;

where h is a prespeci�ed smooth link function, 
 and � are unknown parameter

vectors and �0 is an arbitrary baseline hazard rate function. We shall call 


the primary parameter and � the ancillary parameter. The special case of the

exponential link hf
0Zi(s); �
0Wi(s)g = expf
0Zi(s)+�0Wi(s)g is the well-known

Cox regression model. The general relative risk form was studied in detail by

Prentice and Self (1983), who argued that in some situations link functions other

than the exponential form are more suitable. A particularly useful example is

the linear intensity function model hf
0Zi(s); �
0Wi(s)g = 1+ 
0Zi(s) + �0Wi(s).

It will be assumed throughout the sequel that censoring is noninformative

in the sense that given Zi and Wi, Ti and Ci are independent. Under this

assumption, the partial likelihood function (Cox (1975), Prentice and Self (1983))

calculated at calendar time t takes the form

Ln(t; 
; �) =
nY
i=1

"
hf
0Zi(Xi(t)); �

0Wi(Xi(t))gPn
j=1 hf
0Zj(Xi(t)); �0Wj(Xi(t))gIfXj(t) � Xi(t)g

#�i(t)

:

Di�erentiating the log partial likelihood function with respect to 
 and � gives

rise to two score processes

Sn(t; 
; �) =
@

@

log Ln(t; 
; �); Un(t; 
; �) =

@

@�
log Ln(t; 
; �):

To test hypothesis H0 : 
 = 
0, one might use Sn(t; 
0; �0) with an appropri-

ate normalizing factor if �0 were known. In practice, �0 is unknown but can be

estimated from the available data at t. We recommend using �̂t de�ned by

Un(t; 
0; �̂t) = 0: (1)

The role and motivation of (1) for estimation of the ancillary parameter �0
will be discussed in Section 5. It is seen there that �̂t is crucial to the sim-

ple variance-covariance structure of our statistic. Arising from this is the score
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process Sn(t; 
0; �̂t) upon which we will concentrate. The usefulness of this pro-

cess depends on its distributional characteristics. In Appendix, we will derive the

key asymptotic result, i.e., under H0, fn�1=2Sn(t; 
0; �̂t); t � 0g converges to a

Gaussian process with independent increments and variance-covariance function

J(t) = �z;z(t)� �z;w(t)�
�1
w;w(t)�

0
z;w(t), where �z;z(t) is the limit of

1

n

nX
i=1

Z t

0

Zh;i(s; t; 
0; �0)Z
0

h;i(s; t; 
0; �0)IfXi(t) � sgh(
00Zi(s); �
0

0Wi(s))d�0(s);

(2)

and, �z;w(t) and �w;w(t) are similarly de�ned with Z and Z 0 replaced respectively

by Z and W 0, and W and W 0. Here Zh;i(s; t; 
; �) and Wh;i(s; t; 
; �) are the

derivatives of log hf
0Zi(s); �
0Wi(s)g � log

Pn
j=1 hf
0Zj(s); �

0Wj(s)gIfXj(t) �
sg with respect to 
 and �.

In the special case p = 1, n�1=2Sn(t; 
0; �̂t) converges to a time-rescaled Brow-

nian motion B(J(t)), where B denotes the standard Brownian motion process.

Moreover, under contiguous alternatives Ha : 
 = 
0 + �=
p
n, the normalized

score process n�1=2Sn(t; 
0; �̂t) converges to B(J(t))+J(t)�. In other words, un-

der the new time scale J , the score process is approximately a Brownian motion

with a linear drift.

The approximation to Sn(t; 
0; �̂t) by a Gaussian process with independent

increments generalizes Sellke and Siegmund (1983) to accommodate covariate

adjustment. It also extends the �ndings by Tsiatis et al. (1985), who assumed

that (a) the two covariate vectors Z andW are independent; (b) the link function

h(
0Z; �0W ) can be factorized to h1(

0Z)h2(�

0W ); (c) 
0 = 0. To see this, note

that under their assumptions, �z;w = 0 and, therefore, n�1=2Sn(t; 
0; �̂t) has the

same limiting distribution as n�1=2Sn(t; 
0; �0).

The variance-covariance function J(t) can be estimated consistently. We

recommend using Ĵ(t) = �̂z;z(t)� �̂z;w(t)�̂
�1
w;w(t)�̂

0
z;w(t), where �̂z;z �̂z;w and �̂w;w

are obtained by substituting �0 and �0(s) in (2) by �̂t and

�̂0(s; t) =
nX
i=1

�i(t)IfXi(t) � sgPn
j=1 hf
00Zj(Xi(t)); �̂

0
tWj(Xi(t))gIfXj(t) � Xi(t)g

:

The proof for the consistency of Ĵ(t) is outlined in Appendix.

3. Repeated Signi�cance Tests

In the preceding section we have derived the limiting distribution of the

adjusted score process n�1Sn(t; 
0; �̂t). For p = 1, it is distributed as a time-

rescaled Brownian motion B(J(t)) under the null hypothesis, and as B(J(t))

plus a linear drift J(t)� under contiguous alternatives. Thus, many well-studied
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sequential boundaries for testing a drift in Brownian motion can be applied.

For example, one may use the simple parallel boundary to test H0 : 
 = 
0
versus Ha : 
 < 
0. This leads to stopping rules � = infft : n�1=2Sn(t; 
0; �̂t) 62
(a; b)g. On the other hand, when repeated signi�cance tests are desirable, we

can use stopping rules � = infft � t0 : jSn(t; 
0; �̂t)j=fnĴ (t)g1=2 � b, or nĴ(t) �
mg with a prespeci�ed m > 0 to get curved boundaries. Note that by taking

v = Ĵ(t), Sn(t; 
0; �̂t)=fnĴ(t)g1=2 behaves like B(v)=v1=2. Details on various

sequential boundaries for Brownian motion can be found in Siegmund (1985, pp:

36-43, 70-89).

Instead of continuously monitoring the trial, we may consider more realistic

group sequential problems. Suppose the number of looks K can be speci�ed in

advance. Then we can determine successively the calendar times t1 = infft >
ti�1 : Ĵ(t) > mi=Kg; i = 1; : : : ;K, to review the trial, where t0 and m are �xed

constants. Since ti de�ned in this way give equal information increments, the

boundaries of Pocock (1977) and O'Brien and Fleming (1979) can be applied

by specifying exit probabilities accordingly. On the other hand, if K cannot be

determined in advance but there is a continuous boundary with stopping rule,

say � , available, then it is natural to follow the proposal of Lan and DeMets

(1983). This is done by calculating �(t) = pr(� > t) and by using it to obtain

discrete boundary values. The method proposed by Slud and Wei (1982) may

also be used to obtain desirable tests when the monitoring times ti and the upper

bound K are predetermined.

When p > 1, it is prohibitively di�cult to construct continuous boundaries

for testing H0 : 
 = 
0, even when 
0 = 0; (cf. Siegmund (1985)). Nonetheless,

boundaries for group sequential tests can be evaluated in principle by applying,

for example, Slud and Wei (1982). In practice, the evaluation process involves

K � p multiple integration, which we found to be di�cult even when K � p

is moderate, say, 10. We now describe a method that avoids high dimensional

integration by exploiting the Markovian nature of Sn(t; 
0; �̂t). To test H0 against

Ha : 
 6= 
0 with levels �k at tk, k = 1; : : : ;K, so that the overall level is � =

�1+� � �+�K , consider the score process V̂n(t) = S0n(t; 
0; �̂t)fnĴ(t)g�1Sn(t; 
0; �̂t):
Denote Jk to be nĴ(tk) and �k to be normal random variables with E�k = 0 and

E(�k�
0
k�) = Jk; k � k�: The boundary values d1; : : : ; dk of Slud and Wei are

de�ned successively through

�k = pr(V1 � d1; : : : ; Vk�1 � dk�1; Vk > dk); k = 1; : : : ;K; (3)

where Vk = �0kJ
�1
k �k: Note that direct computation of (3) involves k � p dimen-

sional integration. To avoid doing this, we propose to �rst compute

fk(x)dx = prfV1 � d1; : : : ; Vk�1 � dk�1; J
�1=2

k �k 2 [x; x+ dx)g: (4)



798 MINGGAO GU AND ZHILIANG YING

In Appendix, we shall make use of the Markovian property of f�kg to derive the
key recursion

fk(x) =

Z
kyk2�dk�1

N(J
�1=2

k J
1=2

k�1y; I � J
�1=2

k Jk�1J
�1=2

k ;x)fk�1(y)dy; (5)

where N(�;�;x) denotes the p-variate normal density at x with mean � and

covariance matrix �. But (5) involves only p-dimensional integration, regardless

of k. Once fk is computed, we proceed to determine dk via
R
kxk2�dk

fk(x)dx = �k.

4. Numerical Studies

To illustrate the usefulness of the foregoing results, we reexamine the pro-

static cancer data given in Byar (1985). The data set was collected from a ran-

domized clinical trial for comparing treatments at four di�erent levels, placebo,

.2 mg diethylstilbestrol (DES), 1 mg and 5 mg, for prostatic cancer patients in

stages 3 and 4, which represent, respectively, without or with evidence of distant

metastasis. Clearly, which stage a cancer patient is in is strongly correlated to

his/her survival. We therefore expect e�ciency improvement if the stage e�ect is

incorporated. In our analysis, we excluded all other prognostic factors that are

also listed in Byar (1985) for the sake of simplicity. Cox's proportional hazards

model

�(tjZ;W ) = exp(
Z + �W )�0(t)

was used with Z indicating the treatments and W the cancer stages. As it turns

out, there is (log)nonlinearity of the treatment e�ect between 1.0 mg and 5.0 mg.

So we combined the two levels into one, i.e., Z takes three values instead of four.

Table 1 reports two sequential tests, one with adjustment and the other

without, for the hypothesis of no treatment e�ect against the two-sided alterna-

tives that treatment e�ect does exist. Both tests use standardized Cox's score

processes with boundaries calculated via the method of Slud andWei (1982). Dis-

cretization is done at the end of each year from 1968 to 1974. We omitted 1973

partly because there are few deaths during that period and partly to facilitate

computation. The overall type-one error is � = :05, which is evenly distributed

over the six looks. By comparing the third and the last columns of Table 1, we

see that the boundary is crossed at the fourth look with a substantial margin of

overshoot. Thus the null hypothesis would be rejected at the end of 1971 if the

test with covariate adjustment as described were used. On the other hand from

Table 1, the boundary is crossed at the �fth look, with a smaller margin. So the

null hypothesis would also be rejected, but with a one-year delay, if no covariate

adjustment is made.
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Table 1. Sequentially calculated values of number of death, standardized

score statistic, variance and boundary for Prostatic Cancer Data

Time Death Std: statistic Variance Boundary�

Dec., 68 22 1.982 (1.998)�� 3.628 (3.727) 2.638 (2.638)

Dec., 69 53 2.229 (1.972) 10.14 (10.27) 2.588 (2.587)

Dec., 70 88 2.280 (1.833) 17.51 (17.80) 2.519 (2.519)

Dec., 71 109 2.886 (2.309) 21.63 (22.04) 2.401 (2.401)

Dec., 72 123 3.003 (2.427) 24.27 (25.00) 2.291 (2.299)

Dec., 74 130 3.140 (2.548) 25.77 (26.30) 2.183 (2.178)

�The overall type-one error is � = :05, which is distributed evenly

over the six looking times.
��Figures inside ( ) are calculated using the unadjusted log rank statis-

tic.

Table 2. Summary of type-one errors and powers of simulation results for

the tests (� = :05) based on adjusted and unadjusted partial likelihood

score processes

corr = 0 corr = :3 corr = :5

� 
 Adjusted Unadj. Adjusted Unadj. Adjusted Unadj.

0 0 .055 .054 .053 .054 .053 .054

1 .765 .775 .701 .775 .507 .775

.5 0 .056 .053 .051 .097 .055 .141

1 .778 .780 .715 .875 .521 .921

1 0 .052 .052 .051 .166 .053 .312

1 .790 .760 .722 .931 .529 .978

2 0 .050 .052 .051 .373 .050 .760

1 .795 .668 .737 .976 .540 .999

3 0 .049 .052 .050 .578 .050 .956

1 .799 .557 .741 .989 .544 1.000

To further investigate the �nite sample behavior of the proposed tests and

compare their e�ciency with tests based on unadjusted partial likelihood score

processes, we have conducted some simulation studies with sample size n = 100.

The results are presented in Table 2. To ease computation, both the primary

covariate X and the ancillary covariate W were taken to be univariate with
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uniform [0; 1]. The correlation between X and W was taken as 0, .3 and .5 and

the nuisance parameter, �, was taken as 0, .5, 1, 2 and 3. Given X and W ,

the survival time T is exponentially distributed with hazard rate �(X;W ) =

exp(
X + �W ). The censoring time C was independently generated from an

exponential distribution with hazard rate �c = exp(�1:5). The entry time �

is uniformly distributed over [0; 4]. Three interim analyses were conducted at

times 2, 3.5 and 5. Pocock-type boundaries were used throughout for 
 = 0

versus 
 > 0. In each entry, the top �gure stands for the rejection rate under

the null hypothesis (type-one error) while the bottom one is the rejection rate

under alternative 
 = 1 (power). 20,000 simulations were generated for each

combination of parameters; and both adjusted and unadjusted statistics were

calculated from the same sequence of the generated data when the parameters

are the same. When there is no correlation, the asymptotic theory indicates

that both adjusted and unadjusted log rank tests are valid. The �gures under

corr = 0 show that the type-one errors are quite close to the target value .05.

Their powers are compatible for � = 0 and � = :5. As � increases, the adjusted

test becomes signi�cantly more powerful. On the other hand, when the two

covariate variables are correlated, the unadjusted test is no longer valid unless

� = 0. This is because even if 
 = 0, X could still be related to the survival time

through W . Indeed, �gures under corr = :3 and corr = :5 show that their type-

one errors can deviate from .05 quite substantially. Nonetheless, the adjusted test

still gives approximately correct type-one errors and reasonably good powers.

5. Discussion

As pointed out in Section 2, use of �̂t de�ned by (1) is essential for process

Sn(t; 
0; �̂t) to have independent increments. For example, if one uses �̂�t , where

(
̂�t ; �̂
�
t ) solves Un(t; 
̂

�
t ; �̂

�
t ) = 0 and Sn(t; 
̂

�
t ; �̂

�
t ) = 0, then it is easy to show

that the resulting statistic Sn(t; 
0; �̂
�
t ) in general need not have independent

increments.

Another application of the score process with covariate adjustment is to ob-

tain a sequence of repeated con�dence intervals (Jennison and Turnbull (1989),

Lai (1984)) at t1; t2; : : : ; say, for 
 by inverting intervals for Sn(tk; 
; �̂tk ), k =

1; 2; : : : ; where �̂t solves Un(t; 
; �̂t) = 0. Although direct inversion is compu-

tationally complex, a rather simple approximation can be used to obtain the

con�dence intervals. In fact, it is easy to show that Sn(t; 
; �̂t) is asymptotically

equivalent to Dn(t; 
̂
�
t ; �̂

�
t )(
 � 
̂�t ), where

Dn(t; 
; �) =
@

@

Sn(t; 
; �) �

@

@�
S0n(t; 
; �)

h @
@�

Un(t; 
; �)
i�1 @

@

Un(t; 
; �):
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Thus, we can choose appropriate constants cn;k to get con�dence intervals 
̂�tk �
cn;kD

�1
n (tk; 
̂

�
tk
; �̂�tk): This is in analogy with a proposal by Harrington (1989)

on repeated con�dence intervals for the regression parameter when there is no

covariate adjustment.

For the prostatic cancer data, the repeated con�dence intervals at the six

looking times speci�ed in Table 1 are found to be (�2:38; :38), (�1:50; :12),
(�1:15; :05), (�1:13;�:09), (�1:08;�:15) and (�1:05;�:19), respectively. Here

the spending error probabilities are chosen to be equal to .05/6 and thus the

overall coverage probability is .95. Note that the fourth interval is the �rst one

to exclude 0, in agreement with the testing results in Table 1.

The idea of sequentially testing a parameter in presence of a nuisance param-

eter using the likelihood ratio statistic was �rst proposed by Whitehead (1978,

1983). A more explicit description of his method can be found in Siegmund

(1985, pp: 63-66).

While the proposed method was applied only to a data set from a clinical

trial, we believe interesting applications can also be found in epidemiological

studies, where dependency among covariate components is common. Research

on applying our �ndings and catering them towards special needs of those studies

are certainly desirable.

The theory developed in Section 2 is based upon the assumption that prob-

ability relation between covariates and survival times are correctly modeled. In

practice, some kind of model misspeci�cation is unavoidable. Lin and Wei (1989)

discussed the robustness issue of Cox's regression model in a nonsequential set-

ting and proposed a robust variance estimator that is valid even when the model

is misspeci�ed. It is possible to apply their approach to get a similar alterna-

tive variance estimator for Sn(t; 
0; �̂t). Many theoretical and methodological

problems in this respect, however, remain to be addressed.

Since the purpose of this work is to show sequentially computed Cox's score

process with covariate adjustment has (asymptotically) independent increment

and to demonstrate the importance of this feature, the technical developments

given in Appendix are somewhat sketchy. Fully rigorous proofs, including tight-

ness of multidimensional Cox's score with staggered entry, are quite involved and

will be reported elsewhere.
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Appendix

Derivation of the limiting distribution of n�1=2Sn(t; 
0; �̂t): Let An(t; 
; �)

andBn(t; 
; �) be the derivative functions respectively of Un(t; 
; �) andSn(t; 
; �)

with respect to �. By taking the Taylor expansions at �0, we have

0 =Un(t; 
0; �̂t) = Un(t; 
0; �0) + nAn(t; 
0; �0)(�̂t � �0) + op(n
1=2);

Sn(t; 
0; �̂t) = Sn(t; 
0; �0) + nBn(t; 
0; �0)(�̂t � �0) + op(n
1=2);

where op(1) is uniform in t. Standard algebraic and probabilistic calculations as

given in Prentice and Self (1983) yield An(t; 
0; �0) = �w;w(t)+op(1), Bn(t; 
0; �0)

= �z;w(t) + op(1): Therefore,

n�1=2Sn(t; 
0; �̂t) = n�1=2Sn(t; 
0; �0) + n�1=2�z;m(t)�
�1
w;w(t)Un(t; 
0; �0) + op(1);

which is certainly tight and asymptotically Gaussian. To verify the covariance

structure of the limiting process, note that

n�1=2Sn(t; 
0; �0) =
nX
i=1

n�1=2
Z t

0

Zh;i(s; t; 
0; �0)dMi(s; t);

where Mi(s; t) = IfXi(t) � sg�i(t) �
R s
0
IfXi(t) � ugd�0(u): For �xed t � t�,

Mi(�; t) and Mi(�; t�) are martingales with respect to an appropriate �-�ltration.

Evaluating the predictable covariation between the two martingale integrals n�1=2

Sn(t; 
0; �0) and n
�1=2Sn(t

�; 
0; �0) gives

1

n

nX
i=1

Z t

0

Zh;i(s; t; 
0; �0)Zh;i(s; t
�; 
0; �0)hi(s; 
0; �0)IfXi(t) � sgd�0(s)

=�z;z(t) + op(1):

This and other similar variance-covariance calculations show that the asymptotic

covariance between n�1=2Sn(t; 
0; �̂t) and n�1=2Sn(t
�; 
0; �̂

�
t ) is J(t) = �z;z(t) �

�z;w(t)�
�1
w;w(t)�w;z(t): Hence, the limit of n�1=2Sn(t; 
0; �̂t) has independent in-

crements with J as its variance-covariance function.

Proof of consistency of Ĵ(t). It su�ces to show that �̂z;z(t); �̂z;w(t) and

�̂w;w(t) converge respectively to �z;z(t); �z;w(t) and �w;w(t), which are straight-

forward consequences of �̂t ! �0 and �̂0(s; t)! �0(s):

Derivation of Equation (5). For k > 1, by de�nition

fk(x)dx =

Z
kyk2�dk�1

prfV1 � d1; : : : ; Vk�2 � dk�2; J
�1=2

k�1 �k�1 2 [y; y + dy);

J
�1=2

k �k 2 [x; x+ dx)g

=

Z
kyk2�dk�1

prfJ�1=2k �k 2 [x; x+ dx)jJ�1=2k�1 �k�1 = ygfk�1(y)dy;
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where the second equality holds by the strong Markov property. Since the condi-

tional density of J
�1=2

k �k at x given �k�1 = J
1=2

k�1y is the �rst term of the integrand

of (7), we have the proof.
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