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Abstract: For theoretical properties of variable selection procedures for Cox’s model,

we study the asymptotic behavior of partial likelihood for the Cox model. We find

that the partial likelihood does not behave like an ordinary likelihood, whose sample

average typically tends to its expected value, a finite number, in probability. Under

some mild conditions, we prove that the sample average of partial likelihood tends

to infinity at the rate of the logarithm of the sample size, in probability. We apply

the asymptotic results on the partial likelihood to study tuning parameter selection

for penalized partial likelihood. We find that the penalized partial likelihood with

the generalized cross-validation (GCV) tuning parameter proposed in Fan and Li

(2002) enjoys the model selection consistency property, despite the fact that GCV,

AIC and Cp, equivalent in the context of linear regression models, are not model

selection consistent. Our empirical studies via Monte Carlo simulation and a data

example confirm our theoretical findings.

Key words and phrases: Akaike information criterion, Bayesian information crite-

rion, LASSO penalized partial likelihood, SCAD, variable selection.

1. Introduction

The Cox model (Cox (1972)) has been the most popular model in the survival

data analysis during the past decades, and the partial likelihood (Cox (1975)) is

perhaps the most commonly-used technique for analysis of right censored data.

In practice, many risk factors and covariates are available for the initial analysis,

thus an important task is to identify the significant risk factors and covariates.

Variable selection is a useful technique in the analysis of survival data in the

presence of many covariates. Classical variable selection criteria for linear regres-

sion models can be extended for the Cox model by replacing the log-likelihood

by the log-partial likelihood (AIC (Akaike (1974)) and BIC (Schwarz (1978))).

The LASSO (Tibshirani (1996)) variable selection technique has been extended
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for the Cox model (Tibshirani (1997); Zhang and Lu (2007); Zou (2008)). Non-

concave partial likelihood variable selection procedures have been developed for

the Cox model (Fan and Li (2002); Bradic, Fan and Jiang (2011)). To investigate

the theoretical property of these procedures, we have to study the asymptotic

behavior of the partial likelihood.

There has been little work on the asymptotic behavior of the partial likeli-

hood, though the asymptotic properties of the partial likelihood estimator have

been extensively studied (Tsiatis (1981); Andersen and Gill (1982); Takemi and

Toshinari (1984)). Under mild regularity condition, the maximum partial likeli-

hood estimator behaves the same as the ordinary maximum likelihood estimator

of i.i.d. random samples in terms of asymptotic consistency, asymptotic nor-

mality and asymptotic efficiency. See, for example, Murphy and van der Vaart

(2000). In this paper, we first study the asymptotic behavior of the partial likeli-

hood, and prove that the ‘sample average’ of partial likelihood diverges to infinity

at a rate of the logarithm of the sample size. This clearly indicates that the Cox

partial likelihood does not behave like an ordinary likelihood in that under mild

regularity conditions, the sample average of the ordinary likelihood function con-

verges to its expectation (a finite value) in probability as the sample size tends

to infinity.

With the aid of the asymptotic property of partial likelihood, we study the

selection of regularization parameter in penalized partial likelihood for variable

selection. Tibshirani (1997) proposed penalized partial likelihood with LASSO

penalty for the Cox model. Fan and Li (2002) proposed the partial likelihood

with the SCAD penalty for the Cox models, and showed that under certain reg-

ularity conditions, the resulting estimate enjoys the oracle property. Zhang and

Lu (2007) and Zou (2008) further proposed adaptive LASSO for the Cox model

to improve the SCAD procedure in terms of computational efficiency, while re-

taining the oracle property. The oracle property depends on the choice of the

regularization parameter in penalized partial likelihood. It is well known that

the regularization parameter controls the model complexity of the selected mod-

els, and plays a crucial role in these variable selection procedures. The issue of

regularization parameter selection for penalized partial likelihood has not been

systematically studied, in part because the asymptotic behavior of partial likeli-

hood was not well understood. Wang, Li and Tsai (2007) studied the selection

of regularization parameter in the SCAD penalized least squares for linear re-

gression models. They showed that with a positive probability, the generalized

cross-validation (GCV, Craven and Wahba (1979)) selector yields an over-fitted
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model, and therefore this procedure does not enjoy the oracle property.

In this paper, we prove that the GCV selector for the SCAD method for

the Cox model enjoys model selection consistency, in contrast to its model selec-

tion inconsistency in the least squares setting as demonstrated in Wang, Li and

Tsai (2007). Although GCV is equivalent to AIC and the Cp in the context of

linear regression models, AIC and Cp yield an overfitted models with a positive

probability, and thus are not model selection consistent.

The rest of this paper is organized as follows. Section 2 studies the asymp-

totic behavior of the partial likelihood of the Cox model. We study the regu-

larization parameter selection for the penalized partial likelihood in Section 3.

Simulation study and a data example are presented in Section 4. Proofs are given

in the Appendix.

2. Asymptotic Behavior of Cox’s Partial Likelihood

Let T and X = (X1, . . . , Xd)
T be the survival time and associated d-dimen-

sional vector of covariates, respectively. Consider the Cox proportional hazard

regression model:

h(t |x) = h0(t) exp(xTβ), (2.1)

where β is the regression coefficient vector, and h(t |x) is the conditional hazard

function of T given X = x with h0(t) as an arbitrary baseline hazard function.

Suppose that (T1,x1), . . . , (Tn,xn) is a random sample of (T,X), and the ob-

served right censored survival data are as follows: (V1, δ1,x1), . . . , (Vn, δn,xn),

where Vi = min{Ti, Ci}, δi = I{Ti ≤ Ci}, and Ci is the right censoring vari-

able independent of Ti given X = xi. Without loss of the generality, assume

that there are no ties among observed continuous random variables Vi’s. The

log-partial likelihood function of the observed data is

`c(β) =

n∑
i=1

δix
T
i β −

n∑
i=1

δi log
(∑n

j=1I{Vj ≥ Vi} exp(xTj β)
)
. (2.2)

(Cox (1975)). The goal is to study the asymptotic behavior of `c(β). We first

illustrate the different behaviors of the log-partial likelihood and the likelihood

of an i.i.d. sample by an example.

Example 1. Suppose that we have an i.i.d. random sample {Y1, . . . , Yn} from

a population with probability density/mass function f(y; θ), so `(θ) =
∑n

i=1

log{f(Yi; θ)} is the log-likelihood function. By the weak law of large number,

n−1`(θ) → E log{f(Y ; θ)} in probability under mild regularity conditions. Fur-



2716 LI ET AL.

Table 1. Values of U and the corresponding average censoring rates (1 − ρ1) together
with µ0=̂E{(T ≤ C)X}.

U 10.00 5.00 2.75 1.80 1.20 0.80 0.50 0.30
(1− ρ1) 0.1222 0.2055 0.2991 0.3797 0.4613 0.5485 0.6393 0.7311

µ0 0.0968 0.1429 0.1775 0.1971 0.2007 0.2028 0.1921 0.1652

thermore, under mild regularity conditions, the maximum partial likelihood es-

timator, the maximizer of `c(β), behaves the same as the ordinary maximum

likelihood estimator, the maximizer of `(θ), in terms of asymptotic consistency,

asymptotic normality and asymptotic efficiency. See, for example, Murphy and

van der Vaart (2000). Here, we numerically illustrate that

n−1`c(β)→∞ as n→∞. (2.3)

We generated a random sample of size n from the proportional hazard model

h(t|x) = h0(t) exp(Xβ),

where h0(t) ≡ 1, β = 1 and X ∼ N(0, 1). The censoring variable C was generated

from an exponential distribution with mean U . Therefore, the average censoring

rate varies with different values of U . We list several values of U in Table 1

together with their corresponding average censoring rates, 1−E I(T ≤ C)=̂1−ρ1,
and take 10 different values of n ranging from 4 (= 22) to 1,024 (= 210). Figure 1

depicts the scatter plot of log(n) versus −n−1`c based on a set of typical samples

based on the different U listed in Table 1. Figure 1 clearly suggests that −n−1`c
increases at log(n) rate.

We next show that −n−1`c(β) tends to infinite at the rate of log(n) using

techniques related to empirical processes. Let

Gn(v,x) = n−1
n∑
i=1

I{Vi ≤ v,xi ≤ x}, Hn(v) = n−1
n∑
i=1

I{Vi ≤ v, δi = 1}, (2.4)

withG(v,x) andH(v) as the limits of the empirical distribution functionsGn(v,x)

and Hn(v), respectively. Take µ0 = E{I{T ≤ C}X}, W (t) =
∫ ∫

v≥t exp(xTβ)

dG(v,x), and ρ1 = EI{T ≤ C}. The proof of the following theorem is given in

Appendix A.

Theorem 1. If (Vi, δi,xi), i = 1, . . . , n, is a random sample from the Cox model

(2.1) and the censoring time Ci is independent of Ti given xi, then the following

statements hold.
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Figure 1. Plot of log(n) versus −n−1`c. ‘o’ is the scatter plot of log(n) versus −n−1`c
based on a typical simulated data set. The solid line in each plot is log(n)ρ̂1−βT µ̂0 with
β = 1, where ρ̂1 is an estimate of EI{T ≤ C} and µ̂0 is an estimate of E{I{T ≤ C}X}.
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(a) If X has a finite bounded support, then

− n−1`c(β) = ρ1 log n− µT0 β +Op(1), as n→∞. (2.5)

(b) If µ1 =
∫∞
0 logW (t) dH(t) is well-defined, E|Xj | < ∞ for all j = 1, . . . , d,

and 0 < E exp(XTβ) <∞,

− n−1`c(β) = ρ1 log n− µT0 β + µ1 + op(1). (2.6)

When there is no censoring, it can be shown that W (t) = fT (t)/h0(t) and

µ1 =
∫∞
0 log(fT (t)/h0(t)) dFT (t), where fT (t) and FT (t) are the probability den-

sity and cumulative distribution function of T in (2.1), respectively. Thus, the

assumption about µ1 holds for many distributions, such as the exponential dis-

tribution.

Remark 1. From the proof of this theorem, the leading term ρ1 log(n) comes

from log(n){(1/n)
∑n

i=1 δi}, which does not depend on the regression coefficient

β and does not affect the first and second order derivatives of the partial likeli-

hood function. As the asymptotic normality of the maximum partial likelihood

estimator relies on the first and second order derivatives, the divergent behavior

of the partial likelihood function does not impact the asymptotic normality of

the partial likelihood estimator. On other hand, the tuning parameter selector

for penalized partial likelihood, studied in next section, depends on the partial

likelihood function itself. As a result, the asymptotic behavior of the partial

likelihood function directly affects the property of the tuning parameter selector.

3. Tuning Parameter Selector in Penalized Partial Likelihood

Take the penalized partial likelihood to be

`c(β)− n
d∑
j=1

pλ(|βj |), (3.1)

where d is the dimension of β, pλ(·) is a penalty function with a tuning pa-

rameter λ (or more generally, λjs). The penalized partial likelihood estimate

of β maximizes (3.1) with respect to β. Denote by β0 the true value of β,

and let β0 = (β10, . . . , βd0)
T = (βT10,β

T
20)

T . Without loss of generality, we take

β20 = 0 with all components of β10 nonzero. Under some regularity conditions,

Fan and Li (2002) showed that the nonconcave penalized likelihood estimator

β̂ = (β̂
T

1 , β̂
T

2 )T possesses the oracle property: with probability tending to 1, for

a certain choice of pλn(·), we have β̂2 = 0 and
√
n(β̂1 − β10)→ N(0, I−11 (β10,0)),
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where I1(β10,0) is the Fisher information matrix for β1 knowing β2 = 0.

The oracle property depends on the choice of the tuning parameter. Thus,

the selection of tuning parameter is fundamental in the penalized likelihood pro-

cedure. Wang, Li and Tsai (2007) studied the selection of the tuning parameter

for penalized least squares for linear regression models. They showed that the

GCV tuning parameter of Fan and Li (2001) cannot yield an oracle estimator.

The issue of tuning parameter selection for the penalized partial likelihood has

not been studied. Based on the asymptotic results about the partial likelihood,

we show that the GCV tuning parameter selector for (3.1) possesses model se-

lection consistency, in contrast to the model selection inconsistency of the GCV

tuning parameter selector in the penalized least squares setting.

Let β̂λ be the penalized partial likelihood estimator with tuning parameter

λ. Define the GCV statistic to be

GCV(λ) =
−`c(β̂λ)

n(1− dfλ/n)2
. (3.2)

When λ̂GCV = argminλ{GCV(λ)} is selected, where the degree of freedom dfλ
is set to be the number of the nonzero penalized partial likelihood estimate

corresponding to the tuning parameter λ. It can be shown that with probability

tending to one, the effective number of parameters in Fan and Li (2002) is dfλ
by using related techniques in Zhang, Li and Tsai (2010).

We define the corresponding AIC and BIC statistics as

AIC(λ) = −2`c(β̂λ) + 2dfλ, (3.3)

BIC(λ) = −2`c(β̂λ) + log(n)dfλ, (3.4)

with the AIC and BIC tuning parameter selectors

λ̂AIC = argminλ{AIC(λ)} and λ̂BIC = argminλ{BIC(λ)}

When t lies in the neighborhood of 0, (1 − t)−2 ≈ 1 − 2t so, when n is large

enough,

2nGCV(λ) ≈ −2`c(β̂λ) + 4

{
−`c(β̂λ)

n

}
dfλ.

If −`c(β̂λ)/{n log(n)} → EI{T ≤ C} as n→∞, then

2nGCV(λ) ≈ −2`c(β̂λ) + 4ρ1 log(n)dfλ. (3.5)

For ρ1 ≥ 1/4, the GCV tuning parameter can yield a sparser model than the one

selected by the BIC-tuning parameter selector, as is seen in the simulation study

in Section 4.
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3.1. Definition and notation

We first need to define the candidate models considered in model selection.

Let ᾱ = {1, . . . , d} denote the label of predictors for the full model. Hence α, the

subset of ᾱ, represents a candidate model including the predictors labelled by

α. For each candidate model α, its model size and the corresponding coefficients

are dfα and βα. Therefore, each tuning parameter λ determined in the penalty

function results in a selected model αλ with model size dfαλ and the corresponding

coefficients β̂λ. The collection of all candidate models is denoted by A.

For any given model α, we are able to obtain its non-penalized estimates

β̂
?

α by maximizing the corresponding partial likelihood `c(β). Similarly, for any

selected model αλ obtained from penalized partial likelihood with given λ, we

are able to obtain the corresponding non-penalized estimates β̂
?

αλ .

To study the asymptotic behaviors of the tuning parameter selectors for

penalized partial likelihood, we define a general tuning parameter selector

GICκn(β̂) = −2`c(β̂) + κndf ˆβ
, (3.6)

where β̂ is the parameter estimator and df ˆβ
is the corresponding degree freedom

associated with β̂. Here κn is a positive number that denotes different variable

selection criterion. When κn = 2, GICκn is the AIC at (3.3), and when κn =

log(n), GICκn is the BIC at (3.4).

3.2. Theoretical property

In this section, we assume that the set of candidate models contain the unique

true model and that the number of parameters in the full model is finite. Assume

that the coefficients of the unique true model α0 in A are nonzero. Therefore,

any candidate model α + α0 is an underfitted model while any model α ⊃ α0 is

an overfitted model. We partition the tuning parameters into

Ω− = {λ : αλ + α0}, Ω0 = {λ : αλ = α0} and Ω+ = {λ : αλ ⊃ α0}.

We need the following conditions.

(E1) λmax depends on n and satisfies λmax → 0 as n→∞.

(E2) There exits a constant m such that the penalty pλ(ξ) satisfies p′λ(ξ) = 0 for

ξ > mλ.

(E3) If λn → 0 as n→∞, then the penalty function satisfies

lim inf
n→∞

lim inf
ξ↓0

√
np′λ(ξ)→∞.
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(E4) For any candidate model α ∈ A, there exits cα > 0 such that −n−1`c(β̂
?

α)

− log(n)ρ1 → cα. In addition, for any underfitted model α + α0, cα > cα0
.

Conditions (E1)–(E3) are conditions on the penalty while condition (E4) is the

technical condition needed to investigate the asymptotic properties of the tuning

parameter selectors for penalized partial likelihood. Condition (E1) indicates a

smaller tuning parameter is required if the sample size is large; (E2) implies that

the penalty is chosen to have an asymptotic unbiased estimator; (E3) is used

to study the oracle property of the penalized estimator; (E4) assures that the

underfitted model yields a larger model deviance than that of the true model.

Theorem 2. Suppose that the partial likelihood function of the Cox’s model sat-

isfies Conditions (A)–(D) in Fan and Li (2002) and that Conditions (E1)–(E4)

hold.

(A) If there exits a positive constant M such that κn < M , then the tuning

parameter λ̂ obtained by minimizing GICκn(λ) satisfies P{λ̂ ∈ Ω−} →
0 and P{λ̂ ∈ Ω+} > 0.

(B) If κn → ∞ and κn/
√
n → 0, then the tuning parameter λ̂ obtained by

minimizing GICκn(λ) satisfies P{αλ̂ = α0} → 1.

(C) If ρ1 > 0, then the tuning parameter λ̂ obtained by minimizing the GCV

score defined in (3.2) satisfies P{αλ̂ = α0} → 1.

The proof of Theorem 2 is given in the supplement (Li et al. (2016)).

Here, Theorem 2(A) implies that the GICκn selector with bounded κn tends

to overfit without considering which penalty function is used, while Theorem 2(B)

indicates that the GICκn selector with diverging κn enables us to identify the

true model consistently. Thus, the penalized partial likelihood with diverging κn
possesses the oracle property. Theorem 2(C) implies that the penalized partial

likelihood estimator with the GCV selector also possesses the oracle property.

This is quite different from penalized least squares for the linear regression model;

as shown in Wang, Li and Tsai (2007), the GCV selector for the penalized least

squares with linear model results in an overfitted model with positive probability.

4. Numerical Results

We assessed the finite sample performance of proposed procedures. Since

there exist various comparisons among penalized partial likelihood with different

penalties such as the LASSO and SCAD. In our simulation studies, we focused
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on comparisons among different tuning parameter selectors for penalized partial

likelihood with the SCAD penalty. For simplicity, we refer to the SCAD penalized

partial likelihood with κn = 2 and log(n) in GICκn tuning parameter selector

as SCAD-AIC and SCAD-BIC, respectively. Similarly we refer to the SCAD

method with the GCV as SCAD-GCV. The best subset selection with AIC and

BIC criteria for the Cox model are denoted by AIC and BIC in this section,

respectively. In our simulation, we employed the local linear algorithm (LLA,

Zou and Li (2008)) to compute the parameter estimates of the SCAD penalized

partial likelihood function.

Example 2. We adapted the model structure in Fan and Li (2002) to generate

the data with sample sizes n = 100, 200, and 400 from the Cox model with hazard

function

h(t|x) = h0(t) exp(xTβ),

where h0(t) ≡ 1, β = (0.8, 0, 0, 1, 0, 0, 0, 0, 0, 0.6, 0, 0)T , and x had a 12-dimensional

normal distribution, with the correlation between xi and xj as 0.5|i−j|. Accord-

ingly, µ(xTβ) = exp(−xTβ). The censoring distribution was exponential with

mean U exp(−xTβ), where U was sampled from a uniform distribution over [1, 3].

Consequently, the average censoring percentage was 35%. We include the case

with no censoring as a benchmark. For each scenario, we conducted 1,000 simu-

lations.

To assess finite sample performance, we report the percentage of models

correctly fitted, underfitted, and overfitted with 1, 2, 3, 4, 5 or more parameters

by five variable selection procedures, as well as the simulated data fitted with

the true model over 1,000 simulations. We report the average number of zero

coefficients that were correctly (C) and incorrectly (IC) identified in the selected

models over 1,000 simulations. To compare model fittings, we calculated the

model error for the new observation (V, δ,x),

ME(β̂) = Ex{µ(xTβ)− µ(xT β̂)}2,

where the expectation is taken with respect to the new observed covariate vector

x, and µ(xTβ) = E(T |x,β). We report the median of the relative model error

(MRME) over 1,000 simulations, where the relative model error is defined as

RME = ME/MEfull, and MEfull is the model error calculated by fitting the

data with the full model.

In Fan and Li (2002), it was shown that

ME(β̂) = Ex{µ(xTβ)− µ(xT β̂)}2 = Ex{exp(−xTβ)− exp(−xT β̂)}2.
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Table 2. Simulation results for the Cox model (No Censoring).

MRME Zeros Under Exact Over Fitted (%)
n Method (%) C IC (%) (%) 1 2 3 4 ≥ 5
100 SCAD-AIC 45.75 7.255 0.001 0.1 37.5 15.3 16.1 13.1 8.5 9.4

SCAD-BIC 20.90 8.576 0.003 0.3 74.0 15.7 5.2 3.8 0.9 0.1
SCAD-GCV 17.29 8.940 0.059 5.6 89.2 4.9 0.3 0.0 0.0 0.0
AIC 52.52 7.349 0.001 0.1 20.1 29.4 26.9 15.3 6.0 2.2
BIC 25.68 8.666 0.004 0.4 72.5 22.6 3.4 1.1 0.0 0.0
Oracle 15.73 9.000 0.000 0.0 100.0 0.0 0.0 0.0 0.0 0.0

200 SCAD-AIC 58.53 7.591 0.000 0.0 46.6 15.9 13.8 8.5 7.3 7.9
SCAD-BIC 36.33 8.867 0.000 0.0 90.1 7.3 1.8 0.8 0.0 0.0
SCAD-GCV 33.96 8.995 0.003 0.3 99.2 0.5 0.0 0.0 0.0 0.0
AIC 66.37 7.506 0.000 0.0 23.1 32.2 24.8 13.8 4.5 1.6
BIC 41.89 8.781 0.000 0.0 81.2 16.1 2.3 0.4 0.0 0.0
Oracle 33.95 9.000 0.000 0.0 100.0 0.0 0.0 0.0 0.0 0.0

400 SCAD-AIC 68.14 7.553 0.000 0.0 45.1 14.7 15.4 9.3 9.1 6.4
SCAD-BIC 44.10 8.936 0.000 0.0 94.7 4.4 0.7 0.2 0.0 0.0
SCAD-GCV 42.33 8.999 0.000 0.0 99.9 0.1 0.0 0.0 0.0 0.0
AIC 74.71 7.530 0.000 0.0 22.6 33.4 25.7 12.2 5.0 1.1
BIC 47.38 8.875 0.000 0.0 88.6 10.5 0.7 0.2 0.0 0.0
Oracle 42.30 9.000 0.000 0.0 100.0 0.0 0.0 0.0 0.0 0.0

By using the moment generating function of the multinormal distribution, we

can simplify this to

ME(β̂) = exp(2β̂
T

Σβ̂) + exp(2βTΣβ)− 2 exp

(
1

2
(β̂ + β)TΣ(β̂ + β)

)
,

where Σ is the covariance matrix of x. We use this formula to calculate model

errors for our simulations.

Table 2 gives the results for the uncensored case, and shows that the MRME

of SCAD-BIC/GCV is smaller than that of SCAD-AIC. As the sample size in-

creases, the MRME of SCAD-BIC/GCV approaches that of the oracle estima-

tor, whereas the MRME of SCAD-AIC remains at the same level. Interestingly,

SCAD-BIC and SCAD-AIC have smaller MRME than that of the best subset

selection with BIC and AIC, respectively.

Table 2 also shows that SCAD-BIC/GCV has a higher probability of cor-

rectly estimating the true zero coefficients to zero than does SCAD-AIC. How-

ever, SCAD-BIC/GCV was more prone than SCAD-AIC to incorrectly set the

three nonzero coefficients to zero when the sample size was small, and SCAD-

GCV was more aggressive than SCAD-BIC with larger values in “IC” columns.

In addition, SCAD-BIC/GCV had a much higher probability of correctly identi-
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Table 3. Simulation results for the Cox model (35% Censoring).

MRME Zeros Under Exact Over Fitted (%)
n Method (%) C IC (%) (%) 1 2 3 4 ≥ 5

100 SCAD-AIC 42.43 7.235 0.012 1.2 33.4 18.8 16.6 12.0 8.5 9.5
SCAD-BIC 21.42 8.491 0.060 5.8 63.4 19.7 7.3 2.4 1.1 0.3
SCAD-GCV 19.04 8.800 0.153 13.6 71.6 12.3 2.1 0.3 0.1 0.0
AIC 50.03 7.370 0.016 1.6 20.4 30.0 25.9 13.6 6.5 2.0
BIC 23.45 8.648 0.036 3.6 68.8 23.7 3.5 0.4 0.0 0.0
Oracle 14.35 9.000 0.000 0.0 100.0 0.0 0.0 0.0 0.0 0.0

200 SCAD-AIC 59.24 7.535 0.000 0.0 42.3 19.5 13.2 10.2 7.7 7.1
SCAD-BIC 35.53 8.841 0.000 0.0 87.4 9.8 2.3 0.5 0.0 0.0
SCAD-GCV 32.48 8.963 0.006 0.6 95.9 3.3 0.2 0.0 0.0 0.0
AIC 64.64 7.513 0.000 0.0 22.8 35.5 21.5 12.1 6.9 1.2
BIC 37.90 8.830 0.000 0.0 84.8 13.5 1.6 0.1 0.0 0.0
Oracle 31.45 9.000 0.000 0.0 100.0 0.0 0.0 0.0 0.0 0.0

400 SCAD-AIC 69.31 7.552 0.000 0.0 41.5 19.5 14.7 10.6 7.4 6.3
SCAD-BIC 45.07 8.920 0.000 0.0 93.2 5.7 1.0 0.1 0.0 0.0
SCAD-GCV 42.75 8.993 0.000 0.0 99.4 0.5 0.1 0.0 0.0 0.0
AIC 73.64 7.547 0.000 0.0 23.8 33.7 24.7 11.6 4.5 1.7
BIC 48.85 8.856 0.000 0.0 86.8 12.0 1.2 0.0 0.0 0.0
Oracle 43.47 9.000 0.000 0.0 100.0 0.0 0.0 0.0 0.0 0.0

Table 4. Estimates and standard errors for heart attack data.

MPLE SCAD-AIC SCAD-BIC SCAD-GCV
age (x1) 0.60(0.13) 0.56(0.09) 0.43(0.07) 0.41(0.05)
cpk (x2) 0.03(0.14) 0 (-) 0 (-) 0 (-)
sex (x3) 0.17(0.14) 0 (-) 0 (-) 0 (-)
chf (x4) 0.80(0.14) 0.80(0.13) 0.80(0.14) 0.82(0.13)
miord (x5) 0.42(0.14) 0.43(0.13) 0.41(0.13) 0 (-)
age*sex(x6) −0.29(0.14) −0.22(0.13) 0 (-) 0 (-)
age*chf (x7) −0.07(0.15) 0 (-) 0 (-) 0 (-)
age*miord (x8) 0.03(0.15) 0 (-) 0 (-) 0 (-)
cpk*sex (x9) −0.16(0.16) 0 (-) 0 (-) 0 (-)
cpk*chf (x10) 0.19(0.15) 0.19(0.09) 0 (-) 0 (-)
cpk*miord (x11) 0.29(0.15) 0.25(0.12) 0.21(0.05) 0 (-)

fying the true model.

For the censored case, Table 3 shows findings similar to those presented

in Table 2. Accordingly, SCAD-BIC/GCV was superior to SCAD-AIC in both

identifying the true model, and in reducing the model error and complexity.

When the data was 35% censored, all methods declined slightly in their efficacy,

while the relative performance of SCAD-BIC/GCV versus SCAD-AIC remained
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Figure 2. The left panel is the GIC scores with κn = 2 versus λ, the middle panel is the
GIC score with log(n) versus λ, and the right panel is the GCV scores versus λ.

the same as in the uncensored case. This is consistent with our theoretical

analysis in Section 3.

Example 3. (Heart attack data) We applied the proposed regularization pa-

rameter selection procedures to the heart attack data set used in Hosmer and

Lemeshow (1999). The data were collected in the Worcester Heart Attack Study

which describes trends over time in survival rates following hospital admission

for acute myocardial infarction. The total length of follow-up on the admission

of 481 hospital patients was recorded for years 1975, 1978, 1981, 1984, 1986, and

1988. Among those patients, 249 died and the rest were censored at the rate of

48%.

To model survival time, Hosmer and Lemeshow (1999) suggested fitting the

Cox proportional hazards model with five explanatory variables: x1-age; x2-

cpk (peak cardiac enzymes in international units); x3-sex (male = 0 and female

= 1); x4-chf (left heart failure complications, yes = 1 and no = 0); x5-miord

(MI order, first = 0 and recurrent = 1). In addition to these variables, we

included the six interactions between the two continuous variables (age and cpk)

and the three indicator variables (sex, chf, and miord). Thus, there were 11

variables in our full model. We applied the penalized partial likelihood approach.

The resulting regularization parameters selected by SCAD-AIC, SCAD-BIC, and

SCAD-GCV were 0.0533, 0.0878, and 0.1326, respectively. The corresponding
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tuning parameters selector curves are depicted in Figure 2.

Table 4 presents the maximum partial penalized likelihood estimates (MPLE)

from the full model as well as the SCAD-AIC/BIC/GCV parameter estimates,

together with their standard errors. The full model contained six insignificant

variables (x2, x3, and x7 to x10) at level 0.05, SCAD-AIC included two insignif-

icant variables (x6 and x10) at level 0.05. In contrast, the four variables x1, x4,

x5, and x11, selected by SCAD-BIC were significant at level 0.05. For this data

set, SCAD-GCV looks to be overly aggressive in that it excludes x5, and x11.

Based on Table 4, the p-values of the partial likelihood ratio test for exam-

ining the SCAD-AIC, SCAD-BIC, and SCAD-GCV model versus the full model

are 0.6752, 0.1749, and 0.0034, respectively. Consequently, there is no evidence

of lack of fit in the SCAD-BIC model. The SCAD-GCV model may be too ag-

gressive, consistent with our simulation results that GCV tends to be underfitted

when the sample size is not large enough.

5. A Tribute to Peter Hall

Professor Peter Hall made wide ranging and ground-breaking contributions

to many statistical fields and played major leadership roles throughout the sta-

tistical profession. He was a true scholar, and a mentor and friend of many of

us. We grieve his loss.

Runze Li (RL) had the great fortune to learn from Peter and interact with

him directly when they jointly served as Editors of the Annals of Statistics from

2013 to 2015. As an eminent scientist, Peter was an extremely kind, modest and

optimistic person. Peter was always super fast, and handled whatever came to

him promptly. His speed was unbeatable. Once, RL was asked to review a grant

proposal by an international grant agency within a tight deadline. When RL

sent back his report the next day, he was told that Peter’s report had already

been received.

Professor Peter Hall had a huge influence on RL’s research on variable selec-

tion and feature screening, although he never collaborated with Peter on a paper.

Many of RL’s works were inspired by Peter’s ideas. For example, Hall and Miller

(2009) proposed using generalized correlation to conduct feature screening and

the use of the bootstrap to quantify the uncertainty of feature ranking. Moti-

vated by this work, Li, Zhong and Zhu (2012) proposed using distance correlation

for feature screening.

Professor Peter Hall will be remembered forever as a legendary statistician,

a great scholar, beloved colleague, mentor and friend, and his work will continue
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to have a far-reaching impact on statistical methodology and theory.

Supplementary Materials

The proof of Theorem 2 is in the supplemental materials of this paper.
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Appendix

Proof of Theorem 1

Without loss of generality, assume that there are no ties among Vi’s in the

observed data, and that

V1 < V2 < · · · < Vn. (A.1)

This simplifies n−1`c(β) to

n−1`c(β) = n−1βT
n∑
i=1

δixi−n−1
n∑
i=1

δi log
(

exp(xTi β)+ · · ·+exp(xTnβ)
)
. (A.2)

It follows by the Weak Law of Large Numbers (WLLN) that (n−1
∑n

i=1 δixi)
Tβ =
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µT0 β + oP (1). Let

Rn = n−1
n∑
i=1

δi log
(

exp(xTi β) + · · ·+ exp(xTnβ)
)
. (A.3)

Thus,

− n−1`c(β) = −µT0 β +Rn + oP (1), (A.4)

From (A.1), we have

exp(xTi β) + · · ·+ exp(xTnβ)

=

n∑
j=1

I{Vj ≥ Vi}ex
T
j β

=

∫ ∫
I{v ≥ Vi} exp(xTβ) d


n∑
j=1

I{Vj ≤ v,xj ≤ x}


=

∫ ∫
v≥Vi

exp(xTβ) d


n∑
j=1

I{Vj ≤ v,xj ≤ x}

 = nWn(Vi), (A.5)

where Wn(t) =
∫ ∫

v≥t exp(xTβ) dGn(v,x) with Gn(v,x) given in (2.4). Here

δi is a binary random variable, n−1
∑n

i=1 δi = ρ1 + OP (1/
√
n). With An =∫∞

0 log(Wn(t)) dHn(t), it follows that

Rn = n−1
n∑
i=1

δi log (nWn(Vi)) = n−1
∫ ∞
0

log
(
nWn(t)

)
d

{
n∑
i=1

δiI{Vi ≤ t}

}

=

∫ ∞
0

{
log n+ log

(
Wn(t)

)}
dHn(t) = logn

(
Hn(∞)−Hn(0)

)
+An

= log n

(
n−1

n∑
i=1

δi

)
+An = ρ1 log n+ log n

(
n−1

n∑
i=1

δi − ρ1

)
+An

= ρ1 log n+OP (n−1/2 log n) +An = ρ1 log n+An + oP (1), (A.6)

To prove Part (a), we next deal with An. Since

(n− i+ 1) min
i≤j≤n

exp(xTj β) ≤
n∑
j=i

exp(xTj β) ≤ (n− i+ 1) max
i≤j≤n

exp(xTj β)

and X has a finite bounded support, it follows

An = n−1
n∑
i=1

δi log
(
Wn(Vi)

)
= n−1

n∑
i=1

δi log

(
exp(xTi β) + · · ·+ exp(xTnβ)

n

)
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= n−1OP

(
n∑
i=1

log

(
n− i+ 1

n

))
= n−1OP

(
log

(
n!

nn

))
= OP (1). (A.7)

The last equality is due to Sterling’s formula. and this completes the proof of

(a).

For Part (b), it suffices to show that

An
P−→ µ1, as n→∞. (A.8)

From (2.4), we know that Hn(v) is the empirical process of a random sample of

Vi’s with δi = 1. Thus, ‖Hn − H‖ = supv |Hn(v) − H(v)| = Op(n
−1/2) by the

DWK inequality (van der Vaart (1998)) since EI{δi = 1} = ρ1 > 0. Hence, from

(2.4), (A.5), and integration by parts, we have

An =

∫ Vn

0
log(Wn(t)) dHn(t) = Bn +

∫ Vn

0
log(Wn(t)) d{Hn(t)−H(t)}

= Bn + {Hn(t)−H(t)} log(Wn(t))
∣∣∣Vn
0
−
∫ Vn

0
{Hn(t)−H(t)}d{log(Wn(t))}

= Bn + {Hn(Vn)−H(Vn)} log(Wn(Vn))−
∫ Vn

0
{Hn(t)−H(t)}d{log(Wn(t))}

=Bn+{Hn(Vn)−H(Vn)} log

(
exp(xTnβ)

n

)
−
∫ Vn

0
{Hn(t)−H(t)}d{log(Wn(t))}

= Bn +Op

(
log n√
n

)
−
∫ Vn

0
{Hn(t)−H(t)}d{log(Wn(t))}, (A.9)

where Bn =
∫ Vn
0 log(Wn(t))dH(t) by using the fact that xTnβ = OP (1), since

E(|Xj |) < ∞ by the assumption on E|Xj | < ∞ for all j = 1, . . . , p. From (2.4)

and (A.5), we have∣∣∣∣∫ Vn

0
{Hn(t)−H(t)}d{log(Wn(t))}

∣∣∣∣ ≤ ‖Hn −H‖ × | logWn(Vn)− logWn(0)|

= Op(n
−1/2) log

(
exp(xT1 β) + · · ·+ exp(xTnβ)

exp(xTnβ)

)
.

By the assumption in Part (b) and the WLLN, (1/n)
∑n

i=1 exp(xTi β)
P−→ E

exp{XT β}. This implies that log(
∑n

i=1 exp(xTi β)) − log(n) = OP (1). Fur-

thermore, log(exp(xTnβ)) = xTnβ = OP (1). Thus,

log

(
exp(xT1 β) + · · ·+ exp(xTnβ)

exp(xTnβ)

)
= OP (log(n)).
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It then follows that∣∣∣∣∫ Vn

0
{Hn(t)−H(t)}d{log(Wn(t))}

∣∣∣∣ = Op

(
log n√
n

)
. (A.10)

Therefore, (A.8) follows from (A.9)–(A.10), the assumption about µ1, and the

Dominated Convergence Theore.Thus,

Bn
P−→ µ1, as n→∞. (A.11)
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