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Abstract: Let (Yi, θi), i = 1, . . . , n, be independent random vectors distributed as

(Y, θ) ∼ G∗, where the marginal distribution of θ is completely unknown, and the

conditional distribution of Y conditional on θ is known. It is desired to estimate

G∗, as well as EG∗h(Y, θ) for a given h, based on the observed Y1, . . . , Yn.

In this paper we suggest a method for these problems and discuss some of its

applications. The method involves a quadratic programming step. It is computa-

tionally efficient and may handle large data sets, where the popular method that

uses EM-algorithm is impractical.

The general approach of empirical Bayes, together with our computational

method, is demonstrated and applied to problems of treating non-response. Our

approach is nonstandard and does not involve missing at random type of assump-

tions. We present simulations, as well as an analysis of a data set from the Labor

Force Survey in Israel.

We also suggest a method, that involves convex optimization for constructing

confidence intervals for EG∗h under the above setup.

Key words and phrases: Non-Response, NPMLE.

1. Introduction and Preliminaries

Consider a general empirical Bayes setup, where (Yi, θi), are i.i.d., i =

1, . . . , n, distributed as (Y, θ) ∼ G∗, and the conditional distribution of Y condi-

tionally on θ is Fθ, θ ∈ Θ. The marginal distribution of θ under G∗ is denoted

G. Suppose that {Fθ} are known, while G is unknown. It is desired to estimate

η = EG∗h(Y, θ) for a given h, based on the observed Y1, . . . , Yn. Our approach

is to estimate η by η̂ = EĜ∗h(Y, θ) for a suitable estimator Ĝ∗ of G∗. To clarify

terminology, when necessary we refer to {(Yi, θi), i = 1, . . . , n} as the “aggregate

sample” and to {Yi, i = 1, . . . , n} as the “observed sample”.

We concentrate on the non-parametric empirical Bayes setup where G is

completely unknown.

There are two main contributions to this paper. One, is suggesting a method

of estimating G. The method is based on quadratic programming. It is computa-
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tionally much more efficient than the common approach of EM-algorithm, in ad-

dition, it naturally incorporates calibration constraints when available. An esti-

mator Ĝ for G induces a corresponding estimator Ĝ∗ for G∗, through dĜ∗(y, s) =

dFs(y)dĜ(s) ≡ dG∗(y|θ = s)dĜ(s).

The other main contribution is a nonstandard application of empirical Bayes

and estimators η̂ as above to the problem of treating non-response. The suggested

treatment does not involve Missing At Random (MAR) type of assumptions, see,

e.g., Little and Rubin (2002) and Lohr (1999). Instead, it uses, often available,

information about the ‘effort’ invested in getting responses.

1.1. Capture recapture example, and relation to causal inference

We briefly explain our idea and its relation to approaches in causal inference.

This is done in light of the familiar ‘capture re-capture’ example. Suppose it is

desired to estimate N–the population’s size of fish in a lake. For this purpose

there are M capturing attempts, in each attempt, captured fish are tagged and

released. Suppose n (different) fish were captured in the M attempts. For each

fish among the n that were captured at least once, there is a record of the

number of times it was captured. For each i, i = 1, . . . , N , let Yi be the number

of times the corresponding fish was captured. Suppose Yi ∼ B(M,πi), where

pi = pi(πi) = Pπi
(Yi > 0) and πi = πi(pi).

Given n captured fish, if their corresponding pi were known, then the Horvitz–

Thompson estimator N̂ =
∑n

i=1(1/pi) ≡
∑n

i=1 h(pi) could be applied. Since the

pi are unknown, a common way to simplify is to assume that pi ≡ p, estimate p,

e.g., by the mle p̂, and get the estimator Ñ = n/p̂. Less restrictive assumptions

are used in causal-inference, in related problems, as briefly discussed in what

follows.

In causal-inference, when it is desired to estimate Average Treatment Ef-

fect, a similar task should be carried out, where the analogous of the unknown

pi, that corresponds to subject i, is its probability to be assigned to a certain

treatment. The common approaches use estimates of 1/pi in terms of propen-

sity score see, e.g., Rosenbaum and Rubin (1983). A related approach is that of

Robins, Rotnitzky and Zhao (1994), in which some data points are fully observed

while for some other data points there are missing covariates. The aim is to find

the appropriate weights for fully observed and partially observed data points.

The weights are based on an analogue of the estimated inverse probabilities of

the data points to be fully observed. Those approaches involve estimation of pi
based on some covariates and some parametric model (typically logistic), under
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which one may consistently estimate the individual values pi. For example, in

the capture re-capture case, assume a logistic model for pi that uses covariates

like the length, weight of the fish, etc.

In the basic capture-recapture setup, with no covariates and no logistic (or

other) model, applying the estimator
∑

(1/p̂i), where p̂i is the point-wise mle

estimator for pi based on Yi, yields a grossly biased and inefficient estimator,

since p̂i are not consistent for pi, i = 1, . . . , n.

Our approach here is the following. Let G be the distribution of pi, i =

1, . . . , N . Given p ∼ G, define a two dimensional distribution G∗ by introducing

a variable Y , whose conditional distribution conditionally on p is B(M,π), π =

π(p). As elaborated in the sequel, a pseudo Horvitz-Thompon type estimator

for N is nEG∗{(1/p)|Y > 0} ≡ nEG∗{h(p)|Y > 0}. The term ‘pseudo’ is added

since G∗ is unknown. Denote by G∗t the conditional distribution of p condition

on Y > 0. We suggest an NPMLE estimator Ĝ∗t for G∗t that will yield a

corresponding estimator nEĜ∗t(1/p).

Our approach involves fewer model assumptions than is common in causal-

inference. We do not assume models that imply consistent estimation of the

individual pi. Consequently, the corresponding theoretical properties are weaker;

at the same time, one may feel more comfortable with an analysis that is based

on weaker assumptions.

1.2. Non parametric maximum likelihood estimators (NPMLE)

Suppose (Yi, θi) ∼ G∗, i = 1, . . . , n are i.i.d. as above.

Given the distributions Fθ and their corresponding densities fθ, θ ∈ Θ, for

every distribution G on Θ let

PG(y) =

∫
fθ(y)dG(θ).

An NPMLE Ĝ for G, based on the observations Y1, . . . , Yn, is any Ĝ that

satisfies

Ĝ = argmaxG Πn
i=1PG(Yi).

In the literature, NPMLE is also termed GMLE, Generalized Maximum Like-

lihood Estimator.

This estimator was suggested by Kiefer and Wolfowitz (1956), who gave

conditions, that imply weak convergence Ĝ⇒ G.

The common way for computing and approximating Ĝ is through the EM-

algorithm. In Section 3 we will suggest a quadratic programming-based approach.
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Our approach is related to and affected by the convex optimization approach

that was suggested by Koenker and Mizera (2014), and the formulation in Efron

(2014).

It was pointed out to us that our quadratic programming approach is very

close to that of Wager (2014). Our development was done independently and

about the same time, see Greenshtein and Itskov (2013) arXiv. In spite of the

similarity, our setup is slightly more general in order to allow various interesting

non-response scenarios. Under the setup in Wager (2014), Yi = θi + εi where θi
and εi are independent, i = 1, . . . , n, εi are i.i.d., i = 1, . . . , n, or additive noise.

The later setup does not include, e.g., our example where θi are i.i.d, and Yi
are censored variables distributed Geometric(θi). Our approach is also flexible

enough to exploit covariates as demonstrated later.

The estimation of G is called de-mixing or identifying mixtures. On mixture

models, see, e.g., Lindsay (1995).

1.3. Motivating NPMLE-type estimators for EGh

Consider a function h = h(θ). A naive way to estimate η = EGh, is to

plug in a point-wise estimator of θi, e.g., the mle, resulting in η̃ = (1/n)
∑
h(θ̂i).

The estimator η̃ is typically biased and not consistent. On the other hand, in

situations where Ĝ⇒ G, consistency of η̂ = EĜh, as an estimator for η = EGh,

is implied for continuous functions h.

Example 1. Suppose Yi ∼ N(θi, 1) are independent, θi ∼ G, i = 1, . . . , n.

Consider θi, such that θi ≥ 1, as “meaningful” signals. Then we might be

interested in estimating the proportion of meaningful signals in our sample. For

large n, that proportion is close to η = EGh, for the function h(θ) = I(θi ≥
1) – the indicator of the event θ ≥ 1. The estimator η̃ = (1/n)

∑
h(θ̂i) =

(1/n)
∑
I(Yi ≥ 1) is not consistent, while η̂ = EĜh is consistent if G is continuous

at 1. For example, when G is degenerate at 0, η = EGh = 0 but η̃ → 1−Φ(1) > 0.

On the other hand, by the results of Kiefer and Wolfowitz, Ĝ ⇒ G and thus

η̂ = EĜh→ 0 = η.

In cases where Ĝ ⇒ G, we demonstrate the potential advantage of our

NPMLE estimator compared to the plug in point-wise mle estimator. This ad-

vantage motivates us to apply such estimators also when there is no consistency.

In particular, such estimators are applied in our main application example, pre-

sented in the next section. In cases with no consistency, the Confidence Interval

method, presented in Section 4, could reassure or indicate whether such estima-

tors are indeed worthwhile in particular cases.
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There are many other applications involving the estimation of EGh, for ap-

propriate h, in various setups. See for example Zhang (2005) for a related em-

pirical Bayes approach and more examples. The formulation in Zhang is of esti-

mating
∑n

i=1 h(Yi, θi), for latent/unobserved parameters θi. In that paper some

efficiency results, of empirical Bayes approach related to ours, are obtained un-

der appropriate conditions. A notable related early work, on predicting random

sums, is Robbins (1977); see also Greenshtein, Park and Ritov (2008).

Our main application of treating non-response is described in the next sec-

tion. In Section 3 we describe a general method to compute the NPMLE. Sec-

tion 4 discusses the construction of confidence intervals for functionals EGh for

a given h and an unknown G. Section 5 presents simulation results. Section 6

presents a data example involving the Israeli labor force survey, analyzed by our

approach.

2. Non-response and Empirical Bayes Type Horvitz Thompson Esti-

mators

2.1. Repeated interviewing attempts

To motivate our notation, we introduce a realistic sampling scheme from a

large population. A subject from the population is randomly sampled. Then

there are repeated interviewing attempts of this subject until either a response is

obtained, or until M unsuccessful attempts are made. The value of M is known

and it is part of the design of the survey. We model Zi, the number of attempts

until a response from subject i, as a Geometric random variable with success

probability πi. The value of πi is unknown. The corresponding probability of

response before the cutoff of M unsuccessful attempts, is denoted pi, where

pi = p(πi) = P (Zi ≤M) = 1− (1− πi)M .

The quantity of interest in each subject i is denoted Xi, observed if and only if

a response is received. Suppose that N subjects are sampled from the popula-

tion. We consider the “initial aggregate sample” (Xi, Zi, pi), i = 1, . . . , N , as N

realizations of independent random variables (X,Z, p) ∼ G∗.
There are two related scenarios, we label them truncated and censored. The

two scenarios induce two types of aggregate samples and observed samples.

Truncated scenario. Here we observe only the n ≤ N observations that

correspond to responses, where the corresponding Zi satisfy Zi ≤ M . We re-

index, and those n points in the initial aggregate sample become our aggre-

gate sample (Xi, Zi, pi), i = 1, . . . , n. The corresponding observed sample is
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(Xi, Zi), i = 1, . . . , n. The other (N − n) observations are truncated and we

do not know about their existence.

As an example for truncated observations whose ‘existence’ is unknown, con-

sider the capture-recapture example presented in the Introduction. The fish with

zero captures are truncated. In particular we have no knowledge of how many

such cases exist, if any.

Censored scenario. For responded subjects we observe (Xi, Zi). For non-

responded subjects we do not observe the value of interest Xi. However, we do

get the censored information that for the corresponding i, Zi > M .

It will be seen in our simulation section that the seemingly minor extra

censored information can be very helpful for the estimation of EG∗X, compared

with the truncated scenario. It is also demonstrated in the following trivialized

example.

Example 2. Suppose there are M = 1 ‘repeated attempts’. There are n obser-

vations with corresponding Zi = 1, i = 1, . . . , n. It is desired to estimate EG∗X.

In the truncated case, where the number N − n is unknown, there is no way to

consistently estimate G∗ or EG∗X.

Consider a censored scenario where it is known that N − n = 0. Then,

asymptotically as n → ∞, the NPMLE Ĝ converges to a degenerate distribu-

tion under which p = 1 almost surely. The corresponding estimator for EG∗X

converges to the sample average X̄, i.e., X̄ − EĜ∗X →p 0.

2.2. General formulation

The formulation in this subsection is in light of this example, but it is more

general. It includes more modeling situations, such as that in our data example

in Section 6, and beyond.

Let (Xi, Zi, Ii, pi) ∼ G∗, i = 1, . . . , N , be independent distributed as (X,Z,

I, p). The variable X is the variable of interest and it is desired to estimate its

expectation under G∗. In light of the example of repeated interviewing attempts,

the variable Ii is an indicator of the event that subject i responded. The variables

Xi and Zi are observed if and only if Ii = 1. In terms of our example of repeated

interviewing attempts, Ii is a function of Zi and thus redundant, but we set here

a general formulation. The unobserved pi is abstract in the current general setup,

but in our main example it is the probability of response; Zi is some covariate.

Let

Yi = Y (Xi, Zi, Ii)
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be (functions of) the observed sample, i = 1, . . . , n. Again, n ≤ N in the

truncated scenario and n = N in the censored scenario. Let

θi ≡ (Xi, pi).

Suppose the conditional distribution of Y conditional on θ ≡ (X, p), denoted

by Fθ(y), is known.

It is desired to estimate

η = EG∗h(θ) ≡ EG∗X, for h(θ) = X.

This setup may be readily generalized to a general function h(θ, Y ) and its

corresponding η = EG∗h(Y, θ).

Here, the X-part of the parameter θ is observed under response, which is

non-conventional. Our main interest is in the distribution of X in terms of

EG∗X, while the value of the unobserved/latent p is of a secondary importance.

By incorporating the value of X in θ and estimating the population distribution

G of θ, we learn about the desired population’s distribution of X.

In addition, there are cases where we have some partial knowledge regarding

the distribution of X in the population in terms of calibration constraints. Those

constraints are conveniently expressed in terms of θ in our NPMLE method, see

sub-section 3.2.

2.3. Censored version

Let G be the marginal distribution of θ under G∗. Note that EG∗X = EGX.

Thus, once an estimator Ĝ for G is available, an induced estimator for η = EGX

is defined. Specifically we have the estimator:

η̂c = EĜX = EĜ∗X. (2.1)

The last equation and reasoning applies under the general and abstract setup

of the previous sub-section. In the sequel we present helpful representations of

(2.1), motivated by our main example of repeated interviewing attempts.

In the rest of this subsection we are oriented toward our main example,

through assumption (2.2) in the sequel.

Let

θi = (Xi, pi),

and let

Y (Xi, Zi, Ii) =

{
(Xi, Zi) Ii = 1,

NR Ii = 0.
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Here, ‘NR’ is a formal value, expressing the fact that there was No-Response.

Assume

p = PG∗(I = 1|p) = PG∗(I = 1|X, p), (2.2)

EG∗(p|X) > 0 w.p.1, under G∗. (2.3)

Under the censoring scenario the event Ii = 0 provides some information,

e.g., the mere fact that Ii = 0. Thus, n = N .

In our main example, this is formally expressed through Fθ(y) = PG∗(Y =

y|θ). For π = π(p):

PG∗(Y = y|θ = (x0, p)) =


(1− π)z−1π y = (x0, z), z = 1, . . . ,M,

(1− π)M y = NR,

0 otherwise.

Under (2.2) and (2.3) we obtain

EG∗
X

EG∗(p|X)
I = EEG∗

(
X

EG∗(p|X)
I
∣∣∣X)

= EX

∫
E

{
I

EG∗(p|X)

∣∣∣X, p} dG∗(p|X) = EG∗X,

(2.4)

EG∗
1

N

N∑ Xi

EG∗(p|Xi)
Ii = EG∗X. (2.5)

When replacing G∗ by Ĝ∗, (2.5) induces the estimator:

η̂cA =
1

N

N∑ Xi

EĜ∗(p|Xi)
Ii =

1

N

N∑ Xi

EĜ(p|Xi)
Ii (2.6)

for EG∗X.

The estimator η̂cA allows the flexibility of estimating EG∗(p|X = x) based on

a possible source/sample other than the observed sample (Xi, Zi), i = 1, . . . , N ,

as done in Section 6. The estimator is an empirical Bayes variant of Horvitz-

Thompson estimator, see the next subsection.

2.4. Truncated version

The initial aggregate sample is (Xi, Zi, Ii, pi), i = 1, . . . , N ; here (Xi, Zi, Ii, pi)

are i.i.d distributed like (X,Z, p, I) ∼ G∗. Under the truncated version, the ag-

gregate sample (Xj , Zj , pj , Ij) consists of the n ≤ N sample points for which

Ij = 1. We re-index those sample point as (Xi, Zi, pi, Ii), i = 1, . . . , n.

Denote by G∗t, the conditional distribution of (X,Z, I, p) conditional on

I = 1. Let
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Yi = (Xi, Zi), θi = (Xi, pi), i = 1, . . . , n,

and denote the marginal of G∗t on θ ≡ (X, p) by Gt.

In the current truncated setup we can attempt to estimate only G∗t and its

functionals. Indeed in this section we present EG∗X as a functional of G∗t, and

our estimators are presented through expectations under its estimators Ĝ∗t. In

particular our estimators are not functions of the unobserved N .

Assume (2.2), coupled with

p > 0, and EG∗

(
1

p

∣∣∣∣X) <∞, w.p.1 under G∗. (2.7)

In our main example, for π = π(p), the expression for F t(y|θ) ≡ PG∗(y|θ, I =

1) = PGt(y|θ) = is

PGt(Y = y|θ = (x0, p)) =


(1− π)z−1π

1− (1− π)M
y = (x0, z), z = 1, . . . ,M,

0 otherwise.

Empirical Bayes Horvitz-Thompson estimators. When we condition on (Xi,

pi), i = 1, . . . , N , the only remaining randomness is in Ii. By (2.2)

E{Ii|(Xj , pj), j = 1, . . . , N} = pi.

Thus, by (2.7), just as in the derivation of Horvitz-Thompson,

EG∗

{∑ Xi

pi
Ii

∣∣∣∣(Xj , pj), j = 1, . . . , N

}
=

N∑
j=1

Xi;

by taking expectation of the conditional expectation we obtain

EG∗

(
1

N

N∑
i=1

Xi

pi
Ii

)
= EG∗X. (2.8)

Thus,

η̂oracle =
1

N

N∑
i=1

Xi

pi
Ii (2.9)

is an unbiased pseudo-estimator for EG∗X, that could be used by an oracle who

knows both pi, i = 1, . . . , n and N . We later use this pseudo estimator as a

benchmark for the performance of our estimators.

We now use this idea to derive our “legitimate” estimator for the truncated

version. Legitimate is in the sense that it depends only on the observed portion

of the aggregate sample. It is convenient to write the argument for a discrete

X. In any case our general technique, described in Section 3, is for discrete (or
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discretized) parameters.

Suppose the support of X is {x1, . . . , xL}. We first estimate PG∗(X = xl), l =

1, . . . , L. Let χx be the indicator χx ≡ I(X = x).

Then by (2.2) and (2.7):

PG∗(X = x) = EG∗

(
χx
p
I

)
= PG∗(I = 1)EG∗

(
χx
p

∣∣∣∣I = 1

)
= PG∗(I = 1)EGt

χx
p
,

with the first equality obtained similarly to (2.8).

From this we get:

PG∗(X = xk) =
PG∗(X = xk)∑
l PG∗(X = xl)

=
EGt(χxk

/p)∑
lEGt(χxl

/p)
=
EGt(χxk

/p)

EGt(1/p)
. (2.10)

After obtaining an estimator Ĝt for Gt, through our general method de-

scribed in Section 3, we arrive at an estimator P̂ tG∗(X = xk) for PG∗(X = xk):

P̂ tG∗(X = xk) =
EĜt(χxk

/p)∑
lEĜt(χxl

/p)
=
EĜt(χxk

/p)

EĜt(1/p)
. (2.11)

Thus, we obtain the estimator for η = EG∗X,

η̂t =
∑
l

xlP̂
t
G∗(X = xl). (2.12)

A related representation alternative to (2.11) is given at (2.13). It suits better

in some cases, e.g., the example in Section 6. A simple conditioning argument,

together with Horvitz-Thompson reasoning, implies by (2.2) and (2.7) that

EG∗

N∑
i=1

χxk
= EG∗

N∑
χxk

Ii
p

= EG∗

N∑
i=1

χxk
IiEG∗

(
1

p

∣∣∣∣Ii = 1, X = xk

)

= EG∗

N∑
i=1

χxk
IiEGt

(
1

p

∣∣∣∣X = xk

)
.

Let nl be the number of items that had the value xl in our observed sample.

Let Ĝt be an estimator for Gt. Then, since PG∗(X = xk) = (EG∗
∑N

i=1 χxk
/∑

lEG∗
∑N

i=1 χxl
), an alternative estimator for PG∗(X = xk) is:

P̂ tAG∗(X = xk) =
nkEĜt((1/p)|X = xk)∑
l nlEĜt((1/p)|X = xl)

. (2.13)

The last representation defines a more flexible estimator, where the estimator

Ĝt and the counts nl, l = 1, . . . , L, may come from different sources. The example

in Section 6 exploits this flexibility.

Here, the alternative estimator for η under truncation is

η̂tA =
∑
l

xlP̂
tA
G∗(X = xl). (2.14)
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Remark 1. In our simulations and data analysis, we assume that 0 < p0 ≤ p,

w.p.1, for a suitable p0. If such an assumption cannot be reasonably made, then,

especially in the truncated scenario, the estimators may be very unstable.

3. Estimation of the Mixing Distribution

3.1. Approximate NPMLE

This section presents a general NPMLE method for a discrete setup. In

particular, the censored and truncated scenarios of the previous section, may be

obtained as special cases.

Consider a standard empirical Bayes setup, as described in the introduction,

where (Yi, θi) ∼ G∗, are i.i.d., i = 1, . . . , n. We assume discrete distributions,

in particular the Fθ, θ ∈ Θ, are discrete with a common finite support denoted

{y1, . . . , yJ}, and that G is discrete with a given finite support {s1, . . . , sK}. The

treatment of continuous cases may be done through discretization: in light of

our examples in the previous section, take Θ = {x1, . . . , xL}× {p1, . . . , pκ}, with

K = Lκ points; here p1, . . . , pκ, is a dense grid in the interval [p0, 1] for a suitable

0 < p0, of the possible response probabilities.

Our observations Yi, i = 1, . . . , n, are independent and identically distributed

like a random variable Y . Denote their discrete density by f = (f1, . . . , fJ)′,

where

fj = P (Y = yj), j = 1, . . . , J.

Denote

pjk = P (Y = yj |θ = sk), j = 1, . . . , J ; k = 1, . . . ,K,

and denote the density of the discrete distribution G by g0 = (g01, . . . , g
0
K)′, where

g0k = PG(θ = sk), k = 1, . . . ,K.

Denote by P the J ×K matrix P = (pjk).

Then:

f = Pg0. (3.1)

This formulation and (3.1) are given in Efron (2014), but the proposed so-

lution at (3.2) differs from his suggestion.

Recall, the support of G is known (or, practically approximated by a dense

grid {s1, . . . , sK}); it is the density g0 that should be estimated. We reduce the

problem through sufficiency. A sufficient statistic is f̂ = (f̂1, . . . , f̂J)′, where f̂j
is the proportion of observations among Y1, . . . , Yn, that took the value yj , j =
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1, . . . , J . Now, f̂ is a scaled multinomial vector with mean f and a corresponding

covariance matrix Σf/n. Its distribution is asymptotically multivariate normal.

As there is a linear dependence, the corresponding covariance matrix Σ−1f does

not exist. We can replace f̂ by the sufficient statistic f̂∗ = (f̂1, . . . , f̂J−1)
′,

whose corresponding covariance matrix is Σ∗/n. The mean of f̂∗ is P ∗g0, where

P ∗(J−1)×K is obtained from P by deleting its last row. Assume that Σ∗ is non-

singular. Since the distribution of f̂∗ is asymptotically multivariate normal, a

solution ĝ to

min
g

(f̂∗ − P ∗g)′Σ∗−1(f̂∗ − P ∗g), (3.2)

s.t. 0 ≤ gk,
∑

gk = 1,

is asymptotically an mle estimator for g0.

Practically, Σ∗ is replaced by its estimate, which is obtained by utilizing the

multinomial distribution of nf̂ .

We write ‘an mle’ rather than ‘the mle’, since a solution and an mle are not

necessarily unique. A solution of (3.2) is unique if P ∗ is full rank.

The numerical work in this paper was done by applying the quadratic pro-

gramming function ipop, from the R-package kernlab, Karatzoglou et al. (2004).

3.2. Covariates and calibration

Our formulation can accommodate covariates. Suppose the data includes a

variable, denoted X. Here X may be any observed covariate, on which there

are available external additional known constraints. Let θi = (Xi, pi), where

pi is unobserved/latent parameter. Suppose that X is discrete and again, let

s1, . . . , sK be the (approximated) discrete support of θ. For simplicity, assume

that X = 0 or 1, indicating, e.g., whether the subject is a male or a female.

Suppose, it is known that PG∗(X = 1) = 0.5. Take ψ(θ) = 1 ⇐⇒ X = 1. As

before PG∗(y|θ), is known.

In such a case we can add to the quadratic programming problem (3.2) the

linear ‘calibration’ constraint∑
gkψ(sk) = c ≡ 0.5.

Similarly, more generally, when there are a few such functions ψ1, . . . , ψm,

and corresponding constants c1, . . . , cm.

4. Confidence Intervals and Linear Optimization

Lack of identifiability might yield very poor, non-unique and inconsistent
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NPMLE estimators. Nevertheless, even in a non-identifiable setup, under a spe-

cific configuration determined by G and possibly additional (calibration) con-

straints, one might still obtain reliable NPMLE estimates, as demonstrated in

Example 2 and in Example 3 in the sequel.

In this section we suggest a confidence interval method, that could indi-

cate whether the obtained estimator is reliable. In cases where the CI is non-

informative, one might want to turn to models with further assumptions, or

gather more data.

We consider the setup of Section 3, where the aggregate sample consists of

i.i.d. (Yi, θi) ∼ G∗. Suppose it is desired to estimate

η = EG∗h(θ) =
∑
k

h(sk)g
0
k,

where g0 = (g01, . . . , g
0
K)′ is the discrete density of G. The truncated setup of

Section 3 is obtained, when letting G∗ = G∗t and G = Gt.

Let f̂∗ and Σ∗ be as before. Suppose that Σ∗ is non-singular. Let Σ̂∗ be the

empirical covariance matrix. Then, as the sample size approaches infinity, Σ̂∗−1

approaches Σ∗−1 in probability. Furthermore, the distribution of
√
n(f̂∗−P ∗g0)

converges weakly to a multivariate normal distribution with a zero mean vector,

and covariance matrix Σ∗.

Consider the solution of the following problem of linear optimization under

convex constraints:

η̂U = max
g

∑
k

h(sk)gk, (4.1)

η̂L = min
g

∑
k

h(sk)gk,

s.t.

n(f̂∗ − P ∗g)′Σ̂∗−1(f̂∗ − P ∗g) < χ2
(J−1),1−α,

0 ≤ gk,
∑
k

gk = 1.

Here χ2
(J−1),1−α is the critical value of the appropriate α-level χ2 test with J − 1

degrees of freedom, the size of the discrete support of Y being J .

Theorem 1. If Σ∗ is non-singular, then (η̂L, η̂U ) is a conservative (1− α) level

confidence interval for η, asymptotically as n→∞.

The generalization for h = h(Y, θ) and η = EG∗h(Y, θ) is straightforward.

Calibration. As in the previous section, additional calibration constraints



2202 GREENSHTEIN AND ITSKOV

of the form:
∑

k ψj(sk) = cj , j = 1, . . . ,m, can be added to the above convex

optimization problem when available.

Example 3. Consider Example 2 under censoring with M = 1, and let η =

EG(1/p). Under this trivial setup, suppose that the n observed Zi are Z1 =

· · · = Zn = 1. Consider the censored scenario, where the known number of

censored observations is N − n = n. Due to lack of identifiability, any Ĝ that

satisfies
∫
pdĜ(p) = 0.5 is an NPMLE. Under no further constraints (4.1) yields

η ∈ (1,∞). Suppose that under G, it is known that 0 < p0 ≤ p a.s. Then the

corresponding convex optimization is an exercise, with a non-trivial solution, as

shown in the following.

By letting n→∞, the following is asymptotically valid for any (1−α) level

CI. Asymptotically, as n→∞, η̂U is obtained for ĜU which has its support at the

points p0 and 1, with maximal possible weight assigned to p0. The corresponding

weights are gU1 = 1/{2(1 − p0)} and gU2 = 1 − gU1 . The corresponding η̂U =

(1 + p0 − 2p20)/(2p0(1 − p0)). Here ĜU satisfies the chi-square constraint with

chi-square value equal to zero.

If p0 ≤ 0.5, then η̂L is obtained for ĜL, which has all its mass at p = 0.5.

The corresponding η̂L = 2. Again, ĜL satisfy the constraint with a chi-square

value of zero. If p0 = 0.5, then asymptotically η̂U = η̂L = 2.

5. Simulations

In this section we report on simulation results for the repeated interviewing

attempts example, as described in Section 2.1.

The variable of interest X is binary. We simulated under various choices of

G∗ = 0.5G∗0 + 0.5G∗1, and under M = 4, 6, 8; under G∗0, X = 0 w.p.1, while

p = 1 − (1 − π)M , where π ∼ Γ, and Z ∼ Geometric(π); under G∗1, X = 1

w.p.1., while p = 1− (1− π)M , where π ∼ Γγ and Z ∼ Geometric(π).

The description of the various choices of Γ and Γγ follows:

Two Points. The distribution Γ has two-point support, at the points 0.5

and 0.9, with probability mass 0.5 at each. The distribution Γγ is a (−γ) trans-

lation of Γ.

Uniform. The distribution Γ is uniform on the interval (0.1, 1). The dis-

tribution Γγ is a mixture of Γ and a point mass at 0.1, with mixing weights of

(1− γ) and γ.

Normal. The distribution Γ is N(0.5, 0.1), rounded up to 0.1 and rounded

down to 1. The distribution Γγ is N(0.5−γ, 0.1) rounded up to 0.1 and rounded



EMPIRICAL BAYES, NON-RESPONSE 2203

Table 1. Simulation results.

Γ M γ m-naive m-η̂t m-η̂c S-naive S-η̂t S-η̂c S-oracle
TwoPts 4 0.1 0.4909 0.4206 0.4963 0.0184 0.0868 0.0168 0.0161
TwoPts 4 0.2 0.4743 0.4094 0.4891 0.0304 0.0996 0.0250 0.0165
TwoPts 4 0.3 0.4470 0.3867 0.4766 0.0556 0.1230 0.0405 0.0173
TwoPts 4 0.4 0.3978 0.3456 0.4532 0.1035 0.1618 0.0668 0.0192
TwoPts 6 0.1 0.4966 0.4815 0.4995 0.0164 0.0300 0.0164 0.0161
TwoPts 6 0.2 0.4872 0.4823 0.4978 0.0208 0.0335 0.0173 0.0165
TwoPts 6 0.3 0.4663 0.4726 0.4937 0.0373 0.0417 0.0203 0.0162
TwoPts 6 0.4 0.4221 0.4358 0.4846 0.0796 0.0731 0.0274 0.0178
TwoPts 8 0.1 0.4978 0.4975 0.4992 0.0156 0.0172 0.0155 0.0154
TwoPts 8 0.2 0.4933 0.5007 0.4996 0.0173 0.0200 0.0160 0.0160
TwoPts 8 0.3 0.4788 0.5022 0.4990 0.0268 0.0245 0.0169 0.0165
TwoPts 8 0.4 0.4394 0.4762 0.4948 0.0629 0.0349 0.0185 0.0178
Uniform 4 0.1 0.4855 0.3739 0.4921 0.0224 0.1335 0.0446 0.0181
Uniform 4 0.2 0.4682 0.3638 0.4816 0.0360 0.1435 0.0548 0.0184
Uniform 4 0.3 0.4504 0.3562 0.4777 0.0530 0.1516 0.0609 0.0201
Uniform 4 0.4 0.4301 0.3509 0.4710 0.0720 0.1571 0.0664 0.0197
Uniform 6 0.1 0.4882 0.4441 0.4952 0.0205 0.0629 0.0287 0.0174
Uniform 6 0.2 0.4738 0.4399 0.4893 0.0312 0.0679 0.0340 0.0174
Uniform 6 0.3 0.4597 0.4347 0.4860 0.0438 0.0735 0.0371 0.0176
Uniform 6 0.4 0.4457 0.4314 0.4858 0.0570 0.0770 0.0388 0.0183
Uniform 8 0.1 0.4908 0.4757 0.4973 0.0189 0.0340 0.0224 0.0166
Uniform 8 0.2 0.4794 0.4709 0.4941 0.0261 0.0373 0.0238 0.0162
Uniform 8 0.3 0.4679 0.4687 0.4937 0.0362 0.0408 0.0256 0.0172
Uniform 8 0.4 0.4555 0.4634 0.4913 0.0476 0.0449 0.0255 0.0173
Normal 4 0.1 0.4792 0.3570 0.4966 0.0267 0.1492 0.0227 0.0168
Normal 4 0.2 0.4422 0.3485 0.4917 0.0602 0.1594 0.0295 0.0176
Normal 4 0.3 0.3859 0.3414 0.4863 0.1156 0.1679 0.0404 0.0199
Normal 4 0.4 0.3231 0.3332 0.4833 0.1778 0.1738 0.0471 0.0211
Normal 6 0.1 0.4902 0.4571 0.4989 0.0195 0.0523 0.0184 0.0169
Normal 6 0.2 0.4664 0.4489 0.4955 0.0375 0.0631 0.0214 0.0169
Normal 6 0.3 0.4223 0.4380 0.4920 0.0796 0.0744 0.0257 0.0180
Normal 6 0.4 0.3691 0.4333 0.4919 0.1321 0.0782 0.0272 0.0191
Normal 8 0.1 0.4945 0.4899 0.4987 0.0169 0.0232 0.0168 0.0160
Normal 8 0.2 0.4777 0.4875 0.4968 0.0277 0.0277 0.0178 0.0166
Normal 8 0.3 0.4461 0.4813 0.4964 0.0564 0.0350 0.0187 0.0170
Normal 8 0.4 0.4016 0.4762 0.4962 0.0999 0.0401 0.0196 0.0183

down to 1.

In all these cases, we used γ = 0.1, 0.2, 0.3, 0.4. As γ increases, subjects with

X = 1 are less likely to respond compared to subjects with X = 0. We are

estimating η = EG∗X = PG∗(X = 1) = 0.5. The naive estimator defined as the

sample average is a biased estimator and the bias is increased with γ.
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We considered the performances of η̂c and η̂t that correspond to the estima-

tors based on censored and truncated observations, as explained in Sections 2.3

and 2.4. As a benchmark we also considered the simulated results for the estima-

tor η̂oracle = (1/N)
∑N

i=1(Xi/pi)Ii, see (2.9), which could be used by an ‘oracle’

who knows the values of (the unobserved) pi, and the value of N .

Table 1 reports simulations that correspond to N = 1,000. Applying our

method to compute Ĝ, we discretized the parameter space so that pi ∈ {1− (1−
πj)

M , j = 1, . . . , 91}, where π1 = 0.1, π2 = 0.11, . . . , π91 = 1. The columns “m- ”

correspond to the simulated mean of the corresponding estimator. The columns

“S- ” correspond to the square-root of the simulated mean of the MSE of the

corresponding estimator. The ”‘naive”’ estimator, is the estimator that estimates

the population mean by the sample average. The number of simulations in each

of the configurations is 1,000.

Due to the non-identifiability, the NPMLE is not unique. Our choice of Ĝ

in the simulations was the one suggested by the quadratic programming routine.

We found the following.

i) The seemingly minor extra censored information is very helpful and η̂c is

significantly better than η̂t.

ii) The performance of η̂c is comparable to that of the oracle and in a few

cases, such as the two-point G∗ with M = 8, the performances are virtually the

same.

iii) The advantage in increasing M , in terms of the reduction of the MSE,

is greater for our EB type estimators η̂t and η̂c, in comparison with the naive

estimator. This should further encourage the effort to get a response, when using

such estimators.

6. Data Example

In this section we report on the application of our method to a data set from

the Labor Force Survey, conducted by the Israel Central Bureau of Statistics.

The sampling method is 4-8-4 rotating panels, where each panel has 4 consecutive

investigations in 4 months, then 8 months break and finally another 4 consecutive

investigations in additional 4 months. In our analysis we treated the the two

panels with their i’th and (4 + i)′th investigation, i = 1, 2, 3, 4, as one. Thus, for

our analysis the rotation method may be equivalently treated as a 4-in rotation,

as described in the following.

The survey is given to four panels, where each panel is investigated four
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times in four consecutive months. Each month one panel finishes its fourth

investigation and in the next month it is replaced by a new panel that remains

for four months. The main purpose of the survey is to estimate the proportion of

‘Unemployment’ ≡ x1, ‘Employment’ ≡ x2, and those who are ‘Not in Working

Force (NWF)’ ≡ x3; the last category is of those who do not have a job, nor

are they looking for one. Under the sampling method, persons are equally likely

to be sampled. The monthly sample size is about 20,000. The response rate is

around 80%.

Our observed sample each month consists of Yi = (Xi, Zi) that correspond to

the people who respond that month, i.e., their corresponding Ii = 1. Our variable

of interest is X-‘working status’. For each person i, Zi is the corresponding

number of responses he has made so far. For people in a panel who had so far

B scheduled investigations and belong to the observed sample of the relevant

month, we model Zi as Zi = 1 + Wi, where Wi is a Binomial random variable

Wi ∼ Binomial(B − 1, pi), B = 1, 2, 3, 4, pi is the probability of a response

from person i in a single month; pi is assumed to be fixed for the same person in

different months. The estimation of Gt is done based on data only from the panel

with its fourth investigation that month. Incorporating the information from the

other panels whose Zi ≤ 3, does not add much to the estimation accuracy, while

undesirably complicating the analysis.

Let nl, l = 1, 2, 3, be the number of occurrences of X = xl in our observed

sample. We emphasize, the nl counts are from all the four panels; it is the

estimation of Gt, which is based only on one panel. We estimate P (X = xl), l =

1, 2, 3, by (2.13), the estimator is denoted P̂ . Our tables below are based on the

last estimator.

As in the previous section, the particular (non-unique) approximate NPMLE

Ĝ that we chose, was simply the one suggested by the quadratic programming

routine.

Remark 2. The reason that we use the truncated version and not the censored

one, is that under non-response it could be that the corresponding apartment

is simply unoccupied and thus we are not sure about the effective size N of

the initial aggregate sample, where N corresponds to the number of occupied

households.

6.1. Estimation of the (known) proportions of sex and age categories

Since the true proportions of the various working statuses are unknown, we
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Table 2. Comparison of estimates of male’s proportion.

True Naive P̂
Male 0.4853 0.4752 0.4822

0.4853 0.4751 0.4819
0.4853 0.4776 0.4842

Table 3. Comparison of estimates of proportion of 20–39 age group.

True Naive P̂
Age 20–39 0.3970 0.3664 0.3815

0.3970 0.3631 0.3984
0.3970 0.3598 0.3842

first demonstrate the performance of our estimation method in estimating the

following known true proportions, based on the responses in a given month.

In one case we estimate the proportion of males in the population, our X

variable is an indicator of the event ‘the person is a male’, the proportion of

males in the population is known to be 0.485. The proportion of males in the

survey among responders in our observed sample, is about one percent lower.

In another example we estimate the proportion of the group age 20–39. The

known proportion of this age group in the population is 0.397, while their response

rate is particularly low; their proportion among responders is nearly 3 percent

lower.

Each of Tables 2 and 3 has three lines that correspond to the data obtained

in Aug/2012, Dec/2012, and April/2013. We took periods that are four months

apart in order not to have overlapping panels. The general picture persist in

other months.

The columns True, Naive, and P̂ , correspond to the true population’s pro-

portion, the sample proportion among responders, and our estimator P̂ . In each

case one sees that P̂ corrects the naive estimator in the right direction.

6.2. Estimation of the proportion of employment statuses

After gaining some confidence in P̂ , we now examine its estimates in the

estimation of the proportion of ‘Unemployed’, ‘Employed’ and those ‘Not in

Working Force’ (NWF). In Table 4 the columns Naive and P̂ are as before. The

column Bureau gives the estimates of the Israel Central Bureau of Statistics, for

the three categories of working statuses. The estimator of the bureau is obtained

through a method that involves calibration in a ‘post-stratification manner’ (the
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Table 4. Comparison of unemployment estimates.

Bureau Naive P̂

Emp 0.6104 0.5931 0.5761
0.6081 0.5992 0.5910
0.6089 0.5986 0.5881

NWF 0.3416 0.3594 0.3748
0.3465 0.3576 0.3605
0.3491 0.3621 0.3720

UnEmp 0.0479 0.0475 0.0492
0.0454 0.0431 0.0484
0.0420 0.0392 0.0399

final estimate involves additional seasonal adjustment that we neglect). The three

parts of the table refer to the three working statuses. The three lines in each part

refer to the three months as before. The Bureau and the P̂ estimators ‘correct’

the naive estimator for Employment and NWF, in opposite directions. It seems

that the correction of the naive estimates by the Bureau estimates, in the cases

‘Employment’ and the ‘NWF’ are in the wrong direction. This is suggested also

by incorporating revealed working status of non-responders as revealed through

their “future” investigations. On the other hand, both the Bureau and P̂ t correct

the unemployment naive estimate by increasing it.
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